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Magnetic ground states of a model for MNb3S6 (M = Co, Fe, Ni)
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The transition-metal-intercalated dichalcogenide CoNb3S6 is a triangular antiferromagnet (AFM) that has
recently been shown to exhibit a large anomalous Hall effect (AHE) below the Néel temperature, even though
the response to an external field is very small. This suggests that there is an interesting magnetic structure that
interacts with the electronic structure to yield the AHE, as collinear AFMs cannot exhibit a nonzero AHE. We
propose a model for magnetic transition-metal-intercalated dichalcogenides and examine its ground state as a
function of interaction parameters. The model exhibits transitions between planar spin spirals, nonplanar spin
spirals, and a particular noncoplanar so-called 3q state. This latter state must exhibit a nonzero AHE, while the
spin spirals do not.
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I. INTRODUCTION

Ferromagnetic (FM) and antiferromagnetic (AFM) sys-
tems can be frustrated when all interactions cannot be
simultaneously minimized. For FMs, frustration involves
more than near-neighbor interactions. The frustration can in
FMs lead to several ordered states with complex orders, such
as spiral states and skyrmion crystals [1–4]. In contrast, AFMs
are in a sense easier to frustrate because, in certain lattices,
frustration is a geometrical property, and near-neighbor in-
teractions alone will lead to frustration and complex orders
[5]. Classic examples of a frustrated AFM are the triangular
Ising AFM, the ground state of which was solved in two
dimensions (2D) by Wannier [6,7], or the 2D triangular XY
and Heisenberg AFMs with Néel ground states in which the
three spins on an elementary triangular plaquette are 120◦
degrees apart. More generally, triangular AFMs can also ex-
hibit a number of different collinear and noncollinear states
[8]. Another class of frustrated AFMs are the kagome AFMs
[9–12], such as Mn3Ge. AFMs have recently become the fo-
cus of intense interest in connection with topological materials
and their magnetotransport properties. There exist quite a few
examples of materials that are kagome AFMs or ferrimagnets
with linked magnetic and topological properties, for exam-
ple, Mn3Ge and Mn3Sn [13–20] as well as others, such as
(RE )Mn6Sn6, with RE = rare earth [21–24], and MnBi2Te4

[25–29]. In addition to nearest-neighbor interactions that are
ubiquitous in AFMs, if the crystal is not centrosymmetric, a
chiral Dzyaloshinskii-Moriya interaction (DMI) is allowed.
The direction of the DMI vector di j that couples spins at sites
i and j in the same plane depends on the in-plane symmetry.
For example, in kagome AFMs, the DMI vector is along the
crystallographic c axis, perpendicular to the kagome plane.
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A phenomenon that connects magnetotransport to the
topology of the electronic structure is the anomalous Hall
effect (AHE). Modern theories directly relate the AHE to
the Berry phase of the electronic bands in the first Brillouin
zone (BZ) [2,30–34]. There are also direct connections be-
tween the real-space magnetic structure of AFMs and the
AHE [35–37]. A real-space magnetic texture with a finite
chirality can give rise to a fictitious magnetic field that, in
turn, produces a Hall effect [38–40]. The chirality is defined as
χ = ε123S1 · (S2 · S3), where Si, i = 1, 2, 3 are three spins on
an elementary triangular plaquette for the case of triangular
or kagome systems, and εi jk is the Levi-Civita symbol. This
is the same concept that, in the continuum limit, gives rise
to a topological magnetic field and a topological Hall effect
in magnetic skyrmions [41]. In the presence of spin-orbit
coupling, the relation between real-space spin texture and
Berry curvature becomes complicated. For example, gapless
collinear AFMs cannot exhibit an AHE [42–44]. Coplanar
kagome or triangular AFMs such as Mn3Ge or PdCrO2 can
exhibit an AHE [13,14,45] only in the presence of spin-orbit
coupling or a small net moment that breaks certain symmetries
[13], while noncoplanar AFMs with nonzero chirality can
exhibit a nonzero AHE [35–37]. In general, if the system
is invariant under the combination of time reversal T and a
lattice translation R, the Berry phase is zero, and the chirality
is also zero. More generally, if the system is invariant under
the combination of T and O, where O is any unitary sym-
metry operator, the Berry phase is zero. Conversely, if the
system is not invariant under T R, the Berry phase and the
chirality can both be nonzero. Therefore, a nonzero chirality
for a noncoplanar system is an indication that there can be a
nonzero Berry phase and a nonzero AHE.

A family of triangular magnets are the intercalated
(M )Nb3S6 compounds, where M is Ni, Co, Fe, or Mn. These
materials are dichalcogenides [46] (M )xNbS2 in which M are
intercalated between prismatic layers of NbS2 and are stable
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FIG. 1. Unit cell of CoNb3S6 with Co in blue, Nb in green, and
S in yellow, with the directions of lattice vectors a (red), b (green),
and c (blue) indicated.

