

European Research Council

Helicity and energy transfer in three dimensional turbulence

Ganapati Sahoo and Luca Biferale

University of Rome Tor Vergata, Italy

Presented at Flowing Matter, January 11, 2016, Porto

Supported by European Research Council Advanced Grant "Newturb"

erc 3D hydrodynamic turbulence

Navier-Stoke's equations for incompressible flow

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u} + \mathbf{f},$$
$$\nabla \cdot \mathbf{u} = 0.$$

Energy

$$E = \int \mathbf{u}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) d^3 x$$

• Helicity

$$H = \int \mathbf{u}(\mathbf{x}) \cdot \boldsymbol{\omega}(\mathbf{x}) d^3 x$$

Betchov 1961

- are conserved in un-forced and non-dissipative flows.
- Helicity is a pseudoscalar: changes sign under parity.
- Unlike energy, helicity is not positive definite.

- Nonlinearity: Since u.w is nonzero, there could be decrease in the nonlinearity u x w. e.g. linear Bertrami flows with maximal helicity.
- Nonlocality: Nonzero u.w also implies stronger coupling between large and small scales, i.e. increasing non-locality. e.g. production of large scale magnetic fields in conductive fluids.
- Self-production: At a very high *Re*, there is a growth of helicity at the small scales, even though total helicity remains finite, because of the symmetry.
- Presence of helicity changes the geometrical structure in a subtle way, which could not be captured by simple dimensional analysis.

- The direction of cascade is determined by positivedefinite inviscid invariants.
- In 2D: energy and enstrophy are conserved; both positivedefinite.
- In 3D: energy and helicity are conserved; helicity is not positive-definite.

- 3D: Kinetic energy is transferred from large to small eddies
- 2D: Kinetic energy is transferred from small to large eddies

- Many flows are quasi-2D, like thick films, geophysical flows like ocean and atmosphere.
- Physical phenomenas change the dimensionality of the system, like rotation.
- There have been evidence of inverse energy cascade in such systems.
- Also conducting fluids transfer energy to the large scales.

Pacific Ocean

N-S = 15000 km

E-W = 19800 km

average depth = 4.28 km

10

100

k (rad m⁻¹) 1000

10-9

100

Making the helicity sign-definite, we observe inverse cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence, Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)

Making the helicity sign-definite, we observe inverse cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence, Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)

Can direct and inverse cascade of energy co-exist?

Navier-Stokes equations European Research Council

erc

3D Navier-Stokes equations in Fourier-space

$$\dot{u}_i(k) + \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) N_j(k) = -\nu k^2 u_i(k),$$

where $N_i(q) = \sum_{\mathbf{q}=\mathbf{k}+\mathbf{p}} i k_j u_i(k) u_j(p)$

- \blacktriangleright In Fourier space, $\mathbf{u}(\mathbf{k}, t)$ has two degrees of freedom since $\mathbf{k} \cdot \mathbf{u}(\mathbf{k}, t) = 0.$
- We chose projection on orthonormal helical waves with definite sign of helicty.

Following Waleffe Phys. Fluids (1992)

 $\mathbf{u}(\mathbf{k}, t) = a^{+}(\mathbf{k}, t)\mathbf{h}^{+}(\mathbf{k}) + a^{-}(\mathbf{k}, t)\mathbf{h}^{-}(\mathbf{k})$ $\mathbf{u}^{+} \qquad \mathbf{u}^{-}$ where $\mathbf{h}^{\pm}(\mathbf{k})$ are the complex eigenvectors of the curl operator $i\mathbf{k} \times \mathbf{h}^{\pm}(\mathbf{k}) = \pm k\mathbf{h}^{\pm}(\mathbf{k})$. $\mathbf{h}_{s}^{*} \cdot \mathbf{h}_{t} = 2\delta_{st}; \ \mathbf{h}_{s}^{*} = \mathbf{h}_{-s},$

where s and t could be +1 or -1

Helically decimated Navier-Stokes equations

Decimated Navier-Stokes equations in Fourier space:

 $\partial_t \mathbf{u}^{\pm}(\mathbf{k},t) = \mathcal{P}^{\pm}(\mathbf{k})\mathbf{N}_{u^{\pm}}(\mathbf{k},t) + \nu k^2 \mathbf{u}^{\pm}(\mathbf{k},t) + \mathbf{f}^{\pm}(\mathbf{k},t)$

where ν is kinematic viscosity and **f** is external forcing.

$$N_{u^{\pm}}(\mathbf{k},t) = \mathcal{F}T(\mathbf{u}^{\pm} \cdot \nabla \mathbf{u}^{\pm} - \nabla p)$$

Projection operator:

$$\mathcal{P}^{\pm}(\mathbf{k}) \equiv \frac{\mathbf{h}^{\pm}(\mathbf{k}) \otimes \mathbf{h}^{\pm}(\mathbf{k})^{*}}{\mathbf{h}^{\pm}(\mathbf{k})^{*} \cdot \mathbf{h}^{\pm}(\mathbf{k})}$$
$$\mathbf{u}^{\pm}(\mathbf{k}, t) = \mathcal{P}^{\pm}(\mathbf{k})\mathbf{u}(\mathbf{k}, t)$$
$$\mathbf{u}(\mathbf{k}, t) = \mathbf{u}^{+}(\mathbf{k}, t) + \mathbf{u}^{-}(\mathbf{k}, t)$$

