

Established by the European Commission

Slide of the Seminar

Learning to Flock, Flocking to Learn

Dr. Mihir Durve

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Learning to Flock, Flocking to Learn

Mihir Durve

Department of Physics, University of Trieste Quantitative Life Sciences, ICTP, Trieste

Supervisors

Prof. Antonio Celani

Prof. Edoardo Milotti

Flock of Starlings

Examples

Credits E Ben Jacob O. Aburto

Vicsek Model

Do as your neighbours are doing

Vicsek et al. Phys Rev Lett (1995)

- 1. 'N' particles are placed randomly and uniformly in a box of $L \times L$.
- 2. All the particles initially have random velocity.
- 3. All the particles move with a constant speed v_0
- 4. Neighborhood of interaction is a circle centered on the particle.

- 5. After every time interval all the particles adjust their direction to the average velocity of the particles in their neighborhood of interaction.
- 6. This adjustment is imperfect due to presence of noise.

3

Daa

The noise is introduced in the model as;

$$\mathbf{v}'_{\mathbf{i}} = \mathbf{v}_0 \mathcal{R}(\theta) \hat{\mathbf{v}}(t) \tag{1}$$

here;

- 1. $\hat{\mathbf{v}}(t)$ is the unit velocity in the direction of the mean velocity of the particles in the neighborhood.
- 2. $\mathcal{R}(\theta)$ is the rotation operator which rotates the vector it acts upon (i.e., $\hat{\mathbf{v}}(t)$) by an angle θ . The angle θ is a random variable uniformly distributed over the interval $[-\eta \pi, \eta \pi]$.
- 3. η is strength of the noise in the range [0 to 1]

Order parameter $\psi(t)$ is given by;

$$\psi(t) = \frac{1}{Nv_0} \left| \sum_{i=1}^{N} \mathbf{v}_i(t) \right|$$
(2)

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

DQA

 $\psi(t) = 0$: Disordered state $\psi(t) > 0$: Ordered state

Vicsek Model Results

1. System undergoes second order phase transition as the noise is increased or particle density is decreased.

Figure Credits : Vicsek et al. [PRL 1995]

Crisis

Vicsek Model

Random walkers

Vicsek et al. Phys Rev Lett (1995)

Goal of the study

- For Flocking quantity to be optimized : Number of neighbours
- We use stochastic optimization techniques

Reinforcement Learning

Sutton and Barto (1998)

RL in multi agent system : States, Actions

RL in multi agent system : States, Actions

State label : 30

RL in multi agent system : States, Actions

State label : 30 Possible Actions : 0-31

RL in multi agent system :

$x_i(t+1) = x_i(t) + v_a(i) \times \Delta T$

RL in multi agent system : Reward for individual agents

Q-matrix

	S	A	1	2	3	4	5	6	7	8
	1		Q(1,1)	Q(1,2)						
	2		Q(2,1)							
	3									
	4									
	5									
	6									
	7									
	8		1 8	\ .		(a. a. ²) . m(1 -)	\int_{2}^{1}	8	
t		2	4 5		Rand	(s,a) p(lom $a p($	(ϵ)	3	7 6 5) t

RL in multi agent system Q-update rule

$$Q(s_n, a_n) \leftarrow Q(s_n, a_n) + \alpha [r_n - Q(s_n, a_n)]$$

$r_n = +R_f$	S	Α	1	2	3
	1	-	Q(1,1)	Q(1,2)	
	2	2	Q(2,1)		
$r_n = -R_f$	5	3			

C. Watkins (1992)

Q-learning Episode

- Each agent begins in a box each with its own Q-matrix (initially flat)
- DO T=0, T=T_max
- Observes the state s
- Chooses action a
- Updates position and orientation
- Receives reward
- Update Q-matrix
- End DO

S	Α	1	2	3
1	-	Q*(1,1)	Q*(1,2)	
2		Q*(2,1)		
3				

Preliminary Results

In the beginning

In the end

Preliminary Result Average Reward with episodes

Preliminary Results Best a for s in Q-matrix

Preliminary Results Max (Q(s,a))

Preliminary Results Order parameter with Episodes

Order parameter : $\psi(t) = \frac{1}{Nv_0} \left| \sum_{i=1}^{N} \mathbf{v}_i(t) \right|$

Preliminary Results Policies

Conclusion

Multi-agent system optimizing aggregation formed highly polar ordered state.

Next plans

- Restricting the set of actions
- Changing the reward schemes
- Changing the percept

 $Q(s_n, a_n) = Q(s_n, a_n) + \alpha(r_n + \gamma max_{a'}Q(s_{n+1}, a') - Q(s_n, a_n))$

$$Q_{\pi}^{*}(s_{n}, a_{n}) = \langle r_{n+1} + \gamma max_{a}Q_{\pi}(s_{n+1}, a) \rangle$$