and ordered at x = 1
3 . The unit cell for CoNb3S6 is depicted

in Fig. 1. The crystal structure and magnetic susceptibilities
were first investigated by Anzenhofer et al. [46], who also
discussed their electronic structure. Parkin et al. [47] used
neutron diffraction on single-crystal samples of CoNb3S6 and
CoTa3S6 to determine the AFM magnetic structure of these
two compounds. They concluded that the magnetic structure
is orthohexagonal with two Co atoms per magnetic unit cell,
with a moment of 2.73 μB for Co, slightly lower than the spin-
only moment of 3 μB for Co2+. More recently, Ghimire et al.
[44] performed magnetic measurements and magnetotrans-
port measurements on CoNb3S6. They found a small linear
susceptibility for in-plane and out-of-plane (OOP) magnetic
fields (<0.1 μB per formula unit for a field of 6 T), with
the OOP susceptibility larger than the in-plane one, but with
a pronounced hysteresis in the OOP susceptibility at tem-
peratures <29 K. Magnetotransport measurements yielded a
relatively large AHE below the Néel temperature TN, which is
27.5 K. They argued that a magnetic-field-induced component
OOP was not large enough to give rise to the observed AHE.
Based on electronic structure calculations, they suggested
that CoN3S6 is a magnetic Weyl semimetal with a complex
noncollinear magnetic structure. Later, Tenasini et al. [48]
performed further magnetotransport experiments and found
an AHE per Co layer close to the quantized value of e2/h,
suggesting that the Co layers form topologically nontrivial 2D
bands.

The precise magnetic structure of (M )Nb3S6 remains elu-
sive, but the works by Ghimire et al. [44] and Tenasini et al.
[48] suggest that there is a connection between the magnetic
and electronic structures, giving rise to nontrivial topology
and a large AHE. In this paper, we look for magnetic order
as a possible source for a nonzero AHE. We propose mag-
netic ground states for a model of the (M )Nb3S6 systems.
We find that, depending on the ratio of coupling constants,
the ground state can be either a noncollinear, noncoplanar
AFM with nonzero chirality, or spiral states 1q and 2q de-
fined, respectively, by a single wave vector q or by two wave

vectors q and q2 in the first BZ, and particularly q2 is incom-
mensurate with the in-plane lattice constant. In addition, the
spiral states have zero chirality: the 1q state is invariant under
the combination of T and R. This makes the contribution
to the AHE from a real-space chirality and the Berry phase
vanish, and the 1q magnetic state in (M )Nb3S6 cannot yield
a nonzero AHE [13,45]. The 2q state is more complicated: it
is in general noncoplanar and has a local chirality that does
not vanish, but the average chirality over many plaquettes
vanishes, which implies that the AHE will, too. This means
that the AHE can be a discriminant of the magnetic ground
states. The ground state we find for a range of interaction
parameters is consistent with the ground state obtained from
electronic structure calculations including spin-orbit interac-
tions [49]. This paper is organized as follows. In Sec. II,
we introduce the magnetic Hamiltonian, and in Sec. III, we
discuss finite-temperature atomistic simulations and introduce
general variational ground states for the different candidate
states. We present our results in Sec. III, and Sec. IV contains
conclusions and a summary.

II. METHODS

A. Model Hamiltonian

Experimental evidence makes clear that (M )Nb3S6 un-
dergo magnetic transitions from paramagnetic to ordered
magnetic states [44,46–48] at temperatures of ∼30 K or
higher. First-principles calculations [49] yield M moments
ranging from 1.4 μB (M = Ni) to 4.9 μB (M = Mn), and
experimental measurements [47] also indicate a large Co
moment of 2.73 μB. These are temperature ranges and mag-
netic moments for which classical spin models are usually
applied successfully. We are furthermore not aware of any
evidence that quantum spin fluctuations play an important role
in the magnetic structure or transport measurements. We will
therefore use classical spin models to describe these systems.
We assume that the magnetization can be described by local
moments on the M atoms and start with a minimal classical
Heisenberg model with near-neighbor in-plane AFM coupling
J , biquadratic coupling B, and near-neighbor OOP coupling J3

(see Fig. 2). The moments are located on a triangular lattice
in the crystallographic ab plane, which we will take to be the
xy plane, with lattice constant a, and we take the z axis to be
along the crystallographic c axis, so the sites of the Co atoms
are given by

ri = mi

(√
3

2
ax̂ + a

2
ŷ

)
+ niaŷ + �cẑ + Mod(�, 2)

√
3

4
ax̂,

(1)
where mi, ni, and � are integers. Because inversion symmetry
is broken, a DMI is allowed, with the general form:

HDMI =
∑
〈i, j〉

di j · [S(ri ) · S(r j )], (2)

where the sum 〈i, j〉 is over in-plane nearest neighbors on
sites ri and r j . Based on symmetry, the DMI vector must be
directed along the crystallographic c axis. There are then two
possible ways to arrange the DMI vectors: along the +z axis
or along the −z axis. We do not know if the DMI vectors point
up or down, but for the purposes of our work here, which one
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FIG. 2. View of CoNb3S6 in the ab plane. Co atoms in dark blue
are on one lattice plane along the c axis and light blue ones on
neighboring planes. In the plane, the Co atom labeled 1 interacts
with the in-plane nearest neighbors 2–7, with in-plane next-nearest
neighbors as indicated by the red line, and with out-of-plane neigh-
bors at the sites 8–10 as indicated by a blue line. The arrows on the
bonds indicate the order of the cross product for the near-neighbor
Dzyaloshinskii-Moriya interaction (DMI).

is lower in energy is immaterial, and we will take the DMI
vectors to point up. We will also assume that there is a single-
site anisotropy with the ab plane an easy plane, consistent with
the experimentally observed larger OOP susceptibility than
the in-plane one [44]. The three-dimensional (3D) classical
Hamiltonian is then

H3D = Hexchange + Hnn ex + HOOP + HDMI

+ Hbiq + Hani + HZ. (3)

