TURBULENCE OVER A FRACTAL FOURIER SKELETON

ALESSANDRA S. LANOTTE

INFN and CNR - ISAC

Istituto di Scienze dell'Atmosfera, Lecce, ITALY

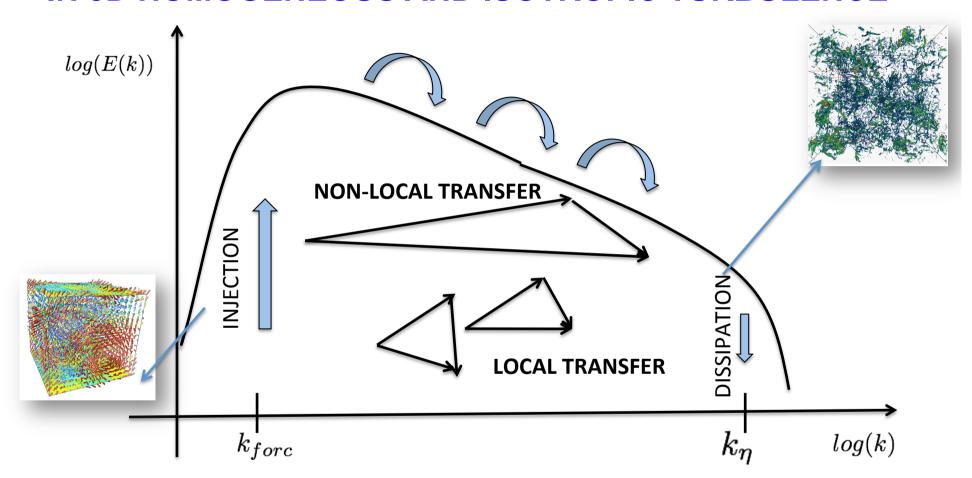
in collaboration with

Roberto Benzi, Luca Biferale, Shiva K. Malapaka

Univ. of Rome Tor Vergata, Italy
Federico Toschi

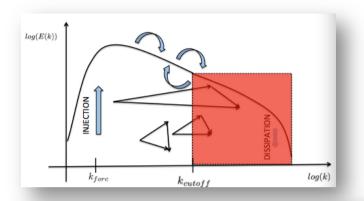
Technical Univ. Eindhoven, The Netherlands

ON THE ORIGIN OF INTERMITTENCY CORRECTIONS IN 3D HOMOGENEOUS AND ISOTROPIC TURBULENCE

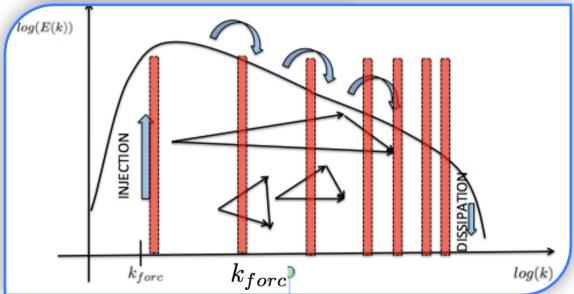


CAN WE HAVE A BETTER UNDERSTANDING OF INTERMITTENCY BY **DECIMATING** INTERACTIONS IN THE NON LINEAR TERM?

DECIMATION TO A FRACTAL SET OF FOURIER MODES



Truncation of modes |k| > k_{cutoff}
 Example : Large-eddy simulations



 Random **DECIMATION** of Fourier modes on a Fractal set of dimension D_F

$$\mathbf{v}(\mathbf{x},t)
ightarrow \mathbf{v}^{\mathbf{D_F}}(\mathbf{x},\mathbf{t}) = \mathcal{P}^{\mathbf{D_F}}\mathbf{v}(\mathbf{x},\mathbf{t}) = \sum_{\mathbf{k} \in \mathcal{Z}^3} \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}} \gamma_{\mathbf{k}} \mathbf{\hat{v}}(\mathbf{k},\mathbf{t})$$

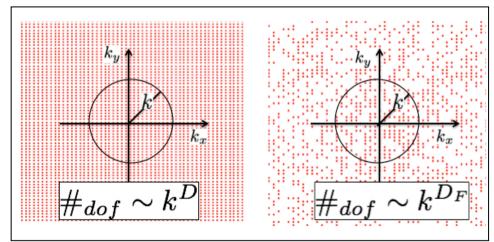
Fourier modes are decimated ($\gamma_{\rm k}$ = 0) with probability ~ $1-k^{D_F-3}$

