
Helicity and energy transfer 
in three dimensional turbulence 

Ganapati Sahoo and Luca Biferale
University of Rome Tor Vergata, Italy 

Presented at Flowing Matter, January 11, 2016, Porto

Supported by European Research Council Advanced Grant “Newturb”



3D hydrodynamic turbulence

• Navier-Stoke’s equations for incompressible flow 

• Energy 

• Helicity 

• are conserved in un-forced and non-dissipative flows. 

• Helicity is a pseudoscalar: changes sign under parity. 

• Unlike energy, helicity is not positive definite.  

H =

Z
u(x) · !(x)d3x

E =

Z
u(x) · u(x)d3x

Betchov 1961
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+ (u ·r)u = �rp

⇢
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r · u = 0.



Effects of helicity

• Nonlinearity: Since u.w is nonzero, there could be decrease in the 
nonlinearity u x w. e.g. linear Bertrami flows with maximal helicity. 

• Nonlocality: Nonzero u.w also implies stronger coupling between 
large and small scales, i.e. increasing non-locality. e.g. production of 
large scale magnetic fields in conductive fluids.  

• Self-production: At a very high Re, there is a growth of helicity at the 
small scales, even though total helicity remains finite, because of the 
symmetry. 

• Presence of helicity changes the geometrical structure in a subtle 
way, which could not be captured by simple dimensional analysis.



Dimensionality

• The direction of cascade is 
determined by positive-
definite inviscid invariants. 

• In 2D: energy and enstrophy 
are conserved; both positive-
definite. 

• In 3D: energy and helicity are 
conserved; helicity is not 
positive-definite.

3D  

2D  

3D: Kinetic energy is transferred  
       from large to small eddies 

2D: Kinetic energy is transferred  
       from small to large eddies 

Many physical phenomena can 
change of the dimensionality of  
a turbulent flow: 

Confinement in thin fluid layers 

Rotation 

Stable stratification 

Helical flows 



2D or 3D ?

Many geophysical flows (e.g. oceans, atmosphere) 
have quasi-2d aspect ratios  

Complex systems:  

Turbulence 
Waves  
Stratification 
Convection 
Rotation (Coriolis)  
Boundaries 
Cloud physics  

A4 paper (80gr/m2) 
L1= 210 mm 
L2 = 297 mm 
h   = 0.1 mm 

Pacific Ocean 
N-S = 15000 km 
E-W = 19800 km 
average depth = 4.28 km 

• Many flows are quasi-2D, like 
thick films, geophysical flows 
like ocean and atmosphere.  

• Physical phenomenas change 
the dimensionality of the 
system, like rotation. 

• There have been evidence of 
inverse energy cascade in 
such systems. 

• Also conducting fluids transfer 
energy to the large scales.



Transition from 3D to 2D

• If we make helicity positive definite, do we see inverse 
energy transfer in 3D?

• Dimensional transition occurs in turbulent 
fluid layers from 3D direct energy cascade 
to 2D inverse energy cascade as we 
decrease the thickness of the layer. 

• Depending upon the aspect ratio there is a 
coexistence of inverse and direct cascade. 

• Enstrophy (w.w) becomes quasi-invariant 
as only conserved by large scale dynamics 
where the flow is two dimensional. 

• Inverse cascade develops because of 
existence of another positive definite 
conserved quantity.
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Inverse energy cascade in 3D

• Making the helicity sign-definite, we observe inverse 
cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)



Inverse energy cascade in 3D

• Making the helicity sign-definite, we observe inverse 
cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)

Can direct and inverse cascade of energy co-exist?



Navier-Stokes equations

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1

u̇i(k) +

✓
�ij �

kikj
k2

◆
Nj(k) = �⌫k2ui(k),

where Ni(q) =
X

q=k+p

ikjui(k)uj(p)

• 3D Navier-Stokes equations in Fourier-space



Helical decomposition

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1

u+ u�



Helically decimated Navier-Stokes equations

Helical-decomposition of velocity

I Choose h

±(k) = µ̂(k)⇥ k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = �µ̂(�k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z⇥ k/||z⇥ k||, with z an arbitrary vector.

I Projection operator:

P±(k) ⌘ h

±(k)⌦ h

±(k)⇤

h

±(k)⇤ · h±(k)
u

±(k, t) = P±(k)u(k, t)

u(k, t) = u

+(k, t) + u

�(k, t)

I Eneregy E (t) =
P

k

|u+(k, t)|2 + |u�(k, t)|2.
I Helicity H(t) =

P
k

k(|u+(k, t)|2 � |u�(k, t)|2).