The nearest-neighbor in-plane exchange interaction is

Hexchange = J

2

∑
〈i, j〉

S(ri ) · S(r j ), (4)

where we will take J to be unity and to be the energy scale.
We include an in-plane next-nearest neighbor exchange:

Hnn ex = J2

2

∑
〈〈i, j〉〉

S(ri ) · S(r j ), (5)

where the notation 〈〈i, j〉〉 means that i and j are in-plane next-
nearest neighbors. The near-neighbor OOP exchange is

HOOP =
∑

〈i, j〉,OOP

J3

2
S(ri ) · S(r j ), (6)

with the sum over OOP near-neighbor sites i and j. We will
assume that J3 < J . This is not unreasonable, as the OOP
bond length is larger than the in-plane one by ∼1 Å. This
is in any case not important as J3 just sets a scale for the
interplane order which, as we show below [Eqs. (11) and
(12)], is commensurate with the lattice spacing c.

The DMI is

HDMI =
∑
〈i, j〉

Dd · [S(ri ) · S(r j )], (7)

where D is the coupling strength and d = ẑ is the DMI vector.
The biquadratic exchange and uniaxial anisotropy are, respec-
tively,

Hbiq = B

2

∑
〈i, j〉

[S(ri ) · S(r j )]
2, (8)

and

Hani = K
∑

i

(Sz,i )
2, (9)

with B and K the respective coupling strengths and K > 0 for
the ab plane an easy plane. In addition, in the presence of an
external field Hext, there is a Zeeman energy:

HZ = −
∑

i

Hext · S(ri ). (10)

Figure 2 depicts a view of CoNb3S6 in the ab plane. Co atoms
in one plane along the c axis are indicated in dark blue. The
Co at site 1 interacts with its nearest neighbors on sites 2 to 7
via the Heisenberg interaction and the DMI; the order for the
cross product in the DMI in elementary triangular plaquettes is
indicated with the black arrows. The Co at site 1 also interacts
with its in-plane next-nearest neighbor through a coupling J2,
as indicated by the red line. The sites colored light blue and
labeled 8 to 10 are Co atoms in the plane above or below site 1,
and the Co atom at site 1 interacts with these six sites through
a coupling J3 indicated with a blue line.

It is not impossible that there are longer-range interactions
in these compounds. For example, because (M )Nb3S6 are
metallic, there may be long-range Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions mediated by electrons at the
Fermi surface, and such interactions could lead to longer-
range order such as spiral structures along the c axis. However,
because of the intercalated nature of these compounds with a
large distance between consecutive M planes, the OOP resis-
tivity (along the c axis) is more than an order of magnitude
larger than the in-plane resistivity [48]. This makes RKKY
interactions along the c axis unlikely to be large enough to
have a significant effect. One may of course include more
in-plane couplings. However, our model already includes four
in-plane couplings that extend up to 10 Å through the next-
nearest neighbor interactions. We are also interested in a
minimal model that can explain the magnetic structures and
the appearance of a large AHE in CoNb3S6, and we believe
our model can. We will therefore not try to extend it to in-
clude more interactions (which would also necessarily make
analyses more complicated).

Given the Hamiltonian H3D in Eq. (3), there are a few
properties of the magnetic order one may expect. Because the
system is a triangular AFM with ABAB stacking, the system
should have a simple commensurate order along the c axis
[50]. A simple argument illustrates this: Given the structure
of the Hamiltonian Eq. (3) with decoupled in-plane and OOP
couplings, one can assume that the spin configuration in an
ordered state is separable into in-plane and OOP components,
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FIG. 3. Snapshot of the spin configuration in a M plane for
B = 0.4, K = 0.1, D = 0, J2 = 0.08, J3 = 0.2, and kBT ≈ 0.01. The
arrows show the three-dimensional (3D) spin orientation, and the
color coding denotes the z component of the spins. The snapshot
shows there is short-range local order in small domains.

and the latter can be Fourier transformed:

S(ri ) = 1

Nz

∑
qz

S(xi, yi, qz )eiqzzi , (11)

where Nz is the number of M planes. This immediately leads
to an effective OOP coupling by summing over the six OOP
near neighbors that couple to the spin at site ri:

HOOP = J3

Nz

∑
qz,〈i, j〉,OOP

cos(qzc)S(xi, yi, qz )S∗(x j, y j, qz ), (12)

which is minimized for qz = 0 (J3 < 0, FM OOP coupling)
or qz = π/c (J3 > 0, AFM OOP coupling), as the in-plane
couplings J , J2, and B are all AFM, and as we shall argue later
at the end of Sec. III A, D must be small. This means that we
can expect the order along the c axis to be trivial, irrespective
of the sign of J3. Furthermore, given the nature of the DMI,
we expect that increasing the DMI will tend to make the
in-plane spin order coplanar, at least for spin spiral state, to
minimize the DMI energy. Finally, the next-nearest neighbor
interaction can lead to an instability of the in-plane static
susceptibility at the M points in the BZ [36,40], which can

potentially lead to the emergence of a 3q state. The 3q state
is a noncoplanar AFM with a nonzero chirality; such a state
can give rise to a nonzero AHE because the nonzero chirality
corresponds to a Berry phase [36].