SELF-SIMILAR REDUCTION OF 3D NAVIER-STOKES DYNAMICS

$$\mathbf{u}(\mathbf{x},t) \to \mathbf{v}^{D_F}(\mathbf{x},t) = \mathcal{P}^{D_F}\mathbf{u}(\mathbf{x},t) = \sum_{\mathbf{k} \in \mathcal{Z}^3} e^{i\mathbf{k}\mathbf{x}} \, \gamma_{\mathbf{k}} \, \hat{\mathbf{u}}(\mathbf{k},t)$$

$$\gamma_k = \begin{cases} 1 & \text{with probability } h_k = k^{D_F - 3} \\ 0 & \text{with probability } 1 - h_k. \end{cases}$$

$$\partial_t \mathbf{v}^{D_F} + \mathcal{P}^{D_F} [\mathbf{v}^{D_F} \cdot \nabla \mathbf{v}^{D_F}] = -\mathcal{P}^{D_F} \nabla p + \nu \Delta \mathbf{v}^{D_F} + \mathcal{P}^{D_F} f$$



SELF-SIMILAR GALERKIN TRUNCATION

- Decimation is random but frozen in time
- same inviscid invariants as 3D NS
- Statistical symmetries preserved
- no external scale introduced

Frisch, Pomyalov, Procaccia, Ray *Turbulence in non-integer dimensions by fractal Fourier decimation*, PRL 2012 Grossmann, Lohse, Reeh, *Developed Turbulence: From Full Simulations to Full Mode Reductions* PRL 1996

DNS OF TURBULENCE ON A FRACTAL FOURIER SKELETON

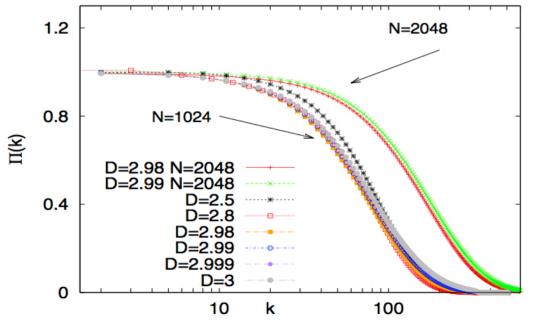
- ➤ Periodic, regular grid N³ points; pseudo-spectral solver
- > Homogeneous, isotropic forcing yielding a constant energy injection rate

SUMMARY TABLE						
N^3 D_F	3.0	2.999	2.99	2.98	2.8	2.5
1024 ³	Χ	Χ	X	X	Χ	X
20483			X	X	0/	of CUI

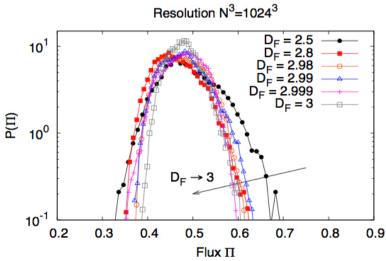
 % of SURVIVING FOURIER MODES
 N³ = 1024

 D_F
 3.0
 2.999
 2.99
 2.98
 2.8
 2.5

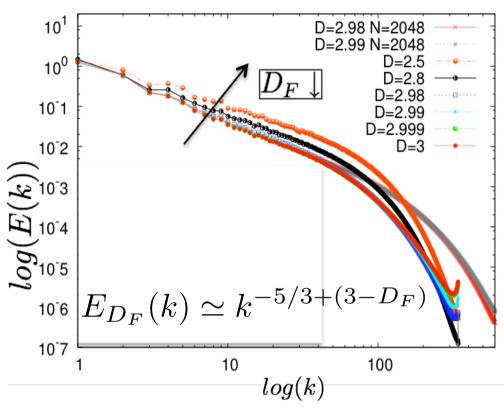
 100%
 99%
 93%
 87%
 25%
 3%



Decimated dynamics at D=D_F preserves constant spectral flux



LINEAR CORRECTION TO KOLMOGOROV "-5/3" SPECTRUM EXPONENT



fractal projector
$$P^{D}(\mathbf{k})$$
 (with $\mathbf{k} = \mathbf{k}_{1} = -\mathbf{k}_{2}$)
$$E^{D_{F}}(k) = \int_{|\mathbf{k}_{1}|=k} d^{3}k_{1} \gamma_{\mathbf{k}_{1}} \int d^{3}k_{2} \gamma_{\mathbf{k}_{2}} \langle \hat{\mathbf{u}}(\mathbf{k}_{1}) \hat{\mathbf{u}}^{*}(\mathbf{k}_{2}) \rangle$$