Helical-decimated Navier-Stokes equations

I Decimated Navier-Stokes equations in Fourier space:

@tu
±(k, t) = P±(k)Nu±(k, t) + ⌫k2u±(k, t) + f

±(k, t)

where ⌫ is kinematic viscosity and f is external forcing.

I The nonlinear term containing all triadic interactions

Nu±(k, t) = FT (u± ·ru

± �rp)



Classes of triadic interactions in NS equations 

F-type: When large wavenumbers 
have opposite sign, smallest one is 
unstable and could transfer energy 
only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +). 

• Energy and helicity are conserved for 
each individual triad. 

• Triads with only u+, i.e. Class-I, lead to 
reversal of energy cascade. 

• Energy spectra in the inverse 
cascade regime shows a  k-5/3 slope.

R-type: When large wavenumbers have same sign, middle one is unstable and could 
transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].
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Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

II III IV



Partial Helical-decimation

probability 1 probability (1-α)

probability (1-α)2

u+(p)

u+(k)

u+(q)
I

u-(p)

u+(k)

u-(q) II

u-(p)

u+(k)

u+(q) III

u-(p)
u-(k)

u+(q) IV

probability (1-α)2

Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

What happens in between??  
when we give different weights to different class of triads…

Helical-decimated Navier-Stokes equations

I Modified projection operator:

P+
↵ (k)u(k, t) = u+(k, t)+✓↵(k)u�(k, t)

where ✓↵(k) is 0 with probability ↵
and is 1 with probability 1� ↵.

I We consider triads of Class-I with
probability 1, Class-III with probability
1� ↵ and Class-II and Class-IV with
probability (1� ↵)2.

I ↵ = 0 ! Standard Navier-Stokes.
↵ = 1 ! Fully helical-decimated NS.

I Critical value of ↵ at which forward
cascade of energy stops?
alternatively, inverse cascade of energy
stops if forced at small scales.

Pseudo-spectral DNS on a triply periodic
cubic domain of size L = 2⇡ with resolutions
upto 5123 collocation points.



Robustness of energy cascade 

• Spectra for all values of α showing 
k-5/3 suggest the forward cascade of    
to be strongly robust. 

• Unless we kill almost all the modes of 
one helicity-type energy always finds 
a way to reach small scales. 

• The energy flux also remains 
unaffected by the decimation until   
 α  is very close to 1. 

• Critical value of α  is ~ 1 !

-6

-4

-2

 0

 2

 4

 6

 1  10  100

Π
E
(k

)

k

Energy flux

α = 0.0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

α = 0.99
α = 0.999

                            No forward cascade

k-5/3

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1  10  100

k

E(k)

α = 0.0

α = 0.1

α = 0.3

α = 0.5

α = 0.7

α = 0.9

α = 0.99

α = 0.999



Energy in the positive helical modes

• The E+(k) does not change with decimation. 

Chen, Phys. Fluids 2003

Thank you!

E±(k) ⇠ C1✏
2/3
E k�5/3


1± C2

✓
✏H
✏E

◆
k�1

�
,

where ✏E is the mean energy dissipation rate
and ✏H is the mean helicity dissipation rate.

I As we increase ↵, the contribution of triads leading to inverse
energy cascade grows.

I Only when ↵ is very close to 1 inverse energy cascade takes
over the forward cascade.

I Critical value of ↵ may have Reynolds number dependence!

I Can both forward and inverse cascade co-exist?

I What about intermittency in the forward cascade regime at
changing ↵.
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Energy in the negative helical modes
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• E-(k) shows that as we have fewer negative helical modes, they become 
more energetic in the inertial range of scales.  

• Invariance of parity is restored through scaling of E-(k) by the factor (1-α).  



Conclusions

• As we increase decimation of the modes with negative helicity (α), the 
contribution of triads leading to inverse energy cascade grows. 

• The forward cascade of energy is very robust in 3D turbulence. It 
requires only a few negative modes to act as catalyst to transfer 
energy forward. 

• Only when α is very close to 1, i.e., we decimate almost all modes of 
one helical sign, inverse energy cascade takes over the forward 
cascade. 

• We observe a strong tendency to recover parity invariance even in the 
presence of an explicit parity-invariance symmetry breaking (α >0).



• What about abrupt symmetry breaking at some kc?  

• can we stop the cascade by killing all negatives 
modes from k>kc?  

• or can we start it at our wish (killing all modes up to 
kc)? 

• What about intermittency in the forward cascade 
regime at changing α?



local energy dissipation rate
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Measure of intermittency: Flatness F
4

(r) = S
4

(r)/[S
2

(r)]2
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I Measure of flatness shows the small scale intermittency
reduces significantly when 10% of u� modes are killed.

