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Rotating turbulence
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the proofs of the present study easily carry over to a 3D periodic domain). The velocity
field u(x, y, z, t) follows the rotating Navier-Stokes equation,

@tu+ (u ·r)u+ 2⌦ez ⇥ u = �rp+ ⌫�u+ f , (2.1)

together with the following boundary conditions at the top and and bottom boundaries,

@zux = 0 , @zuy = 0 , uz = 0, at z = 0 and z = H . (2.2)

We consider the solutions of equation (2.1) that have vanishing total momentum initially,
and therefore at any subsequent time: the spatial average of the velocity field u is zero
at all time. From equation (2.1) we define the Reynolds number and the Rossby number
based on the root-mean-square velocity U of the flow, where the mean is performed over
space and time:

Re =
U`

⌫
, Ro =

U

`⌦
. (2.3)

We stress the fact that these dimensionless numbers combine the root-mean-square
velocity U of the solution with the forcing scale `, instead of the typical scale of the
velocity field (the integral scale). While the integral scale is probably close to ` for non-
rotating 3D turbulence, it may increase very greatly and even reach the domain size
L for strong rotation, because of two-dimensionalization and enhanced inverse energy
transfers. Nevertheless, the Reynolds and Rossby numbers defined in (2.3) are familiar
to the theory of rotating turbulence, as well as to experimentalists: single-point velocity
measurements usually lead to a good estimate of the root-mean square velocity and allow
one to estimate Re and Ro. Without loss of rigor, we will therefore present some results
in terms of Re and Ro defined in (2.3).

We also introduce dimensionless numbers based on the strength F of the forcing. The
Grashof number and the forcing Rossby number are

Gr =
F `3

⌫2
, Ro(f) =

p
Fp
`⌦

. (2.4)

In contrast with Re and Ro, Gr and Ro(f) are control parameters: they do not require
knowledge of the solution to be evaluated. For instance, Gr and Ro(f) can be specified at
the outset of a numerical simulation. In the following we present both results expressed
in terms of Re and Ro, which are useful for qualitative comparison with boundary-driven
experiments, and results expressed with Gr and Ro(f), which are useful for comparison
with body-forced numerical simulations or experiments.

In the following we use many inequalities. To alleviate the algebra somewhat, we make
extensive use of the notation ., where a . b means that there is a dimensionless constant
c > 0 such that a  cb, where the constant c is independent of the parameters of the
problem: ⌫, F , U , `, L, H, etc. This constant can depend only on the precise choice of
the dimensionless shape function � of the forcing. In the following, we denote as c any
such positive O(1) constant, and we sometimes use the same symbol c to denote di↵erent
constants in successive lines of algebra. Numbered constants ci (c̃i in the appendix) keep
the same value between di↵erent lines of algebra.

Finally, we consider only domains that are cubic or shallower than a cube, H  L,
and because we focus on the large-Reynolds-number behavior of the system, we restrict
attention to Re � 2 and Gr � 2.

2.2. Two-dimensional solutions

Equation (2.1) with the boundary conditions (2.2) admits vertically invariant 2D so-
lutions u(x, y, z, t) = V(x, y, t), where V satisfies the two-dimensional Navier-Stokes

• Two-dimensionalization 
• Coherent structures 
• Cyclone-anticyclone asymmetry

[Alexakis, JFM, 2015]



Turbulent energy dissipation

✏ ⇠ U3/L 6= 0
⌫ ! 0

3D turbulence

• Key quantity in Kolmogorov 41 theory 
• Central question of turbulence for the engineers.

2D turbulence

✏ ⇠ ⌫U2/L2 ! 0
⌫ ! 0

Rotating turbulence is intermediate between 2D and 3D: 
scaling for    when     is large?⌦✏

dissipation 
anomaly



Taylor-Proudman theorem

@t! � 2⌦@zu = r⇥ (! ⇥ u) + ⌫�u

Vorticity equation:

For slow, large-scale motion 
and large    ,      becomes 
independent of z.

⌦ u

Two-dimensional three-component flow (2D3C)

Turbulent flows contain small-scale rapidly-evolving 
eddies: does Taylor-Proudman apply?



Wave turbulence
Linearized inviscid equation for large       ⌦
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relation,

� = ±2⌦
kz
k

, (1.1)

where � is the angular frequency, k is the wave vector, k = |k|, and kz is the component
of the wave vector along the axis of global rotation (denoted as the vertical z-axis by
convention).

Both the linear and fully nonlinear behaviors of the flow are therefore a↵ected by
global rotation. For turbulent flows, the strength of global rotation can be characterized
by the Rossby number Ro, defined as the ratio of the global rotation period to the
large-scale eddy turnover time. When the Rossby number is low, global rotation induces
strong anisotropy: the flow tends to become two-dimensional, with flow structures weakly
dependent on the coordinate along the rotation axis (Davidson 2013). This result is
usually referred to as Taylor-Proudman theorem, which considers the asymptotic limit of
vanishing Rossby number (infinite global rotation rate): fluid motion with characteristic
time much larger than the rotation period is independent of the vertical.

