<u>Luca Biferale</u>, Charles Meneveau & Roberto Verzicco Deformation statistics of small ellipsoidal drops in isotropic turbulence

> VORTICAL STRUCTURES AND WALL TURBULENCE Paolo Orlandi: A vortical and turbulent life 19th-20th September 2014

COSE

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

Emulsification and blending in Chemical and Food industry

Biofluids (suspensions and blood)

Environmental problem (remediation strategies for oil spill)

BACKGROUND

The **sub-Kolmogorov** size of the droplets implies that:

only viscous drag induced by the shear can distort the droplet shape (no inertial forces)

the distortion is resisted by the surface tension that tends to restore the spherical shape

Initial study by Taylor (1932) with drops in a laminar flow

See Kolmogorov (1949) and Hinze (1955) or Lasheras et al. (2002) for larger drops with inertia forces

BACKGROUND

Detailed simulations resort to DNS of turbulence coupled with boundary integral methods (or similar) [Cristini et al. (2003), Terashima & Tryggvason (2009) and Can & Prosperetti (2012)]

http://www3.nd.edu/~gtryggva/MCFD/

L.B. M. Sbragaglia, P. Perlekar and F. Toschi PRL (2012)

 \bigcirc Highly complex droplets shapes, instabilities, necks and satellite droplets are captured
 \bigotimes Turbulence Re_λ only moderately high and the number of droplets is few tens or hundreds

THE HIERARCHY BOTTLENECK $L_b/\bar{\Delta}x\sim 1000-2000$

The Model

Pointwise Lagrangians with some physics built around

Initially spherical droplets can deform only to (triaxial) ellipsoids

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} p + \boldsymbol{v} \boldsymbol{\nabla}^2 \boldsymbol{u} + \boldsymbol{F}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0.$$

$$\dot{\boldsymbol{X}} = \boldsymbol{u}(\boldsymbol{X}(t), t),$$

l.

ELLIPSOIDAL DROP DETERMINED BY A SYMMETRIC POSITIVE DEFINED SECOND RANK TENSOR

M's eigenvalues: squared semiaxis of the ellipsoid

Deformation	statistics	of	small	drops	in	turi	bul	ence
-------------	------------	----	-------	-------	----	------	-----	------

	N	Rez	η	δx	ε	ν	$ au_\eta$	t _{dump}	δt	T_L	G_t
Run I	512	185	0.01	0.012	0.9	0.002	0.047	0.004	0.0004	2.2	5.48
Run II	2048	400	0.0026	0.003	0.88	0.00035	0.02	0.001 15	0.000 115	2.2	11.4

TABLE 1. Eulerian parameters for the two sets of data from the DNS of homogeneous and isotropic turbulence. Here N is the number of grid points in each spatial direction; Re_{λ} is the Taylor-scale Reynolds number; η is the Kolmogorov dissipative scale; $\delta x = \mathcal{L}/N$ is the grid spacing, with $\mathcal{L} = 2\pi$ denoting the physical size of the numerical domain; $\tau_{\eta} = (\nu/\varepsilon)^{1/2}$ is the Kolmogorov dissipative timescale; ε is the average rate of energy injection; $\nu = \mu_0/\rho$ is the kinematic viscosity; t_{dump} is the time interval between two successive data recordings along particle trajectories; δt is the time step of the model integration; $T_L = L/U_0$ is the eddy turnover time at the integral scale $L = \pi$, U_0 is the typical large-scale root-mean-square velocity and G_t is the reference inverse turbulent timescale. Averages are performed over two large eddy turnover times.

191

$$\frac{\mathrm{d}R_{i}}{\mathrm{d}t} = A_{ik}R_{k}$$

$$\frac{R(t)}{R(0)} \sim \exp^{\int_{0}^{t} d\tau \partial_{x} u(\tau)} = \exp^{t\left(\frac{1}{t}\int_{0}^{t} d\tau \partial_{x} u(\tau)\right)} = \exp^{t\gamma(t)}$$

$$\boxed{\gamma(t) = \frac{1}{t}\log\left(\frac{|\mathbf{R}(t)|}{|\mathbf{R}(0)|}\right),}$$
CRAMER FUNCTION
$$\frac{P(\gamma, t) \sim exp(-tS(\gamma))}{S(\gamma) = (\gamma - \lambda_{L})^{2}/(2\sigma),}$$

$$\begin{aligned} & \frac{dM_{ij}}{dt} = \overline{\partial_i v_k M_{ik} + \partial_j v_k M_{ki}} - \frac{f_1}{\tau} (M_{ij} - g(M)I) \quad \lambda = 1 \\ & \\ & \quad \text{Finite Time Lyapunov Exponent: local stretching rate} \\ & \quad \left[\begin{array}{c} Tr(M(t)) \sim exp(2\gamma t) \\ P(\gamma, t) \sim exp(-tS(\gamma)) \\ \langle (Tr(M(t)))^q \rangle \sim \int d\gamma \exp(t(2q\gamma - S(\gamma))) \sim \exp(tL(2q)) \\ L(2q) = \max_{\gamma} (2q\gamma - S(\gamma)) \\ \langle (Tr(M(t)))^q \rangle \sim \exp(-t\frac{f_1}{\tau}) \end{aligned} \end{aligned}$$

RELAXATION

$$\frac{dM_{ij}}{dt} = \partial_i v_k M_{ik} + \partial_j v_k M_{ki} - \frac{f_1}{\tau} (M_{ij} - g(M)I)$$

Finite Time Lyapunov Exponent: local stretching rate

$$\begin{cases} Tr(M(t)) \sim exp(2\gamma t) \\ P(\gamma, t) \sim exp(-tS(\gamma)) \end{cases}$$
$$\langle (Tr(M(t)))^q \rangle \sim \int d\gamma \exp(t(2q\gamma - S(\gamma))) \sim \exp(tL(2q)) \end{cases}$$

$$L(2q) = \max_{\gamma}(2q\gamma - S(\gamma))$$

$$\langle (Tr(M(t)))^q \rangle \sim exp(-t\frac{f_1}{\tau})$$

BALANCE

 $\langle (Tr(M(t)))^q \rangle \sim exp(-t(L(2q) -$

STATIONARITY: POWER LAW TAIL $\int P(Tr(M)) \sim Tr(M)^{-(\tilde{q}+1)}$ $L(2\tilde{q}) = \frac{\tilde{q}f_1}{\tau}$

Coil-stretch transition (droplet break-up) $L(2q)\sim 2\bar{\gamma}q$ $2\bar{\gamma}=f_1/ au_c$

VOLUME 91, NUMBER 3

PHYSICAL REVIEW LETTERS

week ending 18 JULY 2003

Two-Dimensional Turbulence of Dilute Polymer Solutions

Guido Boffetta,¹ Antonio Celani,² and Stefano Musacchio¹

E. Balkovsky, A. Fouxon, and V. Lebedev, Phys. Rev. Lett. **84**, 4765 (2000).

	au=0.03	au=0.05	au=0.06	au=0.08
$ ilde{q} \mu=0.14/ au_\eta$	1.6	0.57	0.31	0
$ert ilde{q} ert \mu = 0.19 / au_\eta$	1.2	0.41	0.23	0

For $\mu \neq 1$ (different viscosities) the importance of strain and rotation is unequal and the analogy with polymers fails (the prediction underestimates Ca_c)

$$\frac{dM_{ij}}{dt} = \Omega_{ik}M_{kj} - M_{ik}\Omega_{kj} + f_2(S_{ik}M_{kj} + M_{ik}S_{kj}) - \frac{f_1}{\tau_c}(M_{ij} - g(II_M, III_M)\delta_{ij}),$$

MULTI_SCALE COUPLING: PSEUDOSPECTRAL AT HIGH REYNOLDS TO EXTRACT

CONCLUSIONS

SMALL DROPLETS/BUBBLES DYNAMICS: BREAK-UP TRANSITION + PDF OF DEFORMATION -> Large Deviation Theory.

PROBLEMS WHEN ROTATION RATE IS EFFICIENT?

COARSE GRAINED DYNAMICS FOR INTERIAL RANGE BUBBLES/DROPLETS ?

ESTIMATE APRIORI FEEDBACK ON THE FLOW BY DROPLET DEFORMATION -> BUBBLE-DRAG REDUCTION?

ESTIMATE EFFECTS OF INERTIA: FOLLOWING TRAJECTORIES OF HEAVY/LIGHT OBJECTS

184

DROPLET BREAK-UP IN NON-HOMOGENEOUS TURBULENCE?

J. Fluid Mech. (2014), vol. 754, pp. 184–207. © Cambridge University Press 2014 doi:10.1017/jfm.2014.366

Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence

L. Biferale^{1,+}, C. Meneveau² and R. Verzicco^{3,4}

¹Department of Physics and INFN, Università di Roma 'Tor Vergata', Roma, Italy
²Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
³Department of Industrial Engineering, Università di Roma 'Tor Vergata', Roma, Italy
⁴PoF and MESA+, University of Twente, Enschede, The Netherlands