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At the molecular level fluid motions are, by first principles, described by time reversible laws. On
the other hand, the coarse grained macroscopic evolution is suitably described by the Navier-Stokes
equations, which are inherently irreversible, due to the dissipation term. Here, a reversible version
of three-dimensional Navier-Stokes is studied, by introducing a fluctuating viscosity constructed in
such a way that enstrophy is conserved, along the lines of the paradigm of microcanonical versus
canonical treatment in equilibrium statistical mechanics. Through systematic simulations we attack
two important questions: (a) What are the conditions that must be satisfied in order to have
a statistical equivalence between the two non-equilibrium ensembles? (b) What is the empirical
distribution of the fluctuating viscosity observed by changing the Reynolds number and the number
of modes used in the discretization of the evolution equation? The latter point is important also to
establish regularity conditions for the reversible equations. We find that the probability to observe
negative values of the fluctuating viscosity becomes very quickly extremely small when increasing
the effective Reynolds number of the flow in the fully resolved hydro dynamical regime, at difference
from what was observed previously.a

PACS numbers: 47.10.ad Navier-Stokes equations; 47.27.E- Turbulence simulation and modeling; 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion
Keywords: Equivalence Hypothesis, Reversibility, 3D Navier-Stokes, Turbulence

I. INTRODUCTION

The statistical balance between energy injection and
dissipation is the key ingredient for the establishment
of steady state conditions in non-equilibrium statistical
mechanical systems. Such systems are driven out of equi-
librium by the presence of an external forcing, while dis-
sipation acts as a thermostat that removes the excess of
energy [1, 2], with entropy being produced in the process.

In the case of fluid systems, described by the Navier-
Stokes equation (NSE) [3, 4], dissipation is introduced
in the form of a Laplacian operator acting on the veloc-
ity field times a positive constant: the viscosity. Such
an operator preferentially damps the small scales of the
flow. There are other ways to introduce dissipation, and
two relevant examples are given next. For instance, in
two-dimensional (2D) and geophysical flows, dissipation
is often introduced via the Ekman friction, which is jus-
tified, e.g., by the effects of the bottom and top surfaces
of the thin fluid layer which helps avoiding accumulation
of energy at large scales [5, 6]. Another approach, used
customarily in numerical simulations to reach high inten-
sity turbulent states in many applications, is to introduce
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hyperviscosity [7], i.e., a positive power of the Laplacian,
which confines dissipation to the small scales, acting, de
facto, like a sharp ultraviolet filter. It is also possible to
introduce dissipation by combining more than one of the
above outlined approaches. The common characteristic
among all the forms of dissipation described above is that
they break the time reversal symmetry, which is instead
preserved by the other terms of the NSE.

Reversible equations govern microscopic motion while
irreversible equations describe, very often, macroscopic
evolution of the same systems with equations derived via
scaling of various parameters [8–11]. Thus, the question
arises as to whether the macroscopic description of sys-
tems evolving irreversibly could also be described macro-
scopically by reversible equations.

The equivalence of different ensembles in equilibrium
statistical mechanics (see, e.g., [12, 13]) describes, in the
thermodynamic limit, the independence of macroscopic
observables with respect to the chosen thermostat, which
defines the underlying microscopic interactions between
the system and the reservoir in contact with it. In non-
equilibrium systems it is possible to appropriately modify
the irreversible term(s) of the evolution equation in such
a way that time reversibility is restored, while, under
suitable constraints, a macroscopic quantity is kept fixed
[14]; an early example for NSE is in [15] where many
conditions are simultaneously imposed to constrain that
the energy content obeys at every scale (above the Kol-
mogorov’s) the 5

3 law. The key question is whether,
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and under which conditions, the two ensembles (irre-
versible and reversible) are equivalent and describe the
same physical problem.

In the context of fluid systems, where the viscous term
is the source of irreversibility, it is possible to introduce
a velocity field-dependent fluctuating viscosity, such that
the viscous term becomes formally reversible, while keep-
ing fixed a macroscopic quantity (e.g. the energy or en-
strophy, etc.) as a constraint. The equivalence between
the irreversible and reversible fluid ensembles was first
conjectured in [16, 17] in the limit of vanishing viscosity
and fixed system size. Subsequent numerical attempts
addressed this conjecture in a few simple systems such
as in a version of the 2D NSE truncated to a few modes
and with periodic boundary conditions [18], and more re-
cently in [2, 19], in the Lorenz-96 model [20] and a shell
model of turbulence [21, 22]. Recently, an interesting at-
tempt to show equivalence between a reversible 2D NSE,
where both energy and enstrophy are kept fixed, with ir-
reversible 2D NSE is presented in [23]. First in [24] and
later in [2, 25, 26] a second conjecture was laid to address
the equivalence in the limit of infinite system size at fixed
viscosity.

Attempts to investigate the properties of the reversible
ensemble for the 3D NSE have only very recently been
made [27, 28]. In [27], where the fluctuating viscosity
is constructed in such a way as to keep the energy at a
constant value, the authors gave insight of a possible sec-
ond order phase transition between the two statistically
steady regimes that 3D NSE can exhibit (see Sec. III B),
in the dual limit of infinite system size and vanishing
viscosity, and gave a suggestion of the parametric space
where the conjectures should be addressed. In [28], where
enstrophy is kept constant, the authors employ high spa-
tial resolutions at small viscosities and by comparing the
expectation values of several different observables provide
some evidences of the agreement between the generated
ensembles of irreversible and reversible 3D NSE.

The goal of this work is twofold. First, we wish to clar-
ify the content and study the domain of validity of the
two conjectures for the 3D NSE, by thoroughly investi-
gating the distributions of several observables at different
scales, with attention to expectation values and standard
deviations. Second, we wish to study the statistics of the
fluctuating viscosity in the statistically steady regimes,
which provides insights for the conditions of smoothness
of the velocity fields.

The paper is structured as follows. In Sec. II we present
the necessary theory and state the conjectures we wish to
test in our study. In Sec. III the results of the numerical
simulations are provided. The results pertaining the two
conjectures are separately addressed in Secs. III D and
III E, respectively. In Sec. IV we discuss the results on
the statistics of the fluctuating viscosity for the reversible
NSE. We summarize our findings and provide some per-
spectives in Sec. V. We further supplement our work with
a series of appendixes.

II. VISCOSITY AND REVERSIBILITY

A. Irreversible Navier-Stokes equation in 3D

Here we consider the classical case of an incompress-
ible fluid enclosed in a three-dimensional container with
periodic boundary conditions, described by the NSE. As-
suming incompressibility amounts to removing internal
energy from the energy content of the fluid.

The NSE can be written as

∂tu = ν∆u− u · ∂ u− ∂p+ f , (1)

where u(x, t) is imposed to have zero divergence and zero
spatial average, p is the pressure field, ν is the viscosity,
and f is a force field. The NSE is fundamentally difficult
in 3D because it is not known whether solutions could be
constructed with sufficient generality. For instance, if we
suppose that f acts only at large scales (i.e., confined to
a finite number of modes) and the initial data have only a
finite number of modes, then it is not known whether, in
such a generality and no matter how small ν > 0 is fixed,
a smooth solution follows for all t > 0. Note that this
formulation of the problem is slightly weaker than the
millennium problem B of the Clay Mathematics Institute
[29].

On the other hand, equally hard problems arise in sta-
tistical mechanics systems; for instance, in 3D there is no
existence theorem for an infinite system of hard spheres
starting at an initial state in which the maximal speed
and the minimal particles distance in any unit box are
bounded away from ∞ and 0. Notwithstanding, this has
not been an obstacle for developing the statistical me-
chanical theory of phase transitions.

The obvious way forward is to introduce extra param-
eters which regularize the equations, turning them into
equations which admit solutions and try to study only
properties that can be shown to be independent of the
regularization parameters. For instance, in the case of
statistical mechanics the equations are typically regular-
ized by confining the system to a finite box, say a cube
of volume V .

In the present case we consider the truncated NSE,
i.e., the regularized version of Eq. (1) in Fourier space
obtained by requiring that u is periodic in the container
and has only modes k = (k1, k2, k3) with k ≤ N , and

k
def
= ||k||2 =

√
k21 + k22 + k23. We focus on properties of

the solutions which hold uniformly in the cut-off N , and
the container is supposed to be of size [0, 2π]3. There-
fore, one can introduce the complex scalars uβ,k = uβ,−k,
where the overline notation denotes the complex conju-
gate, and two unit vectors eβ(k) = −eβ(−k) mutually
orthogonal and orthogonal to k, so that the velocity field
can be written as

u(x, t) =
∑

β=1,2;k

i uβ,k(t) eβ(k)e−ik·x, (2)

where the sum is restricted to k ≤ N . Furthermore,

by defining the kernel T β1,β2,β
p,q,k = −(eβ1(p) · q)(eβ2(q) ·
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eβ(k)), and making the time notation implicit unless
strictly necessary, the NSE can be expressed as

∂tuβ,k =
∑
β1,β2
k=p+q

T β1,β2,β
p,q,k uβ1,puβ2,q − νk2uβ,k + fβ,k, (3)

with k, p, q ≤ N . Due to the symmetry between q,k, the
sum over β1, β2 keeping p+q +k = 0 yields the identity∑

β1,β2

T β1,β2,β2

p,q,k uβ1,puβ2,quβ2,k = 0, (4)

reflecting the conservation of both the total energy,∫
dxu2, and the total helicity,

∫
dxu · (∂ ∧ u) in the

unforced and inviscid (ν = 0,f = 0) limits.

B. Reversible Navier-Stokes Equation in 3D

Historically, discussions on the origin of dissipative
macroscopic properties, out of purely reversible Newto-
nian dynamics at molecular level, go back at least to
Maxwell [see Eq. (128) in [30]]. Therefore, it is natu-
ral to expect that fluid motion can also be described by
microscopic reversible equations. One can thus inquire
whether even at the macroscopic level, although molecu-
lar motion is no longer explicitly playing a role, the same
phenomena can be described by macroscopic reversible
equations.

Here we shall study stationary states of the truncated
NSE. The basic idea is that viscosity controls the regu-
larity of the flow by forbidding uncontrolled growth of
energy, and dissipates the input work by the forcing:∫
f ·u dx, proportionally to the product of viscosity times

enstrophy

νD(u) = ν
∑
k,β

k2|uβ,k|2, (5)

and where at steady state there is a statistical balance
between input and output of energy. One can envisage
that by replacing the viscous force ν∆u with a reversible
force that keeps the enstrophy constant many statisti-
cal properties of stationary states will remain correctly
described, independently of the cut-off N [31].

The analogy with statistical mechanics is helpful;
there, the cut-off is the volume of the container, and the
equilibrium states can be described by different micro-
scopic dynamics, like the energy conserving microcanon-
ical distribution or the isokinetic evolution [14]. Both
choices of states and evolution laws give the right statis-
tics for local observables, i.e., observables depending on
the configurations of particles located in a volume small
compared to the total one, i.e., to the cut-off V . Most
importantly, the statistical properties of such observables
depend on V less and less as V →∞.

In the case of NS fluids subject to large scale forcing,
locality is defined with respect to the Fourier space. The
analogs of local observables are functions of the velocity

field u that only depend on components uk with k small
compared to the cut-off N . More specifically, O(u) is a
local observable, when it depends only on a finite num-
ber of modes with k < K for some K < N . This leads
to the proposal that replacing the standard viscous force
with a dissipative reversible term that keeps the enstro-
phy constant will lead to stationary states completely
equivalent to the original dynamics up to an arbitrary
K, as far as the statistical properties of local observables
are concerned, provided N is large (ideally N → ∞, in
the same sense in which equilibrium thermodynamics be-
comes ensemble independent as the volume tends to in-
finity). Here K can in principle depend on the viscosity
and it is important to understand its scaling properties
in the ν → 0 limit (see below).

Specifically, we consider a different evolution equation
where (i) in Eq. (3) the external force f is fixed, with
||f ||2 = const ∈ R, and acts on “large scale”, i.e., it has
finitely many modes: fk = 0 if k ≥ kf for some kf ;
(ii) the viscous force −νk2uk is replaced by −α(u)k2uk,
with α(u) defined such that the enstrophy

D = D(u)

is a constant of motion. Note that a similar choice was
followed by the authors in [28], while in [27] the kinetic
energy was instead kept fixed. Such assumptions lead to
the equations

∂tuβ,k =
∑
β1,β2
k=p+q

T β1,β2,β
p,q,k uβ1,p uβ2,q − α(u)k2uβ,k + fβ,k,

(6)
where

α(u) =
Λ(u) +

∑
β,k k

2fβ,kuβ,k∑
β,k k

4|uβ,k|2
=

Λ(u) +W (u)

Γ(u)
, (7)

with

Λ(u) =
∑
β1,β2
k=p+q

(T β1,β2,β2

p,q,k k2 uβ1,puβ2,quβ2,k) (8)

obtained by multiplying both sides of Eq. (6) by k2uβ,k,
then summing over k, and finally imposing that the right-
hand side equals 0.

We call Eq. (3) irreversible NSE (abbreviated as I) and
Eq. (6) reversible NSE (abbreviated as R). The name
reversible refers to the property that if Stu = u(t) is a
solution of R, with initial data u0, and if Pu = −u,
then PStu = S−tPu is also a solution, as a consequence
of α(Pu) = −α(u). Instead, such an identity does not
hold for the solutions of I.

C. Conjectures

Let us introduce the collection EI,N of the stationary
distributions µI,Nν for the I evolutions, with cut-off N ;
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for a given choice of f the distributions are parametrized
by the Reynolds number Re ∝ ν−1. In principle, several
distributions may correspond to the same Re although
it is plausible that for Re large enough there is only one
stationary distribution. Likewise, let ER,N be the collec-

tions of the stationary distributions µR,ND for theR evolu-
tions, with the same cut-off N . These are parametrized
by the value D of the (constant) enstrophy. Again, in
general, several distributions may correspond to the same
D; similarly to the irreversible case, it is plausible that

for generic initial data and D large, µR,ND is unique.
It is natural to associate to each distribution in EI,N

and ER,N the average enstrophy 〈D(u)〉I,Nν and, respec-
tively, the enstrophy D, as well as the work per unit time
dissipated:

WI,Nν =

∫
dx 〈f ·u〉I,Nν , WR,ND =

∫
dx〈f ·u〉R,ND (9)

where 〈O〉I,Nν , 〈O〉R,ND denote the averages of an observ-

able O over the distributions µI,Nν and µR,ND . Parameters
ν,D at given N , will be said to be in correspondence if

〈D(u)〉I,Nν = D. (10)

Equation (10) defines an implicit relationship between D
in R and ν in I.

In this work, we perform a few preliminary checks,
based on a numerical analysis of the truncated NSE,
of the following two conjectures on the distributions
of local observables, originally presented in [1, 17, 18],
respectively.

Conjecture 1: If the parameters ν,D are in the corre-
spondence defined in Eq. (10), then for all observables
O(u) one has

limν→0〈O〉R,ND

limν→0〈O〉I,Nν
= 1, (11)

for all N .

Remark. In the case where the mean value of the observ-
able is zero or infinity, Eq. (11) is intended to mean that
the same value is obtained in both ensembles. In such
cases where there are several invariant distributions with
the same ν or same D, Eq. (11) has to be interpreted
as implying that a correspondence can be set between
a pair of distributions for each collection. conjecture 1
was proposed and tested for different systems in a limited
number of cases (e.g., [17, 20, 21]).

Let us introduce the Kolmogorov scale kν =
(
ε
ν3

)1/4
,

with ε = ν〈D(u)〉 being the energy dissipation rate, de-
fined as the typical length where inertial and irreversible
dissipative effects balance. We can then state a different
conjecture in the limit of N →∞.

Conjecture 2 – Equivalence Hypothesis: Let O be
a local observable, i.e., a function of u depending only

on a finite number of modes with k < K. Then if µI,Nν
and µR,ND satisfy Eq. (10) one has

limN→∞〈O〉R,ND

limN→∞〈O〉I,Nν
= 1 (12)

for all ν and K < cνkν < N with 0 < cν → c0 ≤ ∞ as
ν → 0. It is important to notice that in the case K →∞
when ν → 0 we have that the equivalence holds on a
formally infinite dimensional manifold.

Remarks:

1. Conjecture 1 relies on the chaoticity of the evolu-
tion at small ν and fixed N . Instead, conjecture
2 concerns only the limit N → ∞ and relies on
the chaoticity of the microscopic motions leading
to the NSE. Conjecture 2 is formulated for all ν, in-
cluding the case where the asymptotic motion con-
sists of periodic attracting sets. It just provides a
quantitative version of conjecture 1: given a local
observable living on scale K the question of how
small should ν be to achieve equivalence receives
the quantitative answer that, in the limit N →∞,
ν has to be such that K < c0kν which becomes
eventually true, as lower and lower values of ν are
considered, because kν diverges as ν → 0.

2. Conjecture 2 could be extended to more general
macroscopic equations derived via scaling limits
from microscopic reversible evolution.

3. In cases with more than one distribution for a given
ν or D the interpretation should be that extra la-
bels should be added to distinguish the various dis-
tributions and follow the remark in conjecture 1.
Conjecture 2 first appeared in [24] and was formally
proposed in [25].

4. In [2, 26] a stronger conjecture is directly formu-
lated with cν =∞ for all ν.

The two conjectures differ in the order of consideration
of the two limits, ν → 0 and N → ∞. In particular, it
is important to stress that the so-called fully developed
turbulent limit is achieved in nature by N → ∞ first
and then ν → 0, i.e., it is captured by conjecture 2. On
the other hand, the limit ν → 0 for fixed N leads to
a quasi-thermalization (in the sense of [32]) of the high
wave numbers range cut-offed by the maximum N . An
additional feature of this regime is that the dimension of
the attractor approaches the number of degrees of free-
dom of the system [20].

III. NUMERICAL SIMULATIONS

A. Setup

We have performed direct numerical simulations of
both I and R equations for incompressible fluid in a
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triply periodic domain of size L = 2π. We used a
dealiased (following the 2

3 rule [33]) parallel 3D pseu-
dospectral code, based on the P3DFFT implementation
[34], on cubic grids of size N0 = 64, 128, 256, and 512 col-
location points in each direction, effectively correspond-
ing, via N = N0/3, to N = 21, 42, 85, and 170 in
Fourier space, respectively. N is the same as the cut-off
scale kmax and will be used interchangeably. The time
integration has been implemented with a second-order
Adams-Bashforth scheme and a small timestep equal to
∆t = 10−4 was chosen for all the simulations; tests with
different time steps have been done confirming that the
one chosen was sufficient to ensure the robustness of the
presented results. The grid size is ∆x = 2π/N0. The
zero mode is not forced, ensuring that the mean velocity
field remains zero at all times, and the external forcing
is deterministic and only acts on large scales, specifically
in the kf ∈ [1,

√
2] domain. The phases were chosen as

quenched random variables and kept equal in all simu-
lations with

∑
k k

2||f ||22 = 1. We refer to Table I in
Appendix C for a summary of the numerical simulations
we performed, which are labeled as R#, where R stands
for run in this context, followed by the number of the
run, and a symbol, indicating the statistical regime each
run belongs to; see discussion in Sec. III B.

We examine conjectures 1 and 2 by testing a set of
viscosities: ν = 5 × 10−2, 10−2, 10−3, 10−4, 10−5 for dif-
ferent values of N . We proceed as follows. First we run a
reasonably long I simulation at fixed ν, N and measure
the average enstrophy 〈D〉I,Nν in the statistically steady
state. Next, we start the R run from a steady I state
for which the instantaneous enstrophy is D = 〈D〉I,Nν .
This step reduces the transient time required to reach
the attracting set, but it is not strictly necessary, and
in principle one can start from any initial condition with
the appropriate enstrophy. We run the R for the same
duration as the I, and at each timestep we make tiny cor-

rections by rescaling the velocity field as u→ u
√
〈D〉I,Nν
D(t) .

Although, given the very small timestep we use, the de-
viations from condition (10) were tested to be small, the
latter correction ensures that the total enstrophy stays
constant within machine precision.

B. Statistically steady regimes

Two distinct statistically steady regimes can be identi-
fied for the I and R systems, depending on the cut-off N
and Re (or, equivalently, on kν). One is what we call the
hydrodynamic regime, achievable when N is large enough
for any ν, such that kν . N . It is characterized by a well
developed inertial range (for small ν) with a E(k)∼k−5/3
scaling for kf � k � kν and a well resolved exponential
or superexponential decay for large wave numbers, where

E(k) =
∑

β,k− 1
2<k<k+

1
2

〈|uβ,k|2〉 (13)

are the averaged spectral properties, or simply the energy
spectrum. A scaling close to E(k)∼k−5/3 is observed in
nature because of the regularizing properties of viscosity
at small scales [3, 4, 6]. The other, -quasithermalized -
regime [32], features a E(k)∼k2 scaling for large values
of k [32] and it is obtained at sufficiently small ν for any
fixed N , such that kν � N . We call this regime qua-
sithermalized because the average energy content of the
individual modes depends only weakly on k, given the
geometrical degeneracy of the energy shells. A crossover
region can be located between the two in the (N, ν) pa-
rameter space [27].

100 101

k

10−5

10−3

10−1

〈E
(k

)〉

k2

ν =10−2

ν =10−3

ν =10−5

FIG. 1. Energy spectrum of I (grayscale filled symbols) and
R (colored open symbols) for N0 = 128 and at changing ν (for
I) or D (for R). We observe a well developed hydrodynamic
regime for ν = 10−2 (R7©), a crossover regime for ν = 10−3

( R84) and a quasithermalized regime for ν = 10−5 (R10�);
see Table I in Appendix C for details on the runs.

In Fig. 1 we present a first comparison between I and
R by looking at E(k) at changing ν and for fixed spatial
resolution, N0 = 128. Here, we have omitted in 〈·〉 the
label I and R for simplicity and the same will be done
in what follows whenever it does not lead to ambiguities.
All regimes can be accessed as the viscosity is varied,
and in terms of the average energy spectrum, the I and
R agree remarkably well. This will be further checked
in the following with respect to the two conjectures. We
anticipate that deviations will appear at scales k beyond
the Kolmogorov scale kν , which will be further explored
later. Next we will deal with the two regimes separately.

C. Mean properties of α

A rigorous (yet non trivial, see below) consequence of
both conjectures is the relation

lim
N→∞

〈α(u)〉R,ND = ν, (14)

which holds when Eq. (10) holds. In Fig. 2(a) we val-
idate Eq. (14). The errors are calculated by δO =
σ(O)

√
1 + 2τO/

√
j, where σ(O) is the standard devia-
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tion, τO the non-dimensional autocorrelation time, and
j the ensemble size.

0.8

1.0

1.2

〈α
〉/
ν

(a)

10−5 10−4 10−3 10−2

ν

101

102

103

〈Λ
〉/
〈W
〉

(b)

N0 = 64

N0 = 128

N0 = 256

N0 = 512

FIG. 2. Mean properties of α. (a) The ratio 〈α(u)〉R,ND /ν = 1
is a consistency check for equivalence conditions. (b) The ra-
tio 〈Λ〉/〈W 〉 from Eq. (7) as a function of ν for all N0 consid-
ered. The data are for R.

Figure 2(a) provides a consistency check, which looks
at first not entirely obvious because α is not a local ob-
servable; see the definition given in Eq. (7). Yet, if the
conjectures and condition (10) hold, it must be true that
the ensemble average of α is equal to the viscosity. This
follows from the balance between energy input and out-
put in steady state conditions that hold both for I and
R:

lim
N→∞

ν 〈D(u)〉I,Nν = lim
N→∞

〈f · u〉, I

lim
N→∞

D 〈α(u)〉R,ND = lim
N→∞

〈f · u〉, R.
(15)

Under the equivalence condition 〈D(u)〉I,Nν = D, the
value limN→∞〈f · u〉 must be the same in I and R,
because f · u is a local observable. Hence, the rela-
tion 〈D(u)〉I,Nν = D imposes the equality of the aver-
ages limN→∞〈f · u〉 for the I and R systems, which, in
turn, implies the non trivial relation (14). We remark
that, as α(u) can be measured also in I, we can also
check its statistics. We observe that 〈α(u)〉I,Nν ≈ ν in
all statistical regimes, which is nontrivial because it is
not a consequence of the equivalence conjecture because
α is not a local observable. Although the distributions of
α(u) in both R and I are in all cases peaked around ν, as

well as the mean values of both 〈α(u)〉R,ND and 〈α(u)〉I,Nν
are approximately equal to ν, their tails are different in
the hydrodynamic regime, but become almost identical
in the quasithermalized regime (see Sec. IV B).

Since α is a sum of the forcing contributionW (u)/Γ(u)
and of the internal nonlinear contribution Λ(u)/Γ(u) (8),
it is interesting to remark that, on average, the non lin-
ear term dominates the forcing one as shown in Fig. 2(b),

0.20 0.24 0.28
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100
(a)

k =[0 0 1]

0.0 1.5 3.0
×10−3

(b)

k =[0 0 2]

×10−3

0.0 1.5 3.0
×10−3

10−2

10−1

100
(c)

k =[0 0 8]

0 1 2 3
×10−3

(d)

k =[ 0 0 16]

U(k)

P
D

F

FIG. 3. Probability distribution function of single mode ki-
netic energy U(k) for chosen modes k = (0, 0,m), m =
1, 2, 8, 16, showing the equivalence between R (red straight
lines) and I (black dashed lines). Here ν = 10−4 and N0 = 64
(R4�), belonging to the quasithermalized regime.

where the ratio 〈Λ〉/〈W 〉 versus ν is plotted. The ra-
tio increases linearly as ν decreases in the hydrodynamic
regime, before it approaches a (large) constant depend-
ing on N in the quasithermalized regime. Thus, on aver-
age the internal nonlinear exchanges dominate over the
forcing for the R dynamics, introducing a non-local (in
scale) coupling among all modes and making the validity
of conjecture 2 even less trivial.

D. Test of conjecture 1: Quasithermalized regime

In this section we address the validity of conjecture 1
for 3D NSE. We remark that it has been confirmed in
simpler dynamical systems in [18, 20–22]. conjecture 1
applies when we consider decreasing values of ν at fixed
N , which leads to the quasithermalized regime. In terms
of observables, we consider the single mode kinetic en-
ergy, U(k) = ||u(k1, k2, k3)||22 and the energy spectrum,
E(k) (13) which will be presented separately.

1. Single mode energy

We consider the probability distribution function
(PDF) of the energy U(k) of a certain mode k. In Fig. 3
we test this for a chosen type of modes, k = (0, 0,m),
with m = 1, 2, 8, 16, and we see a very good agreement
between the two ensembles, where the output of R is
shown in red straight lines, while black dashed lines are
used for the I simulations. In our analysis we have con-
sidered several different types of modes, i.e.,permutations
of (0, 0,m), (1, 0,m) and (0, p,m), with m = 1, . . . , N
and p = 2, or 7, or 9 (the latter integers were randomly
chosen). The PDFs approximately follow a χ2 distribu-
tion.
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FIG. 4. Test of conjecture 1 for single modes kinetic energy
U(k). (a) Averaged R/I ratio of the mean of kinetic energy
of considered modes, i.e., permutations of (0, 0,m), (1, 0,m)
and (0, p,m), with m = 1, . . . , N and p = 2, or 7, or 9. (b)
Same for standard deviation ratio. The gray band indicates a
10% deviation from 1. Here N0 = 64, and results from R34,
R4� are shown.

To further quantify the comparison between I and R,
we study the statistical properties of the ensembles of
U(k) by computing the mean U (1)(k) ≡ 〈U(k)〉, and

the standard deviation U (2)(k) ≡
√
〈U2(k)〉 − 〈U(k)〉2

of the time series for each measured mode k. An indi-
cation of equivalence is when the ratios of such quan-
tities are close to 1. In Fig. 4 we present the ratios

of the mean U
(1)
R (k)/U

(1)
I (k) (a) and the ratios of the

standard deviation U
(2)
R (k)/U

(2)
I (k) (b). To increase sta-

tistical accuracy, we further average the resulting ratios
of the different types of modes considered here at each
m = 1, . . . , N , corresponding to the same shells k. As
shown in Fig. 4, by fixing N0 = 64 while decreasing ν,
conjecture 1 holds well in the case of single mode kinetic
energy, which is a prototypical local observable, for the
run (R4�). Note that the run (R34) belongs to the
crossover regime, hence outside the domain of validity
of conjecture 1, leading to some small deviations from 1
in Fig. 4(b). As a confidence interval, we introduce on
qualitative grounds a 10% deviation from 1, displayed as
a gray band.

2. Energy spectrum

Subsequently, we study the energy spectrum, which
has been briefly presented in Fig. 1. In Fig. 5 we show the
PDF of kinetic energy for different shells k = 1, 2, 8, 16
for the case N0 = 64 and ν = 10−4 (R4�). We notice
that the statistics ofR and I are almost identical and are
approximately Gaussian as previously observed in [35];
deviation from Gaussianity are nonetheless present for
k = 2.

In Fig. 6 we summarize the equivalence between the
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0.02 0.03 0.04 0.05

(b)

k =2

0.200 0.225 0.250 0.275
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k =16
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FIG. 5. Probability distribution function of energy spectra
for k = 1, 2, 8, 16 showing the equivalence between R (red
straight lines) and I (black dashed lines). Here ν = 10−4

and N0 = 64 (R4�) corresponding to the quasithermalized
regime.
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)
I
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) (a)
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FIG. 6. Test of conjecture 1 for the energy spectrum. (a)R/I
ratio of mean energy spectrum at shell k for k = 1, . . . , N .
(b) Same for standard deviation ratio. The gray band indi-
cates a 10% deviation from 1. Here N0 = 64, showing R34
(ν = 10−3 - green triangles), R4� (ν = 10−4, red squares) and
R5� (ν = 10−5, black circles). Note that we are here also in-
specting the crossover regime (green triangles), hence outside
the validity of conjecture 1 [as shown in (b)]. Nonetheless,
good agreement is still found in (a).

two ensembles by plotting the same of Fig. 4 but for the
spectral properties at changing k and at fixed N0 = 64.
Accordingly, we define the mean E(1)(k) ≡ 〈E(k)〉, and

the standard deviation E(2)(k) ≡
√
〈E2(k)〉 − 〈E(k)〉2

of the time series for each shell k. As one can see, con-
jecture 1 is well verified at decreasing ν and for any k.
Notice in Fig. 6(b) that the standard deviation ratios for
ν = 10−3 (green line-points) are different from 1 except
for very small values of k. This is to be expected, as this
case (R34) belongs to the crossover regime, hence out-
side the domain of validity of conjecture 1. Interestingly,
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for the same parameters, ν = 10−3, N0 = 64, the single
mode standard deviation ratios are close to 1; see the
green line in Fig. 4(b). This reflects the higher complex-
ity of the energy spectrum, resulting from the presence of
correlations among Fourier modes. All the above confirm
the validity of conjecture 1.

E. Test of conjecture 2: Hydrodynamic regime

We now present our numerical tests of conjecture 2,
which applies at fixed ν when N is large, corresponding
to the hydrodynamic regime. We follow a systematic
approach by first keeping the value of ν fixed, and then
progressively increase the value of N . We then repeat
this protocol for different values of ν. Again, we consider
the single mode kinetic energy and the energy spectrum.

1. Single mode energy

0.0 0.4 0.8 1.2
10−3
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10−1

100
(a)

k =[0 0 1]

0.000 0.003 0.006 0.009

(b)
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0.0 0.6 1.2 1.8
×10−4
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×10−8

(d)
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U(k)

P
D

F

FIG. 7. Probability distribution function of single mode ki-
netic energy U(k) for chosen modes k = (0, 0,m), m =
1, 4, 10, 40, showing the equivalence between R (red straight
lines) and I (black dashed lines). Here ν = 10−2 and
N0 = 128 (R7©), belonging to the hydrodynamic regime.

In Fig. 7 we fix N0 = 128, ν = 10−2 (R7©) and com-
pare the PDF of single mode kinetic energy, shifted to
their mean, for the modes k = (0, 0,m), m = 1, 4, 10,
40 between R and I. The agreement between the two
ensembles is compelling.

A further analysis can be seen in Fig. 8 where all mean
and standard deviation ratios of the time series have been
collected for (a) ν = 10−2 and (b) ν = 10−3 for different
values of N and m. In Fig. 8, for scales beyond the Kol-
mogorov scale kν (indicated by the red tick), we observe
a disagreement between R and I.

Therefore, one could argue that, within the numerical
set-up we have investigated in this work, kν is an approx-
imate upper bound (in the sense of order of magnitude)
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FIG. 8. Test of conjecture 2 for single modes kinetic en-
ergy U(k). (i) Averaged R/I ratio of mean kinetic energy
of considered modes and (ii) standard deviation ratio, at (a)
ν = 10−2, and (b) ν = 10−3. The gray band indicates a
10% deviation from 1. The red vertical bar indicates the
order of magnitude of the Kolmogorov scale, estimated as

kν =
(
ε
ν3

)1/4
.

for the maximum wave number K for which the conjec-
ture 2 applies; or as stated after Eq. (12), cν ≈ 1, both
when considering U (1)(k), and U (2)(k). The observed
difference between the R and I ensembles for k & kν is
further confirmed for all our well-resolved runs in the hy-
drodynamic regime. On the other hand, in the cross-over
regime, i.e., here for R2© in Fig. 8(a) and R84, R134
in Fig. 8(b), the agreement for single mode statistics of
the two ensembles, although not expected by conjecture
2, is satisfactory.

2. Energy spectrum

With respect to the energy spectrum at the hydrody-
namic regime, we first present the distributions at low k.
In Fig. 9 we plot the PDF of energy spectra at k = 1 and
3 for ν = 10−2 at N0 = 128 (R7©) and we observe a
very good agreement between R (red line) and I (black
dashed line). Then, in Fig. 10 the same are shown for a
larger range of k, i.e., k =2, 4, 6, 20 and a smaller viscos-
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ity, ν = 10−3 atN0 = 512 (R16©), which is the only fully
resolved run at ν = 10−3. Again, the agreement between
the two ensembles is remarkable, and slight disagreement
at the tails is likely due to statistical accuracy.

1.0 1.5 2.0

10−2

10−1

100 k =1

(a)

0.1 0.2 0.3

k =3

(b)

E(k)

P
D

F

FIG. 9. Probability distribution function of energy spectrum
showing equivalence between R (red straight lines) and I
(dashed black lines), for k = 1, 3. For (a) and (b) it holds

E
(1)
R (k)/E

(1)
I (k) ≈ 1, and E

(2)
R (k)/E

(2)
I (k) ≈ 1, confirming

full equivalence between R and I up to k ∼ 4 with respect
to E(k) at ν = 10−2 Here ν = 10−2 and N0 = 128 (R7©)
corresponding to the hydrodynamic regime, and the y axis is
in logarithmic scale.
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FIG. 10. Probability distribution function of energy spec-
trum showing equivalence between R (red straight lines) and
I (dashed black lines), for k = 2, 4, 6, 20. For (a-d) it holds

E
(1)
R (k)/E

(1)
I (k) ≈ 1, and E

(2)
R (k)/E

(2)
I (k) ≈ 1, confirming

full equivalence between R and I up to k ∼ 20 with respect
to E(k) at ν = 10−3. Here N0 = 512 and ν = 10−3 (R16©)
corresponding to the hydrodynamic regime, and the y axis is
in logarithmic scale.

In Fig. 11 we collect the mean energy spectrum E(1)(k)
at different k. We test the conjecture 2 by quantify-
ing the agreement between R and I through the ratio

E
(1)
R (k)/E

(1)
I (k), while fixing ν, at changing N . A devia-

tion from 1 would indicate disagreement with respect to
this observable. In Fig. 11(a) at ν = 10−2 we remark that
N0 = 64 (R34) is slightly under-resolved (not well de-
veloped fall-off region in the spectrum), but still follows

1.0
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100 101 102
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1.2
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(b)
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)
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)
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)/
E

(1
)
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)

FIG. 11. Test of conjecture 2 for the energy spectrum, con-
sidering the R/I ratio of its mean at shell k for k = 1, . . . , N ,
at (a) ν = 10−2, and (b) ν = 10−3. The transparent region
corresponds to the statistical error. The gray band indicates
a 10% deviation from 1. kν shows the location of the Kol-
mogorov scale. The plots share the same x axis.

the same trend as the rest of the well resolved simula-
tions at increasing k. Deviations occur for k & kν when
the ratio of E(1)(k) is considered. In Fig. 11(b) we show
the results for ν = 10−3, where for all cases the ratio is
close to 1 up until k ∼ kν , which is close to the cut-off of

N0 = 512. Also in (b), the ratio E
(1)
R (k)/E

(1)
I (k) of the

under-resolved runs (N0 = 128 and 256) stays unity for
all k.

3. Empirical determination of the locality cutoff K

So far, the cases we have studied reveal a very good
agreement between R and I for the quasithermalized
regime (see Sec. III D), which confirms conjecture 1, and
full agreement for the hydrodynamic regime for k . kν
when considering U (1)(k), U (2)(k), and E(1)(k). In ac-
cordance with the definition of conjecture 2, we recall
that a scale K can be defined such that observables de-
pending on uk with k < K can be considered “local”,
thus determining the domain of validity of conjecture 2.
Furthermore, conjecture 2 states that K < cνkν with
0 < cν → c0 ≤ ∞ as ν → 0. We state now that cν and
accordingly K, can differ when considering different ob-
servables for testing the equivalence. Indeed, for U (1)(k),
U (2)(k), and E(1)(k) we concluded that cν ∼ 1.

Next, we look at the statistics of energy spectrum at
larger k. In Fig. 12 we show two examples where dis-
agreement is observed in the case of ν = 10−2. Taking
N0 = 256 (R12©) we show in Fig. 12(a) the PDF of

E(k) at k = 10, for which the ratios E
(1)
R (k)/E

(1)
I (k) ≈ 1

[see Fig. 11(a)], but E
(2)
R (k)/E

(2)
I (k) 6= 1. In Fig. 12(b)

we choose a k larger than the Kolmogorov scale, i.e.,
k = 80 > kν ∼ 29, and both ratios of mean and standard
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deviation between R and I are not equal to 1.

In Fig. 13 we quantify the behavior of the standard
deviation E(2)(k) of each ensemble, by considering their
ratio R/I for all k. conjecture 2 is tested for fixed ν, (a)
ν = 10−2 and (b) ν = 10−3 at increasing N . Starting
from k = 1 there is initially agreement between R and I
but we observe that E

(2)
R (k)/E

(2)
I (k) departs from unity

at a smaller k than E
(1)
R (k)/E

(1)
I (k), which is also smaller

than kν . Notice that in (a) the runs with N0 = 128 and
256 are fully resolved and belong to the hydrodynamic
regime, and although the runs at N0 = 64 are slightly
under-resolved, it follows the same trend with the rest.
Moreover, once the cut-off N is larger than kν by a suf-
ficient margin, further increases in N do not change the

features of the ratio curves, both for E
(1)
R (k)/E

(1)
I (k) and

E
(2)
R (k)/E

(2)
I (k). Instead, in (b) only the N0 = 512 case

is fully resolved, and although E
(1)
R (k)/E

(1)
I (k) ≈ 1 for

all N0 [see Fig. 11(b)] the standard deviation ratios dif-
fer when changing N0. This occurs because N0 = 128
and 256 are under-resolved at ν = 10−3, and belong to
the crossover regime (hence outside the validity of conjec-
ture 2), but are still displayed to show the transition from
crossover to hydrodynamic regime, and how the agree-
ment improves in that case.

To be more specific about the deviation from 1 with
respect to Fig. 13, for (a) at ν = 10−2 it appears that
K ≈ 4. Instead, from Fig. 13(b) at ν = 10−3 it appears
K ≈ 20. The fact that K increases at decreasing ν,
with sufficiently large N , is foreseen by conjecture 2, and
confirmed here. In other words, equivalence between R
and I holds for a larger range of k, as ν decreases, when
the testing criterion is the shape of the distributions of
E(k), or similarly the standard deviation of it, E(2).

Note that the location of the minimum of
E

(2)
R (k)/E

(2)
I (k) in Fig. 13 shifts with changing ν

for well-resolved simulations. It actually corresponds to
the end of the inertial range, and it is related to the
chosen observable that is kept fixed in R. Since here we
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FIG. 12. Probability distribution function of energy spectrum
for R (red straight lines) and I (dashed black lines) (k =
10 and 80 > kν ∼ 29). For k = 10 the two distributions
have the same mean. Here ν = 10−2 and N0 = 256 (R12©)
corresponding to the hydrodynamic regime, and the y axis is
in logarithmic scale.
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FIG. 13. Test of conjecture 2 for the energy spectrum,
considering the R/I ratio of its standard deviation at shell
k for k = 1, . . . , N , at (a) ν = 10−2, and (b) ν = 10−3. In
(a) the runs with N0 = 128 and N0 = 256 are fully resolved
and belong to the hydrodynamic regime, while in (b) only
N0 = 512 is fully resolved. The gray band indicates a 10%
deviation from 1. kν shows the location of the Kolmogorov
scale. The range of validity of conjecture 2 increases as we
decrease viscosity in the hydrodynamic regime, as expected.
The plots share the same x axis.

chose the enstrophy D(u), which is dominated by the
small scales, i.e., large k, the constraint 〈D(u)〉I,Nν = D
actually suppresses the fluctuations of ER(k), for those k
around the end of the inertial range; see also Fig. 12(a).
A similar result was observed in [21].

The resulting values of K as extracted from second or-
der moments of the energy spectrum, E(2)(k), are gath-
ered in Fig. 14(a) for runs in the mixed hydrodynamic-
crossover regime. Both at ν = 5×10−2 and ν = 10−2 the
runs are in the hydrodynamic regime, while at ν = 10−3

only N0 = 512 (R16©) is well resolved, for which we
notice that K is maximum. In Fig. 14(b) we show that
the empirically determined K does scale proportionally
to kν , indicating that the range of scales where conjec-
ture 2 holds is increasing with the Reynolds number, i.e.
supporting the statements that conjecture 2 is uniformly
valid in a sub-set of the inertial range for all turbulent
intensities.

From Figs. 7–12, as well as Fig. 14(b), and with ref-
erence to conjecture 2 it appears that within the case
studied here we have the following:

• cν ≈ 1 when considering U (1)(k), U (2)(k), and
E(1)(k) for the Equivalence test, and

• cν ≈ 1/8 when considering E(2)(k).

All the above confirm the validity of conjecture 2 up to
some wave number K.
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FIG. 14. (a) A quantitative estimate of the locality cut-off
scale K, defined as the maximum wave number where all ob-
servables used to check the equivalence (conjecture 2) have the
same value within 10%, versus ν at different N0. Here filled
points correspond to runs in the hydrodynamic regime and
open points to the crossover regime. (b) The ratio cν = K/kν
for all runs in the hydrodynamic regime as a function of ν,
which is approximately constant. Both plots share the same
x axis in log scale.

IV. PROPERTIES OF THE REVERSIBLE
NAVIER-STOKES EQUATIONS

In the previous section we have established the domain
of validity of conjecture 2, and hence the equivalence of
the two non-equilibrium ensembles, using a dimension-
less scale-by-scale comparison for different local observ-
able, based on single Fourier modes energy or shell en-
ergy (see Figs. 6, 8, 11, and 13). We have shown that the
equivalence holds up to some wave number K. Similar
results are shown when comparing the whole probability
distribution function of the same quantities. These re-
sults extend and clarify the recent investigations [27, 28]
where the equivalence was tested on the basis of the en-
ergy spectrum or on the global scaling properties of high
order moments of the velocity increments in the inertial
range only.

Let us remark that the property valid in R that D(u)
is a finite non-zero constant of motion has obvious im-
plications on the sequence of solutions uN (t) and for the
Leray’s solutions [36, 37], which are their weak limits as
N →∞. Perhaps the most remarkable is an a priori up-
per bound on α(u) which can be proven (see Appendix
A) to satisfy, for any solution and any N , the condition:

|α(u)| < C2

(√
D +

√
D
−1)

. (16)

A second interesting and potentially very important re-
mark on the R evolution is that if for all N large enough
there were ε > 0 such that also: 0 < ε < α < κ, with
probability 1 in the stationary state, then, it is possi-
ble to conclude that the attractor consists of uN (t) with

derivatives of all orders bounded uniformly in N , i.e., on
the attractor the fields are uniformly smooth. This is an
immediate consequence of the autoregularization results,
(see Proposition 5, Sec. 3.2, in [38], and [39]), and of the
constancy of the enstrophy D, as shown in the Appendix
B. Positivity of the lower bound on α is expected at large
viscosity i.e., small Re.

Note also that by combining the aforementioned bound
of Eq. (16), as proposed in the literature, with the fact
that the dissipation νD in I has a positive limit as ν → 0
should indicate, (see [40, p.306]), that the upper bound

on α is O(ν−
1
2 ), which puts a limit to the fluctuations of

α (which by the conjecture is on average equal to ν; see
also Sec. III C). Furthermore the upper bound (16) sug-
gests that the transport contribution to α (i.e., Λ(u)/Γ)
might dominate over the second term (i.e., the forcing
contribution (

∫
∆f · u)/Γ), as confirmed in Fig. 2(b).

A. Numerical results about the sign of α in R

In this section we inspect the statistics of the fluctu-
ations of α(u) for R, in order to assess the probability
to observe negative values at varying the control param-
eters. In Fig. 15(a) we show in light colors the tem-
poral evolution of α/ν, and in solid colors its running

average, performed as 1
t−t0

∑t
t′=t0

α(u(t′))/ν for R at

ν = 10−3 and N0 = 64, 512 (green - R34 and red -
R16©, respectively). The presented time window, which

is scaled by the Kolmogorov time τK =
√
ν/ε, is the

maximum achieved for the run with N0 = 512 (R16©),
while for R34 this is only about 1% of its total tem-
poral extend. Then, in Fig. 15(b) the PDFs of α/ν are
presented for N0 = 64, 128, 256, and 512 at ν = 10−3.
Notably, all PDFs agree, even though at ν = 10−3 only
N0 = 512 is fully resolved, belonging therefore to the
hydrodynamic regime, while the other simulations be-
long to the crossover regime. The inset plots (i) and
(ii) are respectively the energy spectrum and the PDF in
semilogarithmic scale.

In Fig. 15(c) we show the same of Fig. 15(b) but at
lower viscosity, ν = 10−4, where the data set at N0 = 64
(R4�) is in the quasithermalized regime, while the other
runs are in the crossover regime. As one can see, except
for the case of the quasithermalized regime, in all other
simulations we do not observe negative values of α within
our statistical sample.

Additionally, in Fig. 15(d) we perform a detailed study
at fixed ν = 10−3 and low resolution, in order to ob-
serve when, and how the transition to the occurrence
of frequent negative values of α takes place. Starting
from N0 = 64 and gradually decreasing N0, we observe
that the PDF of α first turn from non-Gaussian to quasi-
Gaussian, while becoming narrower (see N0 = 48 and
N0 = 44), before starting to widen (see N0 = 40), until
occurrence of α < 0 events appears (see N0 ≤ 36). The
rapid change in the left tail of the PDF at changing N0
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FIG. 15. Statistics of α for R. (a) Temporal evolution of α/ν as a function of time, which is rescaled by the Kolmogorov time
scale τK , at ν = 10−3. In solid line, green (for N0 = 64) and red (for N0 = 512) is the running average of α/ν. The fact that
〈α/ν〉 = 1 in R is a rigorous prediction of conjecture 2 [see also Eq. (14)]. (b) PDF of α/ν obtained considering the whole
available statistics for each N0, at ν = 10−3. The inset (i) is the energy spectrum, and inset (ii) is the PDF in logarithmic
scale. (c) Same as (b) at ν = 10−4. (d) Same as (b) at ν = 10−3 showing successively small N0 between 32 and 64.

suggests that in order to further substantiate the asymp-
totic probability to observe negative α values, when N0

is large and in the presence of intermediate or hydro-
dynamical regimes, one would need statistical samples
significantly (exponentially) larger than those we could
generate here, which is by far out of the scope of this
paper and probably out of reach given the available com-
putational power. This result is in agreement with some
previous observations made in the context of a reduced
model of turbulence [21].

In [28] negative values of α are observed in an reversible
ensemble at N0 = 1024 and Taylor-based Reynolds num-
ber Reλ = 300. Indeed, such results are somewhat puz-
zling and are not expected on the basis of our data. We
do not expect to be able to observe α < 0 at such large
N0 and such Reynolds number by extrapolating from our
results for the fully resolved hydrodynamical regime (see
Sec. IV B below).

B. Numerical results about the sign of α in I

Interestingly enough, α(u) is an observable that can
be measured also in the I ensemble, by computing
Eq. (7). In Fig. 16 we present the cases for two viscosi-
ties, ν = 10−2 [(a) and (b)] and ν = 10−3 [(c) and (d)].
In Figs. 16(a), 16(c) we show the time series of α(u)/ν
for a time window scaled by the Kolmogorov time scale
τK , and in Figs. 16(b), 16(d) the corresponding PDF for
different different resolutions N0.

First, from Figs. 16(a)–16(c) we note that also in I
the non-trivial result 〈α(u)〉I,Nν = ν holds (see also
Sec. III C). On the other hand, from panels Figs. 16(b)–
16(d) we observe some different behavior from the cor-
responding PDF of the R ensemble in particular for the
case of ν = 10−3. In the latter case the high wave number
range starts to depart from the hydrodynamic regimes
and probably has a direct impact on the fluctuations of
α.
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FIG. 16. Statistics of α for I. (a), (c) Temporal evolution of α/ν as a function of time, which is rescaled by the Kolmogorov
time scale τK , at (a) ν = 10−2 and (c) ν = 10−3. In solid line, green (for N0 = 64) and red (for N0 = 512) is the running
average of α/ν. The fact that 〈α/ν〉 = 1 within 0.1% in I is remarkable (in spite of the difference in fluctuations with R), as
α is a non-local observable, hence not directly expected by conjecture 2. (b), (d) Probability density function of α/ν obtained
considering the whole available statistics for each N0, at (b) ν = 10−2 and (d) ν = 10−3. The inset is the PDF in logarithmic
scale.

V. CONCLUSIONS

We present a detailed numerical study of the 3D re-
versible Navier-Stokes equation [see Eq. (7)] obtained by
imposing the conservation of enstrophy D via a thermo-
stat, and compare our results with the output obtained
from the corresponding [see Eq. (3)] standard irreversible
NSE case. We investigate two conjectures concerning
the equivalence of the two ensembles. These conjectures,
which had been previously presented in [2, 26], pertain
to two limiting conditions. The first equivalence is stud-
ied by keeping the flow evolving on a finite set of modes,
and by decreasing the viscosity of the irreversible system
or, equivalently, increasing the total enstrophy of the re-
versible one. In this limit, which leads to the regime that
we have dubbed quasithermalized in the sense of [32], the
equivalence between the two ensembles is more and more
accurate with decreasing ν for any fixed N and for all
scales, thereby confirming conjecture 1.

We emphasize that conjecture 2, which is the most
relevant to the physics of turbulence, had never been

tested in 3D Navier-Stokes in such a detail and rigor,
and only partially in 2D Navier-Stokes. In particular,
opposed to what was presented in [28], here we have
studied the limit of larger and larger values of N while
keeping a fixed value for the viscosity, and then explored
the ν → 0 limit. In this regime we empirically observe
that the equivalence between the two ensembles is re-
stricted to “local” observables having support in a re-
gion of the Fourier space restricted by a typical wave
number K, where K is smaller than, but proportional
to, kν . The latter observation has been made possible by
extending the class of observable studied in [28] to high
order moments of the Fourier energy content and to its
whole probability distribution function. Our results are
consistent against changes in N and by decreasing the
time discretization at least as far as we could test within
our numerical capacities. The inertial-range equivalence
between the two ensembles in the hydrodynamic limit is
a further important confirmation of the robustness and
universality of Navier-Stokes equations against changing
of the dissipative mechanisms, at least concerning wave
numbers smaller than cνkν . This is particularly non-
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trivial as the dissipative term of R is highly nonlinear
and non-local.

From our numerical results the prefactor cν entering in
conjecture 2 is close to a constant≈ 1/8 or≈ 1 depending
on the observable (see discussion in the end of Sec. III E 3)
and independently of N . The question of the scaling in
the ν → 0 limit remains an important open question that
will require more numerical studies.

Note that, in Remark 4 of Sec. II C, we mentioned
a stronger version of conjecture 2, presented in [2, 26],
where cν =∞ for all ν. Our results here make it appear
doubtful that such conjecture could hold in such a strong
sense. However, a study for a different fixed observable
(instead of the enstrophy D), of the time scale, of the
larger values N , and of the integration precision neces-
sary to reveal the ν dependence of cν , or even cν = ∞
for all ν, may be necessary to reach a firm conclusion.

Furthermore, we have presented a numerical empir-
ical study of the PDF of the fluctuating viscosity for
the reversible case, showing the existence of a trend to-
wards less and less probable negative events by increasing
the Reynolds in the hydrodynamical regime, similarly to
what had been observed in a reversible shell model [21].
The problem of the sign of α is related to that of the
divergence of the phase-space contraction rate σ [26] and
the problem of measuring the large deviations of σ is ex-
tremely delicate due to the fact that negative events are
expected to happen with extremely small probability. We
remark that, a recently published paper has presented re-
sults on the probability of observing negative values of α
(see Fig. 4 of [28]) that are in contrast with what has
been reported for the hydrodynamical limit (N → ∞
first) in this work. In particular, in [28] a transition in
the shape of the PDF is observed for large numerical
grids showing a non negligible probability to have nega-
tive events.

Finally, by studying the average of α for the I, we have
shown that equivalence can also hold for a non local ob-
servable, which is a non trivial application of the conjec-
tures. So, it would be natural to test whether equivalence
might be extended to other important non local observ-
ables. For instance, the Lyapunov exponents, as done in
a simpler model in [20], and in 2D NSE, [2, 24], where
equivalence of the local Lyapunov spectra 1 is observed in
several cases, in spite of its non local nature. Further nu-
merical investigations by increasing both the cut-off N ,
and the runs duration would be extremely useful to bet-
ter elucidate the equivalence between the two ensembles
in the asymptotic limit when N → ∞ first and ν → 0
later, the so called fully developed turbulence.

1obtained from the Jacobian matrix, formally J(u) = ∂u̇
∂u

, by aver-
aging over time the spectrum λ0(u), λ1(u), . . . , of the symmetric
part of J(u).
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Appendix A: Bound on α

We recall Eq. (4), for which it is well known, that it
leads to the a priori bounds

||uN (t)||22 ≤ max(E0, (F0ν
−1)2)

def
= E∫ t

0

dτ ||∂uN (τ)||22 ≤
(

1

2
E + t

√
F0E0

)
ν−1

(A1)

satisfied (for all N) by the solution u in terms of the
square L2 norms E0 = ||u(0)||22 =

∑
β,k |uβ,k|2 =

1
(2π)3

∫
|u(x)|2dx and F0 = ||f ||2, see for instance Propo-

sition 1, Sec.3.2 in [38]. There is no problem about
the forcing term W (u) =

∫
∆f · u dx in Eq. (7) as

Eq. (A1) implies, if Γ =
∫

(∆u)2 dx ≥ D, a bound on

it: K2F
√
EΓ−1 ≤ CD−

1
2 . The other term has in the

numerator Λ(u) = −
∫

(u ·∂u) ·∆u dx which is bounded
via the Hölder inequality with exponents 4, 4, 2 by

|Λ(u)| ≤
(∫
||u||42 dx

) 1
4
(∫
||∂u||42 dx

) 1
4
(∫
||∆u||22 dx

) 1
2

(A2)
and the three factors can be bounded via Sobolev’s in-
equality [37, 41]: if 2 ≤ q ≤ 6, a = 3

4 (q − 2) then∫
Br

||u||q2 dx ≤CSq
[(∫

Br

||∂u||22 dx
)a
·
(∫

Br

||u||22 dx
)q/2−a

+

+ r−2a
(∫

Br

||u||22 dx
)q/2 ]

(A3)
where Br is a sphere of radius r and the integrals are
performed with respect to dx. The CSq is a suitable con-
stant. The second term of the right hand side can be
omitted if u has zero average over Br.

Therefore in the above case, where u,∂u,∆u do have
zero average, choose q = 4, a = 3

2 , Br = [0, 2π]3; calling

C
S

4 = (CS4 )
1
4 and Γ =

∫
(∆u)2 dx, it is:

Λ(u) ≤ CS4 (E 1
8D

3
8 )C

S

4 (D
1
8 Γ

3
8 )Γ

1
2 ≤ CE 1

8D
1
2 Γ

7
8 (A4)
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so that

|α(u)| ≤C1(E 1
8D

1
2 Γ−

1
8 + E 1

2 Γ−1)

≤C(E 1
8D

3
8 + E 1

2D−1) < C2(
√
D +

√
D
−1

)
(A5)

and |α(u(t))| is thus bounded, for any solution and any
N , by a constant: |α| ≤ κ.

Appendix B: Reversible Navier-Stokes global
smoothness

Let ε < α(u(t)) ≤ κ and suppose that the initial data
u(0) and f satisfy ||uk||2, ||fk||2 < cpk

−p for all p > 0
(recall that we consider only initial data and force with
a finite number, ≤ N , of modes, for simplicity). Let

a(t, τ) =
∫ t
τ
α(u(t′)dt′; then ε(t− τ) < a(t, τ) < κ(t− τ).

Following, for instance [38], we can write uk(t) =

e−a(t,0)k
2

uk(0) +
∫ t
0
e−a(t,τ)k

2

(Nk(u(τ)) + fk)dτ , where
Nk(u(τ)) is the non-linear term of the NSE. Therefore,

the sum of the first and last term can be bounded by
2cp
kp

while the integral is bounded by∫ t

0

e−εk
2(t−τ) ∑

p+q=k

||up · q||2||uq||2 dτ

≤
√
E
√
D(1− e−εk2t)
εk2

(B1)

so that adding the two bounds: ||uk||22 < C2

k2 for a suit-
able C2. Therefore, again, ||uk(t)||2 can be bounded by

adding
2cp
kp and a bound on

∫ t

0

e−εk
2(t−τ) ∑

p+q=k

||p||2||up||2 ||q||22||uq||2
||p||2||q||2

dτ (B2)

A bound on the latter integral is obtained via the
Schwartz inequality and the remark that p + q = k im-
plies ||p||2||q||2 ≥ k0

2 ||k||2, k0 = 1, and

∑
p+q=k

||p||2||up||2||q||22||uq||2
||p||2||q||2

≤ 2C2

k0

∑
p+q=k

||p||2||up||2
||p||2||q||2

≤ 2C2

k0

√
D

 ∑
p+q=k

1

(||p||2||q||2)2

 1
2

≤
(

2C2

k0

)1+ 1
8

||k||−
1
4

2

√
D

 ∑
p+q=k

1

(||p||2||q||2)2−
1
4

 1
2

≤
(

2C2

k0

)1+ 1
8 √

D||k||−
1
4

2

(∑
n

1

||n||4−
1
2

2

) 1
2

(B3)

where p has been changed to n just to make clear that
summing over p + q = k allows using the Schwartz in-
equality. Hence integration over t, as in Eq. (B1), yields

||uk(t)||2 ≤
γ1

k2+
1
4

(B4)

Thus if D is finite the bound ||uk||2 < γk−2, Eq. (B1),

can be improved into ||uk||2 < γ1k
−2− 1

4 . Iterating a
autoregularization phenomenon sets in and

||uk(t)||2 ≤
γp

k2+
1
4p

for all p ≥ 1 (B5)

so that u(t) is a C∞-functions and all its derivatives can
be bounded in terms of the enstrophy D, uniformly in
N . See Sec. 3.3 in [38] for related results on the classic
autoregularization.

Appendix C: Numerical parameters

Table I summarizes the values of various observables
corresponding to the runs with different kinematic vis-
cosities and cut-offs. The parentheses present the statis-
tical error of the last digit in a given value. We define
the following: physical length of the container L = 2π,
root-mean-square velocity urms =

√
〈||u||22〉/3, averaged

rate of energy dissipation ε = ν 〈D〉, kν =
(
ε
ν3

)1/4
is the

Kolmogorov scale, Taylor length λ = urms

√
15
〈D〉 , inte-

gral length ` = 3L
8 〈
∑

k k
−1E(k)/

∑
k E(k)〉 (see Eq. 13),

Taylor-Reynolds number Reλ = urmsλ
ν , Reynolds number

Re = urms`
ν , large-eddy turnover time T` = `

urms
.

We present the final D/D ratio, which is an abbre-
viation for D/D ≡ D/〈D(u)〉I,Nν . Ideally, this should
be 1, and it is indeed unity when we start the R sim-
ulation based on the ensemble average 〈D(u)〉I,Nν from
I. But for almost all runs, we increased the statistics
of I, which eventually improved 〈D(u)〉I,Nν . Therefore
the D/D ratio gives an estimate of the quality of each
collection ER,N of R runs with respect to the collection
EI,N for a particular ν. A significant D/D discrepancy
would also explain possible discrepancies in 〈α〉/ν and
accordingly other ratios of observables.

The ratio T/T`, where T is the total length of the sim-
ulation in physical units, is essentially an indicator of the
statistical significance of the generated ensemble. Empty
entries (filled with a “–”) are met in cases at the qua-
sithermalized regime for particular observables of which
the definitions are relevant in the hydrodynamic regime
(e.g. kν , λ).

An interesting fact about Table I is that the averaged
values for each entry turn out to be the same on average,
up to statistical errors, for both R and I. Showing one
value, implies that is it the same for R and I at the
particular N0 and ν. When the averages are not the same
within statistical errors we show both estimates in the
form R|I. This happened in the case of N0 = 256 in two
cases, namely R11© and R15�, see e.g. ε. For R11©
we attribute this to poor statistics, notice T/T` = 374,
which is the lowest, and for R15� we attribute to a poor
estimation of 〈D(u)〉I,Nν , notice D/D = 1.034(2), which
is the highest.
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TABLE I. Values of various observables corresponding to
the numerical simulations, labeled as R# indicating the run
numbering, with different kinematic viscosities and cut-offs.
All resulting parameters are the same up to statistical errors
(which are included inside the parentheses for the error of the
last digit) for both I and R, except for those cases separated
as R|I. D/D is an abbreviation for D/D ≡ D/〈D(u)〉I,Nν .
The symbols next to the Run numbering correspond to the
statistical regimes; ©: Hydrodynamic, 4: Crossover, �: qu-
asithermalized.

N0 = 64 R1© R2© R34 R4� R5�
ν 5× 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.015(7) 0.999(3) 1.000(4) 1.000(8) 0.93(20)
D/D 0.998(2) 0.999(1) 0.999(1) 1.000(1) 1.01(2)
urms 1.22(1) 1.30(1) 1.46(1) 2.92(1) 7.00(1)
Re 43 185 1705 7.9× 103 1.2× 105

Reλ 30 77 300 – –
ε 0.74 0.72 0.76 0.66 0.39
kν 8 29 165 – –
λ 1.23 0.59 0.21 – –
` 1.77 1.43 1.16 0.27 0.17

T/T` 8300 1.3× 104 2.3× 104 1.8× 105 5.8× 105

N0 = 128 R6© R7© R84 R94 R10�
ν 5× 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.01(3) 0.995(5) 1.011(6) 0.99(1) 0.99(2)
D/D 1.008(2) 0.998(1) 0.996(2) 0.999(2) 1.027(1)
urms 1.22(4) 1.29(3) 1.36(3) 1.88(4) 4.61(1)
Re 43 183 1850 1.4× 104 6.1× 104

Reλ 30 76 267 1570 –
ε 0.75 0.71 0.73 0.76 0.68
kν 8 29 164 932 –
λ 1.22 0.59 0.20 0.08 –
` 1.78 1.42 1.36 0.72 0.13

T/T` 760 4690 4950 104 1.1× 105

N0 = 256 R11© R12© R134 R144 R15�
ν 5× 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.06(4) 0.99(2) 1.00(2) 1.00(2) 0.94(2)
D/D 1.008(2) 1.008(1) 1.008(2) 1.019(2) 1.034(2)
urms 1.25|1.21 1.29(5) 1.35(5) 1.46(5) 2.70(6)
Re 44 184 1800 1.7× 104 105

Reλ 31 76 260 973 –
ε 0.78|0.73 0.71 0.73 0.71 0.74|0.79
kν 8 29 164 919 –
λ 1.26|1.22 0.59 0.19 0.06 –
` 1.80 1.42 1.33 1.18 0.36

T/T` 374 680 760 800 3950

R16© ν 〈α〉/ν D/D urms Re Reλ
10−3 0.97(3) 0.997(2) 1.35(5) 1800 260

N0 = 512 ε kν λ ` T/T`
0.71(7) 163 0.19 1.35 400
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