Turbulent flows at large Reynolds number Re contain a broad range of spatial scales
and temporal frequencies, including frequencies very large compared with the inverse
large-scale eddy turnover time. While the large-scale and low-frequency structures of the
flow become 2D for strong enough global rotation, the fate of small-scale high-frequency
structures is less clear, and whether the latter become 2D as well for rapid global rotation
is an open issue of rotating turbulence. This constitutes the central question of this study:
are rotating flows more and more 2D as Ro decreases, with a nonzero but decreasing
fraction of the total energy contained in fully 3D flow structures, or do they become
exactly two-dimensional under a critical value of the Rossby number, with no dependence
at all along the vertical?

This central question is related to many of the fundamental questions addressed by
experimental and numerical studies on rotating turbulence:

• How much power per unit mass ✏ does a rotating turbulent flow dissipate? For
stationary rotating turbulence with root-mean-square velocity U and length scale `, does
✏ display a dissipation anomaly, with limRe!1

✏`
U3 > 0, like in classical 3D turbulence

(Frisch 1995; Doering & Foias 2002), or does it behave like 2D flows, with limRe!1
✏`
U3 =

0 (Alexakis & Doering 2006)?
• Why does rotating turbulence display less intermittency than its non-rotating coun-

terpart (Baroud at al. 2003; Müller et al. 2007; Seiwert et al. 2008; Mininni et al.
2009)?

• Global rotation induces an asymmetry of the vertical vorticity distribution. Such
cyclone-anticyclone asymmetry is observed in experimental and numerical studies at
moderately low values of the Rossby number (Bartello at al. 1994; Bourouiba & Bartello
2007; Smith & Wale↵e 1999; Morize et al. 2005; Sreenivasan & Davidson 2008; Moisy et
al. 2011; Deusebio et al. 2014; Gallet et al. 2014; Naso 2015). Does cyclone-anticyclone
asymmetry persist for very low Rossby number, or is it a finite-Rossby-number e↵ect?

• Can low-Rossby-number rotating turbulence be described in the framework of weak
turbulence of inertial waves (Galtier 2003; Cambon et al. 2004; Yarom & Sharon 2014;
Scott 2015)?

Although these questions have been thoroughly addressed experimentally and numer-
ically, exact mathematical results on this matter are scarce. Such exact results can be
very valuable to test the various rotating turbulence models that have been proposed
(see for instance Sagaut & Cambon (2008)): the model has to be compatible with the
exact mathematical result in the range of parameters where the latter is valid.

Inertial waves

Weakly nonlinear regime: 3-wave interaction   

Dimensional analysis:
[Iroshnikov, Kraichnan, Zhou]

Derived more rigorously in the framework of 
wave turbulence [Galtier, Cambon et al., etc.].

✏ ⇠ U4

L2⌦



Incompatible theories?
Taylor-Proudman states that the flow becomes 2D, but 
considers only « slow enough » motion. 

Wave-turbulence discards such 2D motion:
• 2D motion is not wave-like: no separation of time 

scales. 
• Vanishing coupling coefficient between the 2D 

modes and two inertial waves. 
     The 2D modes remains zero through 3-wave 
     interactions (if it is zero initially).

However, at the next order in the expansion, 4-wave 
resonances and quasi-resonant triads transfer energy 

to the 2D modes.



Outline
I 2D versus 3D flow structures in experimental rotating  
 turbulence 
            Signature of inertial waves? 

II Exact two-dimensionalization of rapidly rotating flows 
     No dissipation anomaly at low Ro. 

III Direct measurements of the dissipated power in    
rotating turbulence 
     Influence of the forcing geometry.



Forced rotating turbulence

Ro =
f

⌦
2 [0.1 ,1]

Re =
L2f

⌫
' 1000
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Predominance of cyclones

Ro = 0.1
 

Vertical PIV vorticity, top view.
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[A. Campagne, B. Gallet, P.-P. Cortet, F. Moisy, Phys. Fluids, 2014]



Two-dimensionalization
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Inertial waves?
Spatio-temporal analysis: 2-point correlation of the temporal 
Fourier transform. 
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[A. Campagne, B. Gallet, F. Moisy, P.-P. Cortet, PRE, 2015]



Conclusions of part 1
• Global rotation induces strong two-dimensionalization 

and cyclone-anticyclone asymmetry. 

• Large-scale 3D structures follow the inertial-wave 
dispersion relation. 

• Small-scale 3D structures undergo intense sweeping by 
the 2D flow.

Very small fraction of the kinetic energy on 
the inertial-wave dispersion relation  
(a prerequisite for wave turbulence theories).



Part II:  
Exact two-dimensionalization 

of rapidly rotating flows.



What happens at even lower Ro?