$$\Pi^{D_{F}}(k) = \int_{|\mathbf{k}_{1}|< k} d^{3}k_{1} \gamma_{\mathbf{k}_{1}} \int d^{3}k_{2} d^{3}k_{3} \gamma_{\mathbf{k}_{2}} \gamma_{\mathbf{k}_{3}} \mathcal{S}(\mathbf{k}_{1} | \mathbf{k}_{2}, \mathbf{k}_{3})$$

fractal projectors $P^{D}(k_1)$, $P^{D}(k_2)$, $P^{D}(k_3)$

s in Krainchnan 1967–1971:
$$\hat{u}(k) \simeq k^{-h}$$

As in Krainchnan 1967, 1971:

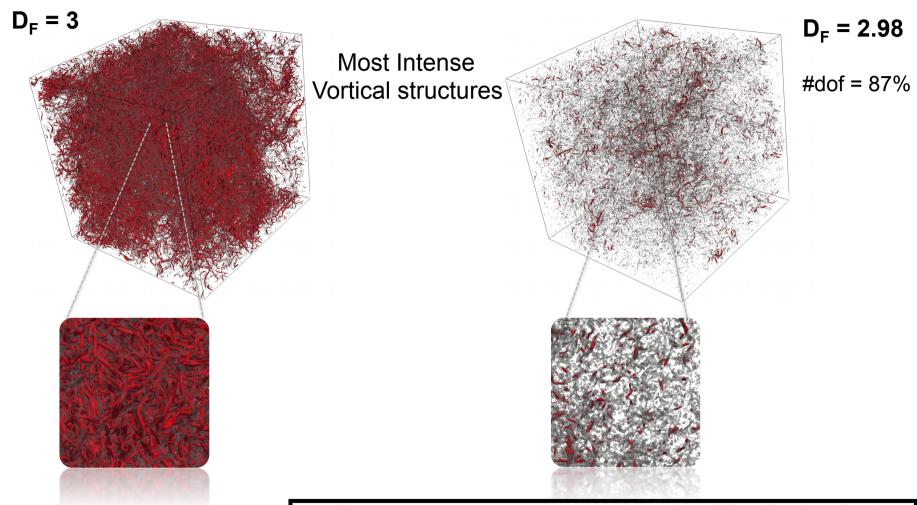
SCALING ARGUMENT imposing

$$\Pi_{D_F}(\lambda k) \simeq \lambda^{3D_F+1-3h} \Pi_{D_F}(\lambda k)$$

CONSTANT SPECTRAL
$$h = D_F + \frac{1}{3} \rightarrow E_{D_F}(\lambda k) \simeq \lambda^{-5/3 + (3 - D_F)} E(k)$$

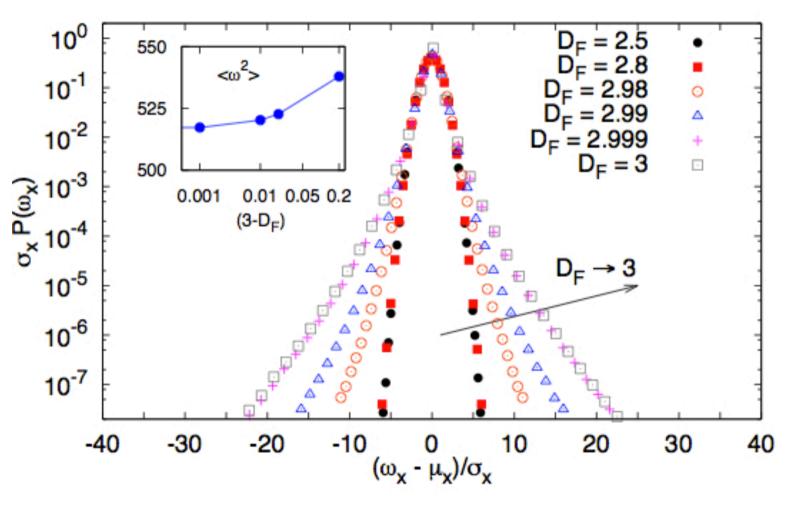
→ FRACTAL FOURIER DECIMATION MAKES THE **SPECTRUM SHALLOWER &** THE **VELOCITY FIELD ROUGHER**

WHAT ABOUT SMALL SCALES?



