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We perform a numerical study of the Ports model q= 3 in three dimensions with nearest neighbour and next to nearest neigh- 
bout couplings by means of the finite-size renormalization group method. The analysis of lhe magnetic critical exponents is 
complementary to the one of the thermal critical exponent already presented by us and confirms our conclusions that the transi- 
tion from the disordered phase to the low-temperature ordered phase is first order. 

The study of the coupling flow near a fixed point is 
a crucial aspect of the modern theory of critical phe- 
nomena.  I1 provides, in fact, the values of the critical 
exponents which characterize the universality class of 

the system under  investigation. Analogous methods 
have been applied in the case when two or more 
phases co-exist and the exponents extracted. 

It is well known from finite-size scaling analysis [ l ] 
that at a discontinuity fixed point  the inverse thermal 
exponent, y v =  l / v ,  is equal to the spatial dimen- 
sionality of the system, d, and this fact alone allows 
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one to identify the order of the transition as first order. 
The idea of the present paper is to show that the 

renormalization group transformation is a useful tool 
to discriminate between cont inuous or second-order 
transit ions and discontinuous but weakly first-order 
transitions. In a recent letter [2 ] we presented results 
concerning the exponent YT of the Ports three-state 
model in three dimensions.  In the present paper we 
corroborate the previous conclusions by an analysis 
of the magnetic critical exponent,  y . .  

Let us briefly recall the simple scaling argument, 
introduced by Fisher and Berker [ 3 ], which leads to 
the relation y n = d .  The free energy density at a first- 

order transit ion scales as 
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lim f (H)=Hd/y"f (  + 1),  (1) 
1 1 4 0  

where l l  is the field coupled to the order parameter. 
On the other hand the order parameter discontinu- 
ity, AM, can be represented by the following relation: 

A M ~  IHI ~/'~ (2) 

if one assumes for 5, the so-called isothermal expo- 
nent, the value oo. Differentiating eq. ( 1 ) with re- 
spect to the field and comparing with eq. (2) one ob- 
tains the following scaling relation: 

d 1 
- -  - 1 =  - ( 3 )  .VH ?; ' 

i.c. y n = d .  This relation was verified numerically by 
means of a recently developed method which com- 
bines numerical Monte Carlo simulation, Renormal- 
ization group ideas and finite size scaling concepts 
[4-6].  

The three-state Potts [ 7,8 ] model is defined by the 
hamiltonian 

l l = - J t  ~. 5o,.a,-J 2 ~. 5o,.o,, (4) 
<i,j> <~,i> 

n . n .  n . n . n .  

where on each site i belonging to a three-dimensional 
cubic lattice is defined a Potts variable ,7,, which can 
take on three different values. The first sum runs over 
nearest neighbour (n.n.) pairs and the second over 
the next nearest neighbour (n.n.n.) pairs; the 5 is a 

Kronecker delta, i.e. two sites i and j interact with 
energies J~ or J2 only if they are in the same state. 
According to the mean field theory the q= 3 Ports 
model displays a first-order phase transition in any 
dimension, d. However, it was proven analytically 
that in the case d=  2 and q ~< 4 the transition is second 
order. In three dimensions the order of the transition 
cannot be established analytically for any value of the 
couplings. 

On the other hand, the finite-size real-space renor- 
malization group (FSRSRG) has proved an effective 
method in determining the order of the transition, as 
we shall illustrate. 

Since the present work is the sequel of a previous 
letter [2], where we reported the details of the block- 
ing procedure which defines the renormalization 
transformation, we shall refrain from giving a de- 
tailed account of it. 

The key idea underlying the present method is to 
keep track of the dependence of the block variables, 
which play the role of renormalized couplings, as a 
function of the original couplings and lattice size. 