• How far does two-dimensionalization proceed? Are there 
still inertial waves? 

• Does cyclone-anticyclone asymmetry remain at small Ro? 

• Is there a dissipation anomaly?



Theoretical setup
Two-dimensionalization of low-Ro turbulence 5
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`

Figure 1. Flow of a Newtonian fluid in a frame rotating at angular velocity ⌦ around the
vertical z axis. It is driven by a horizontal body-force f that is independent of the vertical. We
assume periodic boundary-conditions in the horizontal, and stress-free boundaries at z = 0 and
z = H.

base flow to the large scales of the 3D perturbation (wave numbers smaller than K) is
inversely proportional to the rotation rate ⌦ (section 5).

• For rapid global rotation, this transfer term is therefore weaker than the viscous
damping of the 3D perturbation, hence the stability criterion (section 6).

In section 7, we consider arbitrary initial conditions for the velocity field, with arbitrar-
ily large vertically-dependent perturbations. We repeat the steps listed above to prove
absolute two-dimensionalization for fast enough global rotation.

On first reading, one may want to go directly from the end of section 2 to the concluding
section 8, where we comment on the physical implications of these results.

2. Rotating turbulence in a periodic domain and 2D solutions

2.1. Body-forced rotating turbulence

The setup is sketched in figure 1: an incompressible fluid of kinematic viscosity ⌫ flows
inside a domain (x, y, z) 2 D = [0, L]⇥ [0, L]⇥ [0, H] with a Cartesian frame (ex, ey, ez).
The fluid is subject to background rotation at a rate ⌦ around the z axis, referred to as
the vertical axis by convention. It is stirred by a steady divergence-free two-dimensional
horizontal body-force f(x, y) = (fx, fy, 0) that is periodic on a scale `, an integer fraction
of L. That is, f(x, y) = F�(x` ,

y
` ), where � is periodic of period 1 in each dimensionless

variable, has vanishing spatial mean, and r.m.s. magnitude 1. We refer to F as the
amplitude, and � as the shape of the force. We consider periodic boundary conditions in
the horizontal directions, and stress-free boundary conditions in the vertical (although

• z-invariant forcing 

• Stress-free top and bottom 
boundaries, or 3D periodic 
domain. 

• Solutions to 2D Navier-
Stokes: are they stable to 
3D perturbations?

The challenge is to derive stability criteria for a 2D turbulent 
base flow.
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the proofs of the present study easily carry over to a 3D periodic domain). The velocity
field u(x, y, z, t) follows the rotating Navier-Stokes equation,

@tu+ (u ·r)u+ 2⌦ez ⇥ u = �rp+ ⌫�u+ f , (2.1)

together with the following boundary conditions at the top and and bottom boundaries,

@zux = 0 , @zuy = 0 , uz = 0, at z = 0 and z = H . (2.2)

We consider the solutions of equation (2.1) that have vanishing total momentum initially,
and therefore at any subsequent time: the spatial average of the velocity field u is zero
at all time. From equation (2.1) we define the Reynolds number and the Rossby number
based on the root-mean-square velocity U of the flow, where the mean is performed over
space and time:

Re =
U`

⌫
, Ro =

U

`⌦
. (2.3)

We stress the fact that these dimensionless numbers combine the root-mean-square
velocity U of the solution with the forcing scale `, instead of the typical scale of the
velocity field (the integral scale). While the integral scale is probably close to ` for non-
rotating 3D turbulence, it may increase very greatly and even reach the domain size
L for strong rotation, because of two-dimensionalization and enhanced inverse energy
transfers. Nevertheless, the Reynolds and Rossby numbers defined in (2.3) are familiar
to the theory of rotating turbulence, as well as to experimentalists: single-point velocity
measurements usually lead to a good estimate of the root-mean square velocity and allow
one to estimate Re and Ro. Without loss of rigor, we will therefore present some results
in terms of Re and Ro defined in (2.3).

We also introduce dimensionless numbers based on the strength F of the forcing. The
Grashof number and the forcing Rossby number are

Gr =
F `3

⌫2
, Ro(f) =

p
Fp
`⌦

. (2.4)

In contrast with Re and Ro, Gr and Ro(f) are control parameters: they do not require
knowledge of the solution to be evaluated. For instance, Gr and Ro(f) can be specified at
the outset of a numerical simulation. In the following we present both results expressed
in terms of Re and Ro, which are useful for qualitative comparison with boundary-driven
experiments, and results expressed with Gr and Ro(f), which are useful for comparison
with body-forced numerical simulations or experiments.

In the following we use many inequalities. To alleviate the algebra somewhat, we make
extensive use of the notation ., where a . b means that there is a dimensionless constant
c > 0 such that a  cb, where the constant c is independent of the parameters of the
problem: ⌫, F , U , `, L, H, etc. This constant can depend only on the precise choice of
the dimensionless shape function � of the forcing. In the following, we denote as c any
such positive O(1) constant, and we sometimes use the same symbol c to denote di↵erent
constants in successive lines of algebra. Numbered constants ci (c̃i in the appendix) keep
the same value between di↵erent lines of algebra.