I It reduces further and seems saturated with increase in ✏
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Small Scale structures

4

FIG. 3: (color online) iso-vorticity surfaces for: (a) ↵ = 0, (b) ↵ = 0.5, (c) ↵ = 0.9. Last plot (d) is obtained applying the
projection with ↵ = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.

be crucial. The observed value is so close to unity that it
might also be dependent on the realization of �

k

and/or
on the Reynolds numbers. This issue is left for more
detailed analysis in a future work.
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FIG. 4: Excess Kurtosis measured at the dissipative scale,
r
x

= ⌘ (a) and in the inertial range, r
x

= 20⌘ (b). (⇤):
decimation of negative helical modes only; (�): decimation of
either positive or negative helical modes with 50% probability.
(4): aposteriori decimation of negative helical modes from a
velocity field of standard non-decimated NSE.

The second important problem addressed concerns
with intermittency, the presence of strong non-Gaussian
fluctuations at small scales, usually interpreted as a build
up of instabilities in the vortex-stretching mechanisms.
Here we want to understand how intermittency changes
under the helical mode-reduction. A visual inspection of
the vorticity field, in Fig. 3, shows a strong depletion of
filament-like structures, starting from the standard 3D
NSE (Fig. 3a), as a function of the degree of decimation
of the negative helical modes (see Fig. 3b and Fig. 3c).
In Fig. 4 we show the evolution of the excess Kurtosis,

K(rx) =
h(�r

x

u↵
y )

4i
h(�r

x

u↵
y )

2i2 � 3,

of the transverse velocity increments �r
x

u↵
y = u↵

y (rx) �

u↵
y (0) for two values of rx and at changing ↵, where the

selection of the x � y components is arbitrary because
of isotropy. We found that intermittency is very sensi-
tive to ↵-decimation; it is enough to remove, from the
dynamics, a small fraction of negative helical modes to
strongly deplete the non-Gaussian character as measured
by the fact that the excess Kurtosis is approaching 0.
We show in Fig. 4 also the results of another numerical
experiment, where we repeated the measurements in a
set of simulations (RUN 9-13) with random decimation;
this time either a positive or a negative helical mode is
decimated with a global probability ↵. The reduction
in the intensity of intermittency is comparable with the
previous case; suggesting that it is mainly due to the de-
crease in the total number of dynamically active modes
than due to their helical nature. This result is another
manifestation of the passive role of helicity in the energy
transfer mechanism. To further investigate the role of dy-
namic helical mode-reduction, we performed a projection
aposteriori, applying the operator Dalpha to the velocity
field obtained from a fully resolved non-decimated NSE
(↵ = 0). In this case, intermittency remains almost un-
changed, independently of ↵, suggesting that only the
dynamical mode-reduction is crucial to deplete the vor-
tex stretching mechanism. For the original NSE positive
and negative helical modes develop the same content of
intermittency (see Fig. 3d for a visual confirmation of this
fact). In conclusion, we have highlighted and quantified
the singular role played by the helical Fourier modes in
the energy flux reversal, showing that a forward transfer
is always preferred as soon as a very small percentage of
modes with opposite helicity are present. In contrast, the
leading intermittent fluctuations are very fragile to any
mode-reduction (helical or not helical) suggesting that
the origin of real-space intermittency must rely on highly
non-trivial and non-local correlations in Fourier space.

We acknowledge funding from the European Research
Council under the European Union’s Seventh Framework
Programme, ERC Grant Agreement No 339032.

• There is a strong depletion of filament-like structures with 
dynamical decimation of negative helical modes.

• However, static decimation of negative helical modes 
preserves such structures.



Conclusion

• There is drastic reduction of intermittency with decimation. 

• Vortex tubes usually associated with extreme events of energy 
dissipation disappear. 

• Most importantly, only removal of helical modes dynamically, make 
this difference.  

• Helicity surely plays a role in the direction of energy transfer and 
intermittency in the system.



Thank you!

• Role of helicity for large-and small-scales turbulent fluctuations, 
G Sahoo, F Bonaccorso, and L Biferale. 
Phys. Rev. E 92, 051002 (R) (2015). 

• Disentangling the triadic interactions in Navier-Stokes equations,  
G Sahoo and L Biferale. 
Eur. Phys. J. E 38, 114 (2015). 

• Inverse energy cascade in three-dimensional isotropic turbulence, 
L Biferale, S Musacchio, and F Toschi.  
Phys. Rev. Lett. 108, 164501 (2012).