To establish some basic features of the low-temperature
magnetic structure of H3D in Eq. (3), particularly to con-
firm the trivial OOP order, we performed Monte Carlo
simulations and also simulations integrating the stochastic
Landau-Lifshitz-Gilbert (s-LLG) equation [51] based on the
Hamiltonian H3D at fixed temperature using the VAMPIRE

software [52]. For the fixed-temperature s-LLG simulations,
we used a time step of 0.1 fs and a dimensionless damping
α = 0.1, thermally randomized the spins at a high tempera-
ture kBT ≈ 1 for 1 ns (105 time steps), and then quenched
the system to a low temperature kBT ≈ 0.01. We used an
orthorombic supercell with dimensions 9.99047 ×23.0720 ×
11.886 nm containing 16 000 atoms. As one might expect,
short-range in-plane order emerged at low temperatures T ∼
J and long-range order at a temperature set by J3. A main
conclusion of these 3D simulations was that the order along
the c axis was always trivial, as the arguments above suggest,
whether J3 was FM (J3 < 0) or AFM (J3 > 0) with consecu-
tive planes along c having the same in-plane order shifted by
an in-plane translation: The OOP coupling leads to a trivial
order along the c axis, without any effect on the in-plane
order. Figure 3 shows a snapshot of the spin configuration
in an ab plane for B = 0.4, J2 = 0.08, D = 0, J3 = 0.2, and
kBT ≈ 0.01. There appears to be some local order, but there
are multiple domains in the imaged region. It should be noted
that, at this low temperature, only very small thermal noise can
be discerned as a function of time. The difficulty in identifying
the nature of the order is often the case for finite-sized simula-
tions when the order may be incommensurate with the lattice
spacing. Figure 4 shows snapshots of the spin configurations
for the same parameters B, D, and J3 but now with J2 = 0.3
(left panel) and J2 = 0.5 (right panel). In these figures, spin
ordering is clearly discernible, even though the right panel
contains a domain wall. A closer examination of the con-
figuration for J2 = 0.3 suggests that the order is a 3q order
[36] (see Fig. 5).
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Z

FIG. 4. Snapshots of the spin configuration in an M plane for B = 0.4, K = 0.1, D = 0, J3 = 0.2, J2 = 0.3 (left panel), J2 = 0.5 (right
panel), and kBT ≈ 0.01. The arrows show the three-dimensional (3D) spin orientation, and the color coding denotes the z component of the
spins with the same color scale as in Fig. 3. For J2 = 0.3, the spins depicted are almost in a single-domain 3q state (there is a domain wall
toward the right end of the figure). In the right panel (J2 = 0.5), several domains are visible. The largest domain in the center of the figure is
not a 3q state, as a clear twist of the spins is visible along the y axis; this is probably a 2q state in which q2 is incommensurate with the lattice.
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FIG. 5. The left panel shows a cartoon of the three wave vectors
of the 3q state. The three vectors extend from the zone center to three
M points on the Brillouin zone (BZ) boundary, 120◦ apart. The right
panel shows a real-space depiction of the four spins in a magnetic
unit cell. The four spins point toward four different corners in the
spin-space unit cube, e.g., (−1, 1, 1), (1, −1, 1), (−1, −1, −1), and
(1, 1, −1), such that the sum of the spins is zero.

Figure 6 shows a snapshot of the order in the ab plane
for B = 0.3, K = 0.1, D = 0, J2 = 0.05, J3 = 0.2, and kBT ≈
0.01. In this figure, the order is clearly the classic Néel order,
which can be described as a 1q order with the wave vector
q at a point K in the BZ. Figure 7 similarly shows snap-
shots for J2 = 0.25 (left panel) and J2 = 0.35 (right panel).
At J2 = 0.25, the system again exhibits the 3q state, while
at J2 = 0.35, the order has a short wavelength along the y
direction, and a much longer wavelength is discernible along
the x direction, visible as a gentle twist of the spins. The
finite-T atomistic simulations thus confirmed the trivial OOP
order, which allowed us to reduce the model to a 2D in-plane
model. The 2D model is given by

H = Hexchange + Hnn ex + HDMI + Hbiq + Hani + HZ, (13)

with lattice vectors which we write as

b1 =
√

3

2
ax̂ + a

2
ŷ + 0ẑ,

b2 = aŷ,

b3 = cẑ, (14)

where b3 is irrelevant, and a = 5.768 Å. The reciprocal lattice
vectors are then

b1 = b2 · b3

b1 · (b2 · b3)
= 4π√

3a
x̂,

b2 = b3 · b1

b1 · (b2 · b3)
= 4π√

3a

[√
3

2
ŷ − 1

2
x̂

]
,

b3 = b1 · b2

b1 · (b2 · b3)
= 2π

c
ẑ. (15)

X

Y

Z

FIG. 6. Snapshot of the spin configuration in an M plane for
B = 0.3, K = 0.1, D = 0, J2 = 0.05, J3 = 0.2, and kBT ≈ 0.01. The
arrows show the three-dimensional (3D) spin orientation, and the
color coding denotes the z component, which is here zero, of the
spins with the same color scale as in Fig. 3. This state can readily be
identified as a planar Néel state.

We will also use the vectors

τ1 =
√

3

2
ax̂ + a

2
ŷ + 0ẑ,

τ2 = −
√

3

2
ax̂ + a

2
ŷ + 0ẑ,

τ3 = −aŷ, (16)

that connect nearest-neighbor sites in an elementary triangular
plaquette, with directions given by the DMI bonds in Fig. 2.