HINT: S. Grossmann, D. Lohse, A. Reeh, PRL 1996 In summary, we repeat that in 3D Navier-Stokes turbulence the main origin of intermittency corrections seems to be the proper resolution of the phase space at the scale of interest. Reflections from the VSR seem

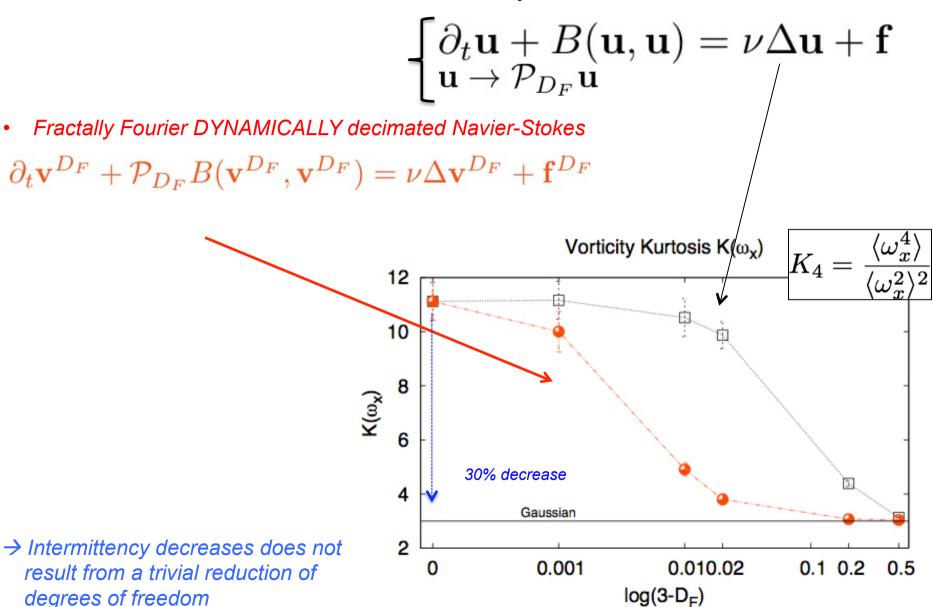
VORTICITY PDF AT CHANGING FRACTAL DIMENSION D_F



At D_F =2.98, the fluctuations have decreased their intensity by ~ 30% already. while mean enstrophy is unchanged

FRACTAL FOURIER DECIMATION: dynamics or geometry?

Fractal Fourier APOSTERIORI Projection on 3D Navier-Stokes realizations



CONCLUSIONS

We studied NAVIER-STOKES TURBULENCE in non-integer dimensions $D_F = 3 \rightarrow 2.5$

- → The method is a RANDOM REMOVAL OF DEGREES OF FREEDOM
- SAME INVISCID INVARIANTS (kinetic energy and helicity)
- and STATISTICAL SYMMETRIES: HOMOGENEITY & ISOTROPY
- 1 tuning parameter : Fractal Dimension D_F
- → The Fourier Decimated Navier-Stokes eqs. are SELF-SIMILAR, which allows to speculate on the importance of the anomalous vs scale-invariant realizations
- → The goal: how intermittency is modified at changing the **vortex stretching mechanism** and the weight of local and non-local interactions in the NS equations.

RESULTS

- For the MEAN FLUCTUATIONS, SMALL CORRECTIONS! We observe a LINEAR CORRECTION in the Kinetic Energy Spectrum exponent from "-5/3" \rightarrow "-5/3 + (3 – D_F)"
- For the LARGE, INTERMITTENT FLUCTUATIONS, HUGE CORRECTIONS!!
- i. Small-scales observables (vorticity) are strongly modified by decimation.
- ii. An almost Gaussian statistics is observed at D_F =2.98 already. While the system is Gaussian at D_F =2.8.
- iii. Critical dimension at which intermittency vanishes?
- The absence of some Fourier modes modifies the behaviours of all the others.
- i. Either by killing singular solutions responsible of the intermittent behaviour
- ii. Or by Modifying the nature of coherent structures governing vortex stretching and turbulent bursts
- How To Measure INTERMITTENCY IN FOURIER SPACE IS still open

"Turbulence on a Fractal Fourier set"

Lanotte, Benzi, Biferale, Malapaka, Toschi, PRL submitted (2015)