Finally, we consider only domains that are cubic or shallower than a cube, H  L,
and because we focus on the large-Reynolds-number behavior of the system, we restrict
attention to Re � 2 and Gr � 2.

2.2. Two-dimensional solutions

Equation (2.1) with the boundary conditions (2.2) admits vertically invariant 2D so-
lutions u(x, y, z, t) = V(x, y, t), where V satisfies the two-dimensional Navier-Stokes
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Linear two-dimensionalization
Linear stability of the solution V of 2D Navier-Stokes: 

Proof of the existence of a critical Rossby number  
under which the 2D flow is stable to 3D perturbations. 

Lower-bound               on             :Roc(Re)Ro<(Re)

Roc(Re)
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respectively, then

lim
T!1

1

T
ln

kvk2(t = T )

kvk2(t = 0)
< 0 , (6.6)

and therefore limt!1 kvk2(t) = 0: the 2D base flow is linearly stable to 3D perturbations.
As a matter of fact, using the bounds (2.6) and (2.7) one can prove that ⌦2 .

⌦1 ln
1/2 �GrL

`

�
. Hence ⌦ � c⌦1 ln

1/2 �GrL
`

�
is a su�cient condition to have both ⌦ � ⌦1

and ⌦ � ⌦2. We therefore obtain the following su�cient condition for the flow to be lin-
early stable to 3D perturbations,

⌦ � ⌦3 = c6

⌦kr!k22
↵

⌫
Gr2 ln2

✓
Gr

L

`

◆
L4H2(H + `)

`6
, (6.7)

where c6 is a dimensionless constant.

6.2. Criteria based on the root-mean-square velocity

The su�cient condition (6.7) indicates unambiguously that the flow is linearly stable to
three-dimensional perturbations above a critical value of the rotation rate ⌦. However,
the quantity

⌦kr!k22
↵
appearing in this criterion is di�cult to measure or evaluate. We

therefore use the bounds (2.10) and (2.12) on the time-averaged enstrophy dissipation
rate, together with (A 2) and (A 11), to produce alternate su�cient conditions for two-
dimensionalization that are expressed in terms of the r.m.s. velocity U .

The bound (2.10) gives

`⌦3

U
. Re6 ln2

✓
Re

L

`

◆
L6H3(H + `)

`10
, (6.8)

hence the two-dimensional flow is stable if the inverse Rossby number is greater than the
right-hand side of this inequality, i.e., if

Ro  Ro< = c7Re�6 ln�2

✓
Re

L

`

◆
`10

L6H3(H + `)
, (6.9)

where c7 is a dimensionless constant that depends on the shape of the forcing only.
A somewhat less stringent criterion for two-dimensionalization can be obtained when

the forcing is of single-mode type: bounding
⌦kr!k22

↵
in ⌦3 using (2.12), we obtain the

following su�cient condition for the decay of infinitesimal 3D perturbations,

Ro  Ro
(SM)
< = c8Re�5 ln�2

✓
Re

L

`

◆
`10

L6H3(H + `)
, (6.10)

where c8 is yet another dimensionless constant that depends on the shape of the forcing
only.

6.3. Criterion based on the forcing strength

We can derive an alternate su�cient criterion for two-dimensionalization in terms of the
forcing strength instead of the r.m.s. velocity. Inserting the upper bound (2.7) on the
time-averaged enstrophy dissipation rate into the expression for ⌦3 leads to a criterion
in terms of the Grashof and forcing Rossby numbers:

Ro(f)  Ro
(f)
< = c9Gr�7/2 ln�2

✓
Gr

L

`

◆
`10

L6H3(H + `)
, (6.11)

where c9 is a dimensionless constant that depends on the shape of the forcing only.
When (6.11) is satisfied, the global attractor of the 2D Navier-Stokes equation is stable
to infinitesimal 3D perturbations.

For any Re and strong enough global rotation, the flow 
becomes exactly 2D in the long-time limit.

[B. Gallet, JFM, 2015]



Sketch of the proof
• Linearize the rotating Navier-Stokes equation about the 2D 

turbulent base-flow V(x,y,t). 

• Write the evolution equation for the energy in the 3D 
perturbation v(x,y,z,t) 

• Greenspan, Waleffe: the energy transfers between the 
waves and the 2D modes are very weak for large    .  

    I prove that they decrease as 1/   . 

• For large enough   , they cannot overcome viscous 
dissipation.

2D   3D transfers viscous dissipation

⌦
⌦

⌦
The 3D perturbation decays.