We will seek ground states among different classes of or-
dered states by constructing different Ansätze with variational
parameters and minimizing the total energy with respect to
those parameters. The variational states cover very general
states with 1q and 2q orders and also include generalizations
of the noncoplanar 3q state. While one can in general look for
states the orders of which are characterized by multiple wave
vectors using systematic Fourier expansions [3,8], such ex-
pansions can typically be terminated after two components as
the weights of higher-order components decay exponentially
and do not give rise to any physically meaningful effects [8].
We will therefore not construct higher-ordered states than the
1q, 2q, and 3q noncoplanar states as we believe these suffice
to characterize the phase diagram of our model.

A 1q ordered state can be described by the Ansatz:

S1q(ri ) = [A cos(q · ri + ϕ), sin(q · ri + ϕ),
√

1 − A2 cos(q · ri + ϕ)], (17)

where −1 � A � 1, ϕ is an arbitrary phase with 0 � ϕ � 2π , and q is any wave vector in the 2D BZ. This Ansatz obviously
preserves normalization of the spin at each site. Note that there are two other possibilities:

S(ri ) = [A cos(q · ri + ϕ),
√

1 − A2 cos(q · ri + ϕ), sin(q · ri + ϕ)], (18)
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FIG. 7. Snapshots of the spin configuration in an M plane for B = 0.3, K = 0.1, D = 0, J3 = 0.2, J2 = 0.25 (left panel), J2 = 0.35 (right
panel), and kBT ≈ 0.01. The arrows show the three-dimensional (3D) spin orientation, and the color coding denotes the z component of the
spins with the same color scale as in Fig. 3. For J2 = 0.25 (left panel), the state can be identified as a 3q state, and a magnetic unit cell is
indicated with red lines. For J2 = 0.35 (right panel), the order is more complicated, and a gentle twist along the x axis can be observed.

and

S(ri ) = [sin(q · ri + ϕ), A cos(q · ri + ϕ),
√

1 − A2 cos(q · ri + ϕ)]. (19)

To further generalize the variational 1q spin states, we also
perform a global SO(3) rotation R(θr, w) of all spins, where
R(θr, w) rotates the spin an angle θr about the unit vector w:
S(ri ) → R(θr, w)S(ri ). This yields seven variational parame-
ters A, qx, qy, ϕ, θr , wx, and wy. Finally, in the presence of an
external magnetic field along the z axis, we must allow for a
small z component of the spins induced by the external field.
We add this in the following way. We start with a given set
of A, qx, qy, and ϕ and then perform the SO(3) rotation for
a given θr , wx, and wy of all spins. We then add a small z
component δz 
 1 to all spins. This breaks the normalization
of the spins, so a final step is to renormalize all spins by
dividing each spin by its norm. In numerical optimizations of
the 1q and 2q states with an applied field, we ensure that the
field is small enough that the resulting component δz is indeed
smaller than 0.1.

Without an external magnetic field, we expect the three
variational Ansätze Eqs. (17)–(19) to be degenerate in energy,
at least for D = 0. This was indeed confirmed in the numerical
minimization with respect to the variational parameters and
served as a convenient check on the numerical minimizations.

We construct variational 2q states by a simple generaliza-
tion of the Ansätze Eqs. (17)–(19) by replacing the constant
amplitude A and

√
1 − A2 for spin S(ri ) by cos(q2 · ri ) and

sin(q2 · ri ), respectively. Just as for the 1q variational states,
we perform a global SO(3) rotation for a given set of qx, qy,
qx2, qy2, and ϕ. In the presence of an external magnetic field,
we add a z component δz to all spins after the SO(3) rotation
and then renormalize the spins. Note that these variational 2q
states include the 1q ones as special cases. This provided an-
other check on the numerical minimizations. Figure 8 shows
examples of an optimized 1q spin state for B = 0.4, K = 0.1,
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FIG. 8. 1q (left panel) and 2q (right panel) variational solutions for B = 0.4, D = 0, J2 = 0.04 (1q), and J2 = 0.48 (2q). The 1q state is a
planar Néel state (the color coding of the arrows is in this case just for better visibility). In the right panel, a lattice direction along the a axis
is indicated. The spins have an almost commensurate periodicity of period three along this direction.
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D = 0, and J2 = 0.04 and an optimized 2q spin state for
B = 0.4, K = 0.1, D = 0, and J2 = 0.48. The 1q spin state
is planar. The 2q state is noncoplanar and has a rather compli-
cated real-space texture, but certain features can be discerned.
For example, along the a axis, as indicated in the figure, the
spins have an almost commensurate period of three lattice
spacings. It is not quite commensurate as the spins are twisted
slightly away from each other at every third site.

For the 2D model with near-neighbor, next-nearest-
neighbor, and biquadratic exchange and a small OOP
anisotropy (e.g., K ≈ 0.05 or K ≈ 0.1), with the c axis a hard
axis, there is a parameter range with J2 smaller than unity
where an in-plane so-called 3q state is the ground state [36],
in which the spin state is given by

S3q(ri ) = [S1 cos(q1 · ri ),S2 cos(q2 · ri ),S3 cos(q3 · ri )],
(20)

where Si are amplitudes with
∑3

i=1 S2
i = 1. The vectors qi

extend from the � point in the BZ to three M points such that

the q vectors are 120◦ apart (see Fig. 5). This yields a spin
configuration with four inequivalent sites, so the magnetic unit
cell has four sites (see Fig. 7). In the absence of a DMI, the
magnetizations on the four sites are related by reflection or
inversion, so there are only two degrees of freedom needed
to specify the spin arrangement. These can be thought of
as the magnitude of the spin projection on the z axis and a
rotation about the z axis. For B = 0, the spin arrangement
forms an a coplanar AFM with the amplitude of the z compo-
nent S3 = 0. A small positive biquadratic coupling B (in our
case already for B = 0.025) can drive S3 nonzero, yielding
a noncoplanar AFM. A nonzero DMI or an applied external
field can potentially break the symmetry relations between the
spin orientations on the four different sites; the magnitude of
the z component S3 can on the sites with S3 < 0 be different
from the sites with S3 > 0. To allow for this possibility, we
construct a bipartite model with positive and negative z com-
ponents of the spin and seek solutions of the form:

S(ri ) = [cos(ϕ j ) sin(θ j ) cos(q1 · ri ), sin(ϕ j ) sin(θ j ) cos(q2 · ri ), cos(θ j ) cos(q3 · ri )], (21)

where θ j and ϕ j , j = 1, 2 are additional variational parame-
ters, and j enumerates the two sublattices with positive and
negative S3. This Ansatz with four variational parameters then
also allows for an OOP net magnetization driven either by
interactions or by an applied external field as the magnitude of
the z component of the spin can be different on one sublattice
from the other.

In the absence of DMI and for K = 0, the 3q state is
degenerate under arbitrary SO(3) rotations of all spins. In the
presence of DMI and anisotropy, this is generally no longer
the case. However, with the c axis a hard axis and with the
DMI vector also along the c axis, the Hamiltonian is invariant
under arbitrary global spin rotations about the c axis. There is
then another readily identified spin state with net zero mag-
netization compatible with the lattice symmetry. This state
also has four spins per unit cell, with one spin S0 along the
z axis or perpendicular to the z axis and the other three with
components equal to 1

3 in magnitude with opposite sign to
the z or in-plane component of S0 and with the components
perpendicular to S0 120◦ apart (see Fig. 9 for a depiction with
S0 along the −z axis.) For the parameter range examined here,
this state has higher energy than the 3q state, and we will
ignore it from now on.

For a given set of input parameters J2, D, B, K , and ex-
ternal field Hzẑ, we then minimize the total energy per spin
with respect to the parameters θ j and ϕ j for the 3q state and
with respect to A, qx, qy, ϕ, θr,wx,wy, and δz for the 1q and
2q spin spiral states. Because the interaction energy between
nearest-neighbor spins only depends on their relative orien-
tation, we can without loss of generality put one spin at the
origin and calculate the interaction energy of this spin. For the
3q state, it suffices to calculate the total energy (interaction,
anisotropy, and Zeeman) of the four inequivalent spins in
the magnetic unit cell. For the 1q and 2q spin spiral states,
however, we increase the sampling size: we first choose one
central spin at the origin and calculate its interactions with
its nearest neighbors and then add the interactions of the

six nearest-neighbor spins with their nearest neighbors for a
total of 30 bonds. Because the 1q and 2q spin spiral states
can have a long period, it is important to accurately include
the anisotropy energy, as easy-plane anisotropy frustrates the
DMI. The anisotropy energy and the Zeeman energy are there-
fore averaged over a large supercell with Nsite sites, i.e.,

EZ/Spin = − 1

Nsites
Hext ·

∑
na,nb

S[q · (nab1 + nbb2) + ϕ],

(22)

with Nsites typically 16 × 16 to 25 × 25. We directly minimize
the energy total energy per spin with respect to variational
parameters of the 3q and spin spiral states to obtain the
variational ground state.

FIG. 9. Depiction of another class of spin states with the four
spins from one magnetic unit cell inserted in the unit cube in spin
space. One spin has positive or negative z component (here shown
with negative z component), and the others have z components of
opposite sign and the spin components in the xy plane 120◦ apart.
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FIG. 10. The evolution of the norm of q normalized to the K
point in the Brillouin zone (BZ) for the 1q state as a function of J2

and D for B = 0.3 and K = 0.1. The color coding indicates the value
of D. |q| is unity, as q is at a K point for small J2 and D. For J2 above
some critical value, the norm of q starts to decrease as q moves from
the K points in toward the zone center �. This critical value of J2

increases slightly with D.

As discussed earlier, a collinear AFM cannot yield a
nonzero AHE, and a coplanar AFM has no contribution to the
AHE from the spin chirality. The AHE is directly related to
the chirality χ of the spin structure which we calculate as

χ = εi jkS(τi ) · [S(τ j ) · S(τk )], (23)

where εαβγ is the Levi-Civita symbol, repeated indices are
summed over, and the sites i, j, and k form an elementary
triangular plaquette.

We explored the phase space for a range of B between
0.025 and 0.4, and K ranging from 0.025 to 0.1. The resulting

phase diagram evolves slowly with varying B and K ; the
dependence on K is rather weak. We will therefore typically
discuss results for B in the range of 0.3 to 0.4, with K = 0.05
or 0.1.

III. RESULTS AND DISCUSSION

For zero DMI coupling D, zero next-nearest-neighbor cou-
pling J2, and for all values of B we have examined, the ground
state is the well-known Néel triangular AFM state with the
three spins on an elementary triangular plaquette 120◦ apart,
and with the OOP anisotropy K > 0, the spins are coplanar
in the xy plane (see Fig. 8). This state is captured by the 1q
and 2q Ansätze but not by the 3q Ansatz, and the 1q and 2q
states correctly yield the ground state. Because the spins are
coplanar, the state has a vanishing chirality and therefore van-
ishing anomalous Hall conductivity. When the interactions B,
J2, and D are increasing from zero, the spin structure becomes
more complicated. For small J2 in the range of 0.1 at D = 0 to
∼0.3 at D = 0.5, the 1q state is always lower in energy than
the 2q state (the 2q variational state collapses to the 1q state;
we also confirmed numerically that the 1q and 2q Ansätze are
degenerate for small J2).

Figure 10 shows |q| normalized to the K point in the first
BZ in the 1q state as function of J2 and D for B = 0.3 and
K = 0.1. For small J2 and D, q falls on the K points, and
the state is a planar Néel state. As J2 increases above some
critical value that depends weakly on D, q moves in toward
the zone center � as the interaction parameters try to drive
the system toward an incommensurate spiral that is in general
nonplanar. If B is too small, B � 0.3 (a value that depends
very weakly on K), the interactions cannot drive q away from
the BZ boundary, and instead of moving in toward �, q moves
on the BZ boundary. For the 2q state, q in general falls on
the K points on the BZ boundary (see Fig. 11). For small J2,

FIG. 11. The panels show the evolution of wave vectors q (left panel) and q2 (right panel) for the 2q state as function of J2 for B = 0.3
and K = 0.1. The color coding indicates the value of D. The insets show the positions of the wave vectors in the 1st Brillouin zone (BZ), with
the color coding denoting J2. q is generally at the K-points but move slightly inwards towards the zone center as D increases, more so as B
decreases below B = 0.3. Occasionally for small values of J2, J2 � 0.2, q is at the � or at M points, in which case q2 is at the K points or
halfway to the K points. q2 moves towards the M points from � approximately as the square root of J2 with increasing J2; as D increases, a
larger J2 is required to move q2 from the zone center.
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FIG. 12. The evolution of |q| (left panel) and |q2| (right panel) normalized to the K point in the Brillouin zone (BZ) for the 2q state as a
function of J2 and D for B = 0.3 and K = 0.1. The color coding indicates the value of D. |q| is unity, as q is at a K point for small J2 and D,
except for a few scattered points; these are all just other representations of the 1q state. |q2| is zero for small J2 and D but starts to grow as
J2 exceeds a critical value that depends on D and grows approximately linearly with D: when D = 0, this critical value is ∼0.06, and when
D = 0.5, the critical value is ∼0.3. The critical value J2(D) marks the transition from a 1q ground state to a 2q ground state.

J2 � 0.1, q2 is at the zone center � (which makes the state a
1q state) but increases approximately as the square root of J2

with increasing J2 and moves toward the M points, stopping
halfway to the M points; the larger D is, the larger J2 has to be
for q2 to start moving from the zone center. For a few values
of J2 and D, generally with J2 � 0.2, q falls at the M points
and q2 on the K points; these particular 2q states are in fact
another representation of 1q states. Figure 11 also displays a
sixfold symmetry, as we have not folded the obtained values of
q and q2 back to an irreducible wedge of the 2S BZ. Figure 12
shows the evolution of |q| and |q2| normalized to the K point
in the 2q state as functions of J2 and D. For small J2 and D, q
is on a K point and q2 = 0, and the 2q state is equivalent to the
1q (this is also the case for the few scattered points at which
q is at M points or is zero). For some critical value of J2, the
norm of q2 suddenly increases, and q2 starts to move toward
M points in the BZ with |q2| growing approximately as

√
J2.

The critical value of J2 depends on D and is ∼0.06 for D = 0
and ∼0.3 for D = 0.5; this critical value is the transition from
a 1q ground state to a 2q ground state. The critical value is
almost independent of B and very weakly dependent on K .
The noncoplanar 3q state is stabilized for B > 0 by J2 > 0.
The dependence on B is stronger than for the spin spiral states,
in that the magnitude of the z component of the spins Sz and
the chirality increase rapidly with B for fixed K (see Fig. 13).
The dependence on K is weak, except that for very small B,
B � 0.025, the chirality and Sz components 1are zero for K
too large, K � 0.05. In contrast, the chirality of the 1q spin
spiral state is always zero. The net magnetization is zero in
the absence of an external field. The energy of the 3q state is
also independent of D.

While the 1q (or 2q) state yields the correct ground state
for B = D = J2 = 0, for small but finite B and J2, we would
expect the ground state of CoNb3S6 to be the 3q state based
on electronic structure calculations [49]; these also confirm
that this state has a nonzero AHE. This implies that there
must be a transition from a spin spiral to a 3q state as the
interaction parameters are increased. This, in turn, makes it
interesting to explore the phase diagram of this system as a

transition between 3q and spin spiral states could have an
immediate observable consequence in the AHE. Figure 14
depicts the energy surfaces of the 2q and 3q states for B = 0.4
and K = 0.1. While the energy for the 3q state is independent
of D and decreases linearly with increasing J2, the energy
surface of the 2q state has a local maximum as a function
of J2 for fixed D. As a consequence, the two energy surfaces
intersect at large enough B, B � 0.3, for small D, and the 3q
state has lower energy for a range of D and J2.