- Energy $E(t) = \sum_{\mathbf{k}} |\mathbf{u}^+(\mathbf{k}, t)|^2 + |\mathbf{u}^-(\mathbf{k}, t)|^2$.
- Helicity $\mathcal{H}(t) = \sum_{\mathbf{k}} k(|\mathbf{u}^+(\mathbf{k}, t)|^2 |\mathbf{u}^-(\mathbf{k}, t)|^2).$

Classes of triadic interactions in NS equations European Research Counci

R-type: When large wavenumbers have same sign, middle one is unstable and could transfer energy to both small and large wavenumbers;

- predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)].
- mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

F-type: When large wavenumbers have opposite sign, smallest one is unstable and could transfer energy only to large wavenumbers, for both Class-III (+, -, +) and Class-IV (-, -, +).

erc

- Energy and helicity are conserved for each individual triad.
- Triads with only u⁺, i.e. Class-I, lead to reversal of energy cascade.
- Energy spectra in the inverse cascade regime shows a $k^{-5/3}$ slope.

What happens in between?? when we give different weights to different class of triads...

Modified projection operator:

 $\mathcal{P}^+_{\alpha}(\mathbf{k})\mathbf{u}(\mathbf{k},t) = \mathbf{u}^+(\mathbf{k},t) + \theta_{\alpha}(\mathbf{k})\mathbf{u}^-(\mathbf{k},t)$

where $\theta_{\alpha}(\mathbf{k})$ is 0 with probability α and is 1 with probability $1 - \alpha$.

- We consider triads of Class-I with probability 1, Class-III with probability 1α and Class-II and Class-IV with probability $(1 \alpha)^2$.
- $\alpha = 0 \rightarrow$ Standard Navier-Stokes. $\alpha = 1 \rightarrow$ Fully helical-decimated NS.
- Critical value of α at which forward cascade of energy stops? alternatively, inverse cascade of energy stops if forced at small scales.

 $\mathsf{N}_{\mathsf{u}^{\pm}}(\mathsf{q}) = \mathcal{FT}\left[\mathsf{u}^{\pm}(\mathsf{k})\cdot \mathbf{
abla}\mathsf{u}^{\pm}(\mathsf{p})
ight]; \mathsf{q}=\mathsf{k}+\mathsf{p}; k\leq p\leq q$

Robustness of energy cascade European Research Council

E(k)

VEISIC

Spectra for all values of α showing $k^{-5/3}$ suggest the forward cascade of to be strongly robust.

erc

- Unless we kill almost all the modes of one helicity-type energy always finds a way to reach small scales.
- The energy flux also remains unaffected by the decimation until α is very close to 1.
- Critical value of α is ~ 1 !

Tor Vergat

Chen, Phys. Fluids 2003

$$E^{\pm}(k) \sim C_1 \epsilon_E^{2/3} k^{-5/3} \left[1 \pm C_2 \left(rac{\epsilon_H}{\epsilon_E}
ight) k^{-1}
ight],$$

where ϵ_E is the mean energy dissipation rate and ϵ_H is the mean helicity dissipation rate.

The E⁺(k) does not change with decimation.

- E⁻(k) shows that as we have fewer negative helical modes, they become more energetic in the inertial range of scales.
- Invariance of parity is restored through scaling of $E^{-}(k)$ by the factor $(1-\alpha)$.

- As we increase decimation of the modes with negative helicity (α), the contribution of triads leading to inverse energy cascade grows.
- The forward cascade of energy is very robust in 3D turbulence. It requires only a few negative modes to act as catalyst to transfer energy forward.
- Only when α is very close to 1, i.e., we decimate almost all modes of one helical sign, inverse energy cascade takes over the forward cascade.
- We observe a strong tendency to recover parity invariance even in the presence of an explicit parity-invariance symmetry breaking (α >0).

- What about abrupt symmetry breaking at some k_c?
 - can we stop the cascade by killing all negatives modes from k>k_c?
 - or can we start it at our wish (killing all modes up to k_c)?
- What about intermittency in the forward cascade regime at changing α?

European Research Col

-2

-4

2

Э.

Э

with increaseing α

Measure of intermittency: Flatness $F_4(r) = S_4(r)/[S_2(r)]^2$

FIG. 3: (color online) iso-vorticity surfaces for: (a) $\alpha = 0$, (b) $\alpha = 0.5$, (c) $\alpha = 0.9$. Last plot (d) is obtained applying the projection with $\alpha = 0.5$ on the original NSE fields without any dynamical decimation. Color palette is proportional to the intensity of the helicity.

- There is a strong depletion of filament-like structures with dynamical decimation of negative helical modes.
- However, static decimation of negative helical modes

- There is drastic reduction of intermittency with decimation.
- Vortex tubes usually associated with extreme events of energy dissipation disappear.

- Most importantly, only removal of helical modes dynamically, make this difference.
- Helicity surely plays a role in the direction of energy transfer and intermittency in the system.

- Role of helicity for large-and small-scales turbulent fluctuations, G Sahoo, F Bonaccorso, and L Biferale.
 Phys. Rev. E 92, 051002 (R) (2015).
- Disentangling the triadic interactions in Navier-Stokes equations, G Sahoo and L Biferale.
 Eur. Phys. J. E 38, 114 (2015).
- Inverse energy cascade in three-dimensional isotropic turbulence, L Biferale, S Musacchio, and F Toschi.
 Phys. Rev. Lett. 108, 164501 (2012).