[B. Gallet, JFM, 2015]
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equation,

@tV+ (V ·r)V = �rp+ ⌫�V+ f . (2.5)

Note that, in the 2D Navier-Stokes equation, the Coriolis force is a gradient that can be
absorbed into the pressure term: ⌦ disappears from the equation (and we keep using p
to denote the modified pressure). V(x, y, t) is a horizontal velocity field, with vanishing
vertical component (for periodic boundary conditions in the vertical, the vertical com-
ponent of V satisfies a sourceless advection-di↵usion equation and therefore vanishes in
the long-time limit).

Rigorous bounds on the time-averaged enstrophy and enstrophy dissipation rate can
be computed for solutions of the 2D Navier-Stokes equation (2.5). The derivation of these
bounds is recalled in appendix A. In terms of the forcing amplitude F , and denoting as
! the vertical vorticity of the 2D flow V, we obtain

⌦k!k22
↵
. F 2`2L2H

⌫2
, (2.6)

⌦kr!k22
↵
. F 2L2H

⌫2
, (2.7)

where h. . .i denotes time average, and k . . . k2 is the standard L2 norm in 3D:

khk22 =

Z

D
|h|2 d3x . (2.8)

Alternate bounds were obtained by Alexakis & Doering (2006) in terms of the r.m.s.
velocity U . Using our notations, their equations (23) and (19) translate into

⌦k!k22
↵
. HL2U2

`2

p
Re , (2.9)

⌦kr!k22
↵
. HL2U2

`4
Re , (2.10)

where we restrict attention to Re � 2.
These bounds for 2D flows can be further reduced if the forcing contains a single

wavenumber in Fourier space, i.e., if it is such that f is an eigenmode of the Laplacian
operator (see Constantin et al. (1994) for a description of 2D turbulence driven by such
forcing). These forcings are sometimes called “single-mode”, or Kolmogorov forcings. For
such forcings the improved bounds on the enstrophy and enstrophy dissipation rate are

⌦k!k22
↵
. HL2U2

`2
, (2.11)

⌦kr!k22
↵
. HL2U2

`4
. (2.12)

3. Linear perturbation to the 2D solution

Consider a 2D solution V(x, y, t) lying on the attractor of the 2D Navier-Stokes equa-
tion (2.5). Our goal is to prove linear two-dimensionalization: we wish to show that,
for strong enough global rotation ⌦, this solution is stable with respect to infinites-
imal 3D perturbations. We therefore consider the evolution of an infinitesimal per-
turbation v(x, y, z, t) to the two-dimensional flow V(x, y, t). We write u(x, y, z, t) =
V(x, y, t) + v(x, y, z, t), where v ⌧ V is infinitesimal, and consider the linearized evolu-
tion equation for v:

@tv+ (V ·r)v+ (v ·r)V+ 2⌦ez ⇥ v = �rp0 + ⌫�v , (3.1)

dt

✓Z

D

|v|2

2
d3x

◆
= �

Z

D
v · (rV) · v d3x� ⌫

Z

D
|rv|2d3x



Physical consequences
I can extend this result to perturbations of arbitrary 
amplitude: above a threshold value of the rotation rate,  
the flow becomes 2D regardless of the initial condition.

• The flow becomes exactly 2D, with no inertial waves at all. 

•      is absent from the 2D Navier-Stokes equation, so 
cyclone-anticyclone asymmetry disappears. 

• No dissipation anomaly for such 2D flows.   

⌦

[B. Gallet, JFM, 2015]



Part III: 
Turbulent drag in a 

rotating frame



Motivations

• Study the influence of global rotation on the dissipated 
power in a simple experiment. 

• Direct measurement of the dissipated power. 

• Study its behavior in the regime of moderately low Ro 
and large Re. 

• Study the influence of the forcing geometry (not 
necessarily invariant along z!).



Drag in a rotating frame
• Motor in the rotating frame: 

propeller rotating at     with 
respect to the platform.

!

• Measurement of the time-
averaged torque   .�

K =
�

⇢R4h!2
drag 
coefficient

• PIV measurements.

Ro =
!

⌦

(a)

(b) cyclonic (c) anticyclonic (d) horizontal axis

x
y

z

Motor

Ω

ω

L

R

h

L

H

ω > 0 ω < 0

Re =
R2!

⌫



Turbulent drag
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High-Re data collapse onto two branches:

Strong decrease of K for rapid rotation, approx.  K ⇠ Ro
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2 possible explanations
Explanation 1: the energy dissipation rate decreases 
because of inertial-wave dynamics. Following wave 
turbulence type of arguments:

✏ ⇠ Ro

U

3

L

K ⇠ Ro

Explanation 2: forcing compatible with Taylor-Proudman. 
Because of two-dimensionalization, the rapidly rotating 
flow ressembles solid-body rotation, with weak 3D poloidal 
recirculation.