The finite-size scaling hypothesis allows one to de- 
termine the critical exponents by comparing diffcr- 
ent infrared cutoffs, i.e. different sizes L of the origi- 
nal systems. In order to implement the method one 
needs to consider block variables such as the magnet- 
ization, the energy, their products and their deriva- 
lives with respect to the inverse temperature,/3, or 
the cxternal field, h. These derivatives, which control 
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Fig. 1. The absolute  block magne t iza t ion  ( IMI >, as a function of  the inverse t empera tu re  for the sizes L = 8 and L = 12 in the case J~ =J2. 
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Fig. 2. The magnetic critical exponent YH as extracted from different pairs of sizes in the case of Jr =J2. 

the coupling flow under renormalization group trans- 
formation, are computed from appropriately defined 
correlation functions that we extract from our Monte 
Carlo simulation. 

We performed simulations of  cubic systems of  lin- 
ear size L = 8, 12, 16, 20, 24, 28, 32. We used a highly 
optimized multispin code, storing eight independent 
lattices in a single 32-bit word. The Metropolis algo- 
rithm was employed and we performed thorough 
checks against possible problems caused by a bad 
thermalization or correlation among the measures. In 
addition we tested the presence of  the "flip-flop" 
process between the different phases in every run we 
performed. All the errors are calculated (with a jack- 
knife method)  as fluctuations of  the cight indepen- 
dent samples corresponding to the eight lattices men- 
tioned above. The overall CPU time we used is over 

900 h of  IBM 3090. More details (as the number  of  
thermalization or measurement sweeps for every lat- 
tice) were reported in our previous paper [2].  

As shown in fig. 1 the couplings strongly depend on 
the size of  the system. Their intersection locates the 
matching point. In order to calculate the magnetic 
critical exponent one defines the following ratio: 

l n { [ d ( M ( L ' ) ) / d h ] / [ d ( M ( L ) ) / d h ] }  (5) 
.v11= In( L' / L ) 

cvaluated at zero field, h. d ( M ( L )  ) / d h  is the deriv- 
ative of  the block magnetization M with respect to 
the magnetic field, relative to the volume L 3. In fact, 
we do not compute the derivative directly, but from 
the connected correlation function between M and the 
original magnetization. 

In figs. 2 and 3 we display the dependence of  the 
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Fig. 3. The  m a g n e t i c  cr i t ical  e x p o n e n t  .vn c o m p u t e d  f rom di f ferent  pa i rs  o f  sizes in the  case ofJ~ = 1 a n d  J2 < 0. 
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exponent  YH on the size for the ferromagnetic system 
with J~ =,/2 and for the one with J~ = 1 and J2 nega- 
tive ( , / 2 = - 0 . 1 6 9 9 8 ( 2 )  at the t ransi t ion) ,  respec- 
tively. 

The vertical error represents the MC uncertainty 
on the determinat ion of the exponent whereas the 

horizontal error represents the uncertainty on the lo- 
cation of the transi t ion inverse temperature.  In both 
cases one notices a systematic drift towards larger 
values of the magnetic exponent,  YH, as the volume 
increases. This phenomenon  is (partly) due to the 
fact that one needs sizes definitely larger than the 
correlation length associated to the first-order tran- 
sition to see the appropriate scaling properties. Phase 
transit ions exhibiting such a slow approach to the 
asymptotic scaling laws have been termed weakly first 
order. Finally Y,I seems to settle around the value 
3 ( = d) as expected in the case of a first-order phase 
transformation.  We also remark that the magnetic 
critical exponent  converges to d faster than the ther- 
mal exponent as the sizes of the system increase. 

In conclusion we have studied the finite-size be- 
haviour of thermodynamic averages of the three-state 
Potts model in three dimensions and found that for 

two different values of the couplings Jl and ,/2 it ex- 
hibits first-order-like behavior. More specifically we 
have determined the magnetic critical exponent,  yn. 

The analysis presented fully confirms the results 
[9,10] previously published and shows that the fi- 
nite-size scaling renormalizat ion group is a powerful 
tool in determining the order of the transition. 
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