Figure 15 shows the phase diagrams in the D-J2 space for
K = 0.1 with B = 0.3 and 0.4. The 3q state occupies a region
with small D and nonzero J2. For B = 0.3, this phase is barely
visible near D = 0. As B increases, this region increases in
size. For B = 0.4, the 3q state occupies a small strip near D =
0 for small J2 � 0.1. The 1q state is always the ground state
for small J2. The phase diagram does not change much as B
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FIG. 13. Magnitude of the z components of the spins (black
squares and black line) and average chirality (red diamonds and red
line) in the 3q state as a function of B for K = 0.1 and J2 = 0.
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FIG. 14. Energy surfaces of the 2q state (hatched) and the 3q
state for B = 0.4 and K = 0.1. The 3q state has lower energy as J2

increases.

increases from 0.4 to 0.5. Furthermore, the dependence on K
is weak; decreasing K by a factor of two from K = 0.1 to 0.05
only very slightly increases the region of the 3q state to larger
D and a larger range of J2 by <0.04 for J2 and ∼0.02 for D.

The transition from a coplanar Néel state to a noncoplanar
3q state with increasing J2 and then to what appears to be a 2q
state was also confirmed by finite-T 3D atomistic simulations

D

J 2

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

1q

2q

3q

FIG. 15. Phase diagram on the D-J2 space for K = 0.1 and for
B = 0.3 (black dashed lines) and B = 0.4 (red lines). The 1q state
occupies the phase diagram for small J2. The 3q phase emerges near
D = 0 for J2 ∼0.25 as B increases.

using the s-LLG equation [51], as detailed earlier in this
section.

The 1q state has zero chirality because of symmetry and is
also a planar state with the magnetization in the ab plane in the
parameter space that we have examined here; as stated earlier,
the 3q state has a nonzero chirality. For the optimized 3q state,
the chirality (averaged over a unit cell) depends strongly on
B for small B (see Fig. 13) but very weakly on the other
parameters. The 2q state has different chirality properties. The
local chirality evaluated over any elementary plaquette is in
general nonzero as the spins are in general coplanar. However,
the chirality oscillates in magnitude and changes sign in space
from one triangular plaquette to the next, and the chirality is
zero when averaged over several plaquettes. This implies that
the AHE arising from spin chirality is zero in the 2q state as
well as in the 1q state with its zero chirality. Therefore, the
1q and 2q spin spiral states cannot give rise to a Berry phase
and a nonzero AHE from the spin chirality alone, while the 3q
state can.

The 1q, 2q, and 3q states all have net zero magnetization
along any axis. The OOP susceptibility for the 1q, 2q, and
3q states is small and relatively uninteresting, at least for
the parameter ranges we have investigated. For fields up to
Hz = 0.1, the average Sz component 〈Sz〉 grows linearly by a
small amount of up to ∼0.01. A small OOP susceptibility is
consistent with the results for CoNb3S6 by Ghimire et al. [44].

IV. CONCLUSIONS AND SUMMARY

We have here proposed and analyzed a model for the in-
plane magnetic interactions in the family of triangular AFMs
in transition-metal intercalated dichalcogenides (M )Nb3S6.
The model allows us to search for three general classes of
magnetic ground states: 1q and 2q spin spiral states and a
3q state with four spins per unit cell. For small in-plane
next-nearest-neighbor interactions J2 � 0.1, the 1q spin spiral
state is the ground state, but with increasing J2, the system
transitions to a 2q state which generally is noncoplanar. A
nonzero J2 leads to a 3q ground state stabilized by a nonzero
B. For B � 0.3, the noncoplanar 3q state emerges as the
ground state for a range of the DMI D � 0. The 1q and 2q
states have vanishing chirality χ = S1 · (S2 × S3) evaluated
over the three spins in an elementary triangular plaquette
and averaged over many plaquettes, and so the spin chirality
will not contribute to an AHE signal for these states. The
noncoplanar 3q state has a nonzero chirality. In a 3D system,
this gives rise to a nonzero AHE provided the stacked 2D
layers have the same chirality; a large nonzero AHE is con-
sistent with measurements [44,48] on CoNb3S6 and electronic
structure calculations that include spin-orbit interactions [49].
While our model suggests that the 3q structure in CoNb3S6

can give rise to an observed AHE, we cannot make any quan-
titative predictions about the magnitude of the quantum Hall
conductivity. This is because CoNb3S6 is a metal with the
Co-hybridized bands crossing the Fermi level [49]. Therefore,
the actual values of the anomalous Hall conductivity depend
sensitively on the details of the electronic structure and are
beyond the scope of this paper. However, increasing D drives
the system to nonchiral 2q or 1q states, as the DMI with its
vector along the c axis favors planar spins. Furthermore, too
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small B cannot stabilize the 3q state. Therefore, the observed
AHE [44,48] puts constraints on D and B: B must be ∼ >0.2,
and D must be <∼0.1 to drive the system to a 3q with nonzero
chirality.

The sensitivity of the ground state to interaction parame-
ters opens the intriguing possibility of inducing a transition
between the 3q state and the spin spiral states by, for example,
biaxial in-plane strain. Another potential mechanism is substi-
tutional doping, e.g., Mn for Co. The MnNb3S6 ground state
is a planar FM [49], presumably because of stronger double
exchange, and Mn is much more likely to occupy Co sites than
interstitial or Nb/S sites. Doping may change the magnetic
interactions (and also the electron filling) and induce a transi-
tion, although there is a small possibility that doping may lead
to more complicated interactions not considered here. Such
a transition from 3q to 2q or 1q states induced by strain or

doping should have a clear signature in the magnetotransport
properties.
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