Dissipation is due to the 
weak 3D recirculation only.
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FIG. 4. [PIV measurements: the left-hand side panels corre-
spond to the mean flow, the color coding the toroidal veloc-
ity, and the arrow under the propeller indicating a scale of
???m/s for the poloidal one. The right-hand side panels show
the rms fluctuations of the poloidal velocity field. From top
to bottom, we represent the non-rotating (! =???, ⌦ = 0),
rapidly-rotating cyclonic (! =???, ⌦ =???, Ro =???) and
anticyclonic (! =???, ⌦ =???, Ro = �???) situations.]

poloidal recirculation is very weak and weakens as ⌦ in-
creases. This recirculation consists in strong radial ejec-
tion due to the inertial forcing in the vicinity of the im-
peller, together with turbulent pumping near the top and
bottom boundaries. No signature of inertial waves could
be clearly identified in these measurements: the fluctua-
tions of the velocity field consist mostly of erratic motion
of the axis of the central vortex, and of 3D turbulence of
the poloidal flow. These observations therefore support
the partial two-dimensionalization scenario.

To further quantify the dissipation due to the turbu-
lent poloidal recirculation, we estimate the local energy
dissipation rate per unit mass as u03

p /h, and denote as P
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FIG. 5. Estimation of the power P dissipated by the poloidal
flow using the usual non-rotating estimate u03

p /h, and normal-
ized by the non-rotating value. For comparison, we reproduce
the data of Fig. 2 on the input power, using faint symbols.
The very good agreement indicates that energy dissipation is
mostly due to the 3D turbulent poloidal recirculation, and
that it can be estimated using the usual non-rotating formula
u

03
p /h for our range of Rossby numbers.

the integral of this quantity over space in the vicinity of
the impeller (i.e., inside the dashed region in the upper-
right panel of Fig. 4). In Fig. 5, we plot P normalized by
its value P1 for the non-rotating case, as a function of
the Rossby number. [The behavior of P with Ro is very
similar to that of K, indicating that the decrease in tur-
bulent poloidal recirculation may indeed explain the drop
in drag coe�cient. Interestingly, the dissipation rate
per unit mass of the poloidal recirculation is correctly
evaluated by the usual non-rotating estimate u03

p /h. By
contrast, weak turbulence theory predicts that this non-
rotating estimate should be multiplied by a local Rossby
number, when the latter is low enough. For the mod-
erate Rossby numbers achieved in this experiment, drag
reduction does not originate from a modification of the
relationship between ✏ and u0

p due to inertial-wave propa-
gation; it originates from partial two-dimensionalization,
which reduces the overall rms poloidal velocity fluctua-
tions u0

p and therefore the energy dissipation rate u03
p /h.]

To further discriminate between the inertial wave sce-
nario and the partial two-dimensionalization one, we have
performed additional measurements, where the axis of
the impeller is now horizontal (see Fig. 1b). This config-
uration is incompatible with the Taylor-Proudman theo-
rem, in the following sense: because the impeller imposes
a nonzero vertical velocity, there is no vertically invariant
flow solution compatible with the boundary conditions,
even for a perfect fluid. In other words, in this configura-
tion, the turbulent poloidal velocity must be of order R!,
regardless of |Ro|. This geometry therefore prohibits the
partial two-dimensionalization scenario, while it still al-
lows for the inertial-wave one. In Fig. 5, we plot the

• No signature of inertial 
waves could be identified. 

• Mean flow dominated by 
toroidal solid-body rotation 

• Turbulent poloidal velocity 
fluctuations decrease with 
increasing    .⌦

supports the two-
dimensionalization scenario.



PIV measurements
Dissipation due to the poloidal recirculation evaluated  
using the 3D non-rotating estimate ✏ ⇠ u03
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poloidal recirculation is very weak and weakens as ⌦ in-
creases. This recirculation consists in strong radial ejec-
tion due to the inertial forcing in the vicinity of the im-
peller, together with turbulent pumping near the top and
bottom boundaries. No signature of inertial waves could
be clearly identified in these measurements: the fluctua-
tions of the velocity field consist mostly of erratic motion
of the axis of the central vortex, and of 3D turbulence of
the poloidal flow. These observations therefore support
the partial two-dimensionalization scenario.

To further quantify the dissipation due to the turbu-
lent poloidal recirculation, we estimate the local energy
dissipation rate per unit mass as u03
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the integral of this quantity over space in the vicinity of
the impeller (i.e., inside the dashed region in the upper-
right panel of Fig. 4). In Fig. 5, we plot P normalized by
its value P1 for the non-rotating case, as a function of
the Rossby number. [The behavior of P with Ro is very
similar to that of K, indicating that the decrease in tur-
bulent poloidal recirculation may indeed explain the drop
in drag coe�cient. Interestingly, the dissipation rate
per unit mass of the poloidal recirculation is correctly
evaluated by the usual non-rotating estimate u03

p /h. By
contrast, weak turbulence theory predicts that this non-
rotating estimate should be multiplied by a local Rossby
number, when the latter is low enough. For the mod-
erate Rossby numbers achieved in this experiment, drag
reduction does not originate from a modification of the
relationship between ✏ and u0

p due to inertial-wave propa-
gation; it originates from partial two-dimensionalization,
which reduces the overall rms poloidal velocity fluctua-
tions u0

p and therefore the energy dissipation rate u03
p /h.]

To further discriminate between the inertial wave sce-
nario and the partial two-dimensionalization one, we have
performed additional measurements, where the axis of
the impeller is now horizontal (see Fig. 1b). This config-
uration is incompatible with the Taylor-Proudman theo-
rem, in the following sense: because the impeller imposes
a nonzero vertical velocity, there is no vertically invariant
flow solution compatible with the boundary conditions,
even for a perfect fluid. In other words, in this configura-
tion, the turbulent poloidal velocity must be of order R!,
regardless of |Ro|. This geometry therefore prohibits the
partial two-dimensionalization scenario, while it still al-
lows for the inertial-wave one. In Fig. 5, we plot the

    is not modified by some inertial-wave dynamics. 
supports the two-dimensionalization scenario.

✏



Horizontal axis
A forcing configuration that is incompatible with Taylor-
Proudman
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We investigate the influence of global rotation on the energy dissipation in a stationary rotating
turbulence experiment. The energy dissipation rate is determined from the torque needed to drive
an impeller at constant angular velocity ! around the vertical axis, in a water tank mounted on a
platform rotating at a rate ⌦ around the vertical axis as well. We report a dramatic decrease in
drag coe�cient K of the impeller as ⌦ increases, with measured values as low as 12% of the non-
rotating drag coe�cient. The drag coe�cient follows an approximate scaling law K ⇠ Ro, which
was predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory.
However, stereo particle image velocimetry measurements indicate that the flow is not dominated
by inertial waves. Instead, drag reduction is due to partial two-dimensionalization of the flow.

(a)

(b) cyclonic (c) anticyclonic (d) horizontal axis
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FIG. 1. Experimental setup: a platform rotating at constant
rate ⌦ supports a parallelepipedic tank filled with water. A
motor mounted on the platform drives an impeller at con-
stant rate ! in the rotating frame. We measure the mean
torque � developed by the motor driving the impeller. In (a),
(b) and (c), the platform and the impeller rotate around the
same axis. In the laboratory frame, the impeller spins at a
rate ! + ⌦. PIV measurements are performed in a vertical
plane (dashed region). In panel (d), the axis of the motor is
perpendicular to the global rotation axis of the platform.

Introduction - A central question of turbulence re-
search is to determine the drag on a moving object. It
is the main goal of aerodynamics, and it determines the
power needed for e�cient turbulent mixing. A charac-
teristic feature of turbulent flows is that the drag force
becomes independent of molecular viscosity when the lat-

ter is low enough. A simple experiment highlighting this
behavior consists in spinning an impeller of radius R and
height h at constant angular velocity ! inside a tank
filled with fluid of density ⇢ and kinematic viscosity ⌫:
when the Reynolds number Re = R2!/⌫ is large enough,
the torque � required to drive the impeller follows the
⌫-independent scaling � = K⇢R4h!2, where the dimen-
sionless constant K is the drag coe�cient.

This Letter considers the e↵ect of a global rotation
at a constant rate ⌦ on this fundamental experiment:
how does the drag coe�cient depend on the Rossby num-
ber Ro = !/⌦? Global rotation is encountered in many
industrial, geophysical and astrophysical flows. Rotat-
ing turbulence has therefore been studied intensively us-
ing experimental, theoretical and numerical tools. For
strong global rotation, the behavior of rotating turbu-
lent flows may be summarized as follows: the large-scale
flow structures tend to become independent of the global
rotation axis, in qualitative agreement with the Taylor-
Proudman theorem, while the remaining vertically de-
pendent fluctuations can be described in terms of iner-
tial waves that interact nonlinearly, together and with
the 2D flow. Rapidly-rotating turbulence is therefore in-
termediate between 2D and 3D turbulence; one naturally
wonders how its energy dissipation rate compares to the
laminar dissipation of 2D turbulence, and/or to the dis-
sipation anomaly of 3D turbulence.

The experiment considered here probes directly the in-
fluence of global rotation on turbulent dissipation: torque
measurements give access to the drag coe�cient K =
�/(⇢R4h!2), i.e., to the normalized energy dissipation
rate. We report on the behavior of K as a function of the
Rossby number Ro, in the fully turbulent regime where
K is independent of Re.

Experimental setup - The experimental setup is
sketched in Fig. 1. It consists of a parallelepipedic water-
filled tank of height H = 55 cm and square base of side
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Conclusions of part III
A strong decrease of the drag coefficient for rapid global 
rotation 

• Due to the two-dimensionalization of the velocity field, and 
not to IW dynamics. 

• Takes place only when the forcing is compatible with Taylor-
Proudman. 

• Dissipation well-estimated by the non-rotating estimate           
using the turbulent 3D recirculation.
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We investigate the influence of global rotation on the energy dissipation in a stationary rotating
turbulence experiment. The energy dissipation rate is determined from the torque needed to drive
an impeller at constant angular velocity ! around the vertical axis, in a water tank mounted on a
platform rotating at a rate ⌦ around the vertical axis as well. We report a dramatic decrease in
drag coe�cient K of the impeller as ⌦ increases, with measured values as low as 12% of the non-
rotating drag coe�cient. The drag coe�cient follows an approximate scaling law K ⇠ Ro, which
was predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory.
However, stereo particle image velocimetry measurements indicate that the flow is not dominated
by inertial waves. Instead, drag reduction is due to partial two-dimensionalization of the flow.
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FIG. 1. Experimental setup: a platform rotating at constant
rate ⌦ supports a parallelepipedic tank filled with water. A
motor mounted on the platform drives an impeller at con-
stant rate ! in the rotating frame. We measure the mean
torque � developed by the motor driving the impeller. In (a),
(b) and (c), the platform and the impeller rotate around the
same axis. In the laboratory frame, the impeller spins at a
rate ! + ⌦. PIV measurements are performed in a vertical
plane (dashed region). In panel (d), the axis of the motor is
perpendicular to the global rotation axis of the platform.

Introduction - A central question of turbulence re-
search is to determine the drag on a moving object. It
is the main goal of aerodynamics, and it determines the
power needed for e�cient turbulent mixing. A charac-
teristic feature of turbulent flows is that the drag force
becomes independent of molecular viscosity when the lat-

ter is low enough. A simple experiment highlighting this
behavior consists in spinning an impeller of radius R and
height h at constant angular velocity ! inside a tank
filled with fluid of density ⇢ and kinematic viscosity ⌫:
when the Reynolds number Re = R2!/⌫ is large enough,
the torque � required to drive the impeller follows the
⌫-independent scaling � = K⇢R4h!2, where the dimen-
sionless constant K is the drag coe�cient.

This Letter considers the e↵ect of a global rotation
at a constant rate ⌦ on this fundamental experiment:
how does the drag coe�cient depend on the Rossby num-
ber Ro = !/⌦? Global rotation is encountered in many
industrial, geophysical and astrophysical flows. Rotat-
ing turbulence has therefore been studied intensively us-
ing experimental, theoretical and numerical tools. For
strong global rotation, the behavior of rotating turbu-
lent flows may be summarized as follows: the large-scale
flow structures tend to become independent of the global
rotation axis, in qualitative agreement with the Taylor-
Proudman theorem, while the remaining vertically de-
pendent fluctuations can be described in terms of iner-
tial waves that interact nonlinearly, together and with
the 2D flow. Rapidly-rotating turbulence is therefore in-
termediate between 2D and 3D turbulence; one naturally
wonders how its energy dissipation rate compares to the
laminar dissipation of 2D turbulence, and/or to the dis-
sipation anomaly of 3D turbulence.

The experiment considered here probes directly the in-
fluence of global rotation on turbulent dissipation: torque
measurements give access to the drag coe�cient K =
�/(⇢R4h!2), i.e., to the normalized energy dissipation
rate. We report on the behavior of K as a function of the
Rossby number Ro, in the fully turbulent regime where
K is independent of Re.

Experimental setup - The experimental setup is
sketched in Fig. 1. It consists of a parallelepipedic water-
filled tank of height H = 55 cm and square base of side
L = 45 cm. A brushless servo-motor drives a four-
rectangular-blade impeller of radius R = 12 cm and
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ing turbulence has therefore been studied intensively us-
ing experimental, theoretical and numerical tools. For
strong global rotation, the behavior of rotating turbu-
lent flows may be summarized as follows: the large-scale
flow structures tend to become independent of the global
rotation axis, in qualitative agreement with the Taylor-
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General conclusion
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⌦

z-invariant 2D flow 3D fluctuations

✏2D ⇠ ⌫
U2
2D

L2

• laminar dissipation rate

✏3D ⇠ U3
3D

L

⌧
(at intermediate Ro, may be 
lower for Ro     1).

• strongly swept by the 2D flow: 
not described by the IR 
dispersion relation. 

• turbulent dissipation

Structure of high-Re low-Ro flows:

U2D U3D ✏3D✏2D, ,



General conclusion
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✏2D ⇠ ⌫
U2
2D

L2
✏3D ⇠ U3

3D

L
  

•         strongly decreases for decreasing Ro. 
                                    decreases. 

• Theoretically, exact two-dimensionalization for  
            laminar dissipation  

Case 2: forcing incompatible with Taylor-Proudman: 
  Imposed

U3D

✏ = ✏2D + ✏3D

✏ = ✏2D ⇠ ⌫U2
2D/L2
Ro < Roc(Re)

✏ ' ✏3D ⇠ U3
3D/LU3D

Case 1: forcing compatible with Taylor-Proudman:


