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In this note we study the possibility of performing analytic computations of the exponents characterizing the 
multifractal behaviour of turbulence. A simple analytic computation is presented in the framework of the cascade model 
(or shell model). 

1. Introduction Legendre transform: 

One of the most striking properties of the 
Navier-Stokes equation in the fully developed 
limit is the scaling behaviour of the increments of 
the velocity field u(x): 

(Sp” ) a 14’“’ 

with 6,~ = 1 u(x + I) - u(x) 1 , (1) 

where (. . .) is a spatial average and c(n) is a 
nonlinear function of 12. Following the previous 
works [l-3] the nonlinearity of l(n) has been 
interpreted as an indication of the existence of 
many different kind of singularities of gradients 
of the velocity field, each one characterized by 
an exponent (Y [4,5]. Near one of these singu- 
larities the velocity field behaves as 6,~ m I” and 
the support of these singularities has a Hausdorff 
dimension which depends on cy (let us call it 
D(a)). The name multifractal was invented to 
describe this situation [4]. The concept of multi- 
fractal has many applications in different fields of 
physics and they have been reviewed in [6]. A 
simple computation [4,5] shows that the two 
functions C(n) and D(a) are simply related by a 

C(n) = min,[ncu + 3 - D(a)] . (2) 

Intermittency and multifractality are obviously 
related. The kurtosis of 6,~ increases for small I 
as lc(4)-2’(2): the rare events leading to strong 
turbulence are due to the effects of singularities 
with a small value of (Y, which are assumed to be 
concentrated on a set with relative small Haus- 
dorff dimension. Unfortunately up to now there 
is no first principle deviation of multifractality in 
three dimensional turbulence and we are very far 
from a computation of the critical exponents 
c(n). It may be wise to study similar phenomena 
in simplified models where a more detailed anal- 
ysis may be performed. In this note we consider 
an energy cascade model [7] which recently has 
been intensively studied numerically [8,9]. One 
defines a scale kj in a momentum space (kj = A’ 
for j=l,..., N, N eventually goes to infinity); 
one also introduces the complex variables ui(t), 
which should characterize the collective be- 
haviour of the velocity field of real turbulence in 
a shell of momenta k = kj. Very often the sim- 
plifying choice A = 2 is done. The total energy is 
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given by E = CjJu,l’ and the evolution equations 

are 

($ + vk:)u, = F, +i(F) 

x (2k ,+1u,+1 ,+2 * u* - k,z.&u;+, 

- kj_,u;*_,uf_,) , (3) 

where v is the viscosity and the forcing Fj is 

concentrated at small j. In the zero viscosity limit 

and in absence of forcing the energy is con- 

served. Numerical experiments [9] show that in 

the small viscosity limit ( u(k,)n) cc kJ”“’ where 

(. . . ) denotes the time average. The shell model 

described in eq. (3) should be regarded as simple 

model which has some mathematical characteris- 

tics, among them the multifractal behaviour, 

which are in common with turbulence. We are 

convinced that the correct understanding of the 

origin of the multifractality in this model should 

be a crucial step for obtaining similar results in 

fully developed turbulence. The aim of this note 

is to present a possible approach to this problem 

and to do some simple computations, whose 

result is of the correct order of magnitude. We 

will concentrate our attention on the stationary 

probability P[u], where we denote by [u] the set 

of all u’s. The knowledge of P[u] is enough to 

obtain all the relevant information. We are inter- 

ested in finding the form of P[u] in the region of 

large j and in the zero viscosity limit (i.e. fully 

developed turbulence). In this region we may 

suppose that the results are universal in the sense 

that they do not depend on the detailed form of 

the forcing. Fortunately the form of P[u] is not 

arbitrary: it is strongly constrained by the so 

called closure equations [lo] which can be writ- 

ten as (dA[u]ldt) = 0 where we use the equa- 

tion of motion (3) to compute the derivative of 

A, A being any arbitrary functional of u’s. Dif- 

ferent choices of the function A lead to different 

closure equations. For instance, a possible com- 

plete set of equation of motion to be closed 

could be given by (duPldt), for any p. For the 

P[u] one can make, in the fully turbulent re- 

gime, the following ansatz: 

where H, is given by H(uj, u,_~, u,+~, u,_?, 
uj+z ). . .). It is easy to verify that the above 

expression is compatible with the closure equa- 

tions. In other words we assume that the Hamil- 

tonian, H = C,H,, corresponding to the station- 

ary distribution is invariant under scale trans- 

formations (i.e. translations with respect to j). It 

is natural to suppose, in agreement to what 

happens in usual phase transitions, that H is 

essentially short range, i.e. the dependence of H, 

on u,+~ can be neglected for m sufficiently large. 

In what follows we will assume for simplicity that 

H has a strictly finite range m. The other crucial 

assumption that we do consist in assuming that 

H, is a homogeneous function of degree zero: it 

depends only on the ratio between the u’s and 

their angles. This assumption automatically leads 

to a scaling law for u. In order to understand 

better the meaning of these hypotheses on P[u], 

we recall a useful theorem which states that 

under some conditions the probability distribu- 

tion (4) may be generated by a random (multip- 

licative) process. Let us consider the simple case 

where H, = H(uj, u,+, ). If the integral equation 

I dy exp[-H(x, Y)I +(Y) = W(x) (5) 

has a solution with positive A, than the function 

Pk Y) = ev-Wx, ~11 (cl(~)lW(x) (6) 

is well normalized (i.e. ] dyP(x, y) = 1). Thus 

we can construct the following Markov chain in 

which the conditional probability of having uj+ 1, 

for given u,, is just given by P(uj] u, + ,). It is a 

very simple computation to verify that the prob- 

ability distribution of the u’s generated by this 

process is given by eq. (4). 

The fact that the transition probability P is a 
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function of degree zero in the U’S tell us that this 
process is essentially a random multiplicative 
process. More generally we are supposing 
that there is a conditional probability 

P(. . . , u~_~, u~_~, ~~luj+~) which is an homoge- 
neous function of zero degree in the U’S, the 
dependence by the far away u’s may be neg- 
lected and the process generated by it produces 
the equilibrium distribution. We prefer to con- 
centrate our attention on the process generating 
the probability distribution, more than on the 
probability distribution itself because in this case 
the computations, both analytic and numerical 
are much simpler. If we suppose that 
P(. . ’ 7 ‘j-2, ‘j-17 u~~u~+~) depends only on m 
variables, we remain with a function of m + 1 
variables to be determined. Our proposal is to 
determine it by imposing that the closure equa- 
tions are satisfied as much as possible. We re- 
mark that the idea that intermittency could be 
produced by random multiplicative processes 
goes back to the work of Novikov [ll]. Recently 
Chabra and Sreenivasan [12] have found some 
experimental evidences that a random multip- 
licative process could exist in fully developed 
turbulence. This paper suggests why such a pro- 
cess might, in some sense, be consistent with the 
dynamical equation of a model of three dimen- 
sional Navier-Stokes equations. 

In section 2 we write the energy equation of 
the system and we introduce the notation; in 
section 3 we discuss our main ansatz on the 
multiplicative process and we write the closure 
equation whose solution are given in section 4, 
conclusions follow in section 5. 

2. The energy equation 

In order to find a possible way to follow the 
ideas discussed in the introduction, we consider a 
slight different form of the model equations (3). 
Let us take the variables uI defined as U, = 
kf1i3+j. 

The equations for 4j are (in absence of 
forcing) : 

(z + vk:)+j 
= ik5’3(qbj*,,+i*,2 - i+T-l$;+l 

- &#qz&). (7) 

Next we perform a polar decomposition of the 
variables 4 (we define 4j = pi exp(iq)) and look 
for the equations of the moduli pi: 

($ + yk:)p,=k:l)[p,,,p,,,sin(8)+~+~+8,+,) 

- 4Pj_lPj+l Sin(ej + q+l + q-1) 

~pj-2pj_l sin(f$ + ej-l + e,_,)] . 

(8) 

In the following we will use the variables A, = 

IS_* + 9-1 + tlj in order to simplify the notation. 
With this choice equation (8) becomes: 

= k;‘3[pj+lpj+2 sin(Aj.2) 

- ~pj_,pj+, sin(Aj+l)- iPj_2Pj_1 sin(Aj)]. 
(9) 

In the inertial range we will set v = 0. In this case 
the Kolmogorov solution correspond to pi = 

constant. The reader should notice that the first 
term in the square bracket is the transfer of 
energy from small scales, the last term is the 
transfer of energy from large scales, while the 
second term could be a transfer of energy either 
from the large or from the small scales depend- 
ing on the sign of sin(A,+,). We argue that in 
order to have a cascade of energy from large to 
small scale, sin(Aj+r) should be negative, at least 
in the average. 

It is interesting to note that one can prove that 
the probability distribution of oj is uniform in the 
interval [0,27~]. Indeed, by simply taking: 
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for any j, we transform a solution of the equation 

of motion in another solution. Because of the 

existence of this U( 1) symmetry, we can choose 

E in a random uniform way and therefore the 

variable 0; must be uniformly distributed 

(another symmetry of the equation consists in 

changing the sign of the real part of the u’s). The 

fact the phases 0, are uniformly distributed be- 

tween [0,27r] does not imply that the Aj are 

uniformly distributed. Thus even in the Kol- 

mogorov picture we should introduce some 

phase coherency in order to satisfy the require- 

ment of an energy cascade. Next we shall con- 

sider the time average ( . . . ) for the moment of 

order p of p,. In the inertial range (V = 0), we 

obtain: 

o=(p:’ g P,) 
= (P~P,+lPj+2sj+2) - ~(P~Pj+~P,-lsj+l) 

- i(PfP,-1Pj-2S,) 3 (11) 

where we have introduced the variables S, = 

sin(A,). Our aim is to solve equations (11) for all 

p by using the idea that a multiplicative process, 

in the sense discussed in the introduction, could 

represent a reasonable approximation of the 

equal time probability distribution of the real 

dynamical system. 

(uj+2u~+lu~+2u,p_+:s,+2) - ~(u,+,u,p+1u;~:s,+,) 

- ;(up;‘,‘s,) =o. (13) 

In order to solve these equations we have to 

specify the correlation among the uj and the S,. 

We first assume that uj are uncorrelated variables 

(among themselves). This is a quite strong as- 

sumption which should be considered to be a 

first order approximation to the real solution. At 

any rate this assumption has been numerically 

tested. It turns out that the normalized corre- 

lation: 

Q,cm) = (‘(j + 4 u(i)) - b4i>Mm)) 
Wi>l') - Mi>>’ 

(14) 

is nearly zero already at m = 1 (see fig. l), for m 
and j in the inertial range. Next we assume that 

a, = C( - PS,> . (15) 

As a consequence of these two assumptions the 

S, are uncorrelated variables. Although the as- 

sumptions we have done could be considered too 

much strong, they are consistent one with the 

other. For instance, if we set uj =f(S,, S,+,), 

I / 

\ 

1, c ” I ” “I”” 7 
1 

3. The choice of the multiplicative process 

Our starting point is the hypothesis that 

Pj+l = 'j+lP, 3 (12) 

where uj is a random variable to be specified. By 

substituting eq. (12) into (11) we obtain: 

i 
0.00 1 

5 7.5 10 12.5 15 17.5 

j+m 

Fig. 1. Circles are the results from a direct integration of 

shell equations for the correlation Q,(m) versus j + m with 
j = 6 and m = 0,. , 10. both j and m are in the inertial 

range. 
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then the variables aj would not be independent. 
Thus aj could depend only on Sj or on S,+ 1, if we 
still want to maintain statistically independence 
of aj. The assumption (15) gives the Kolmogorov 
scaling law for C = 1 and p = 0. In order to find 
a different solution it is convenient to introduce 
the moments: 

“p = ((l- Psj>"> 9 (16) 

where ( . . . ) should be considered the average 
on the stochastic process PS,. Using eq. (16) in 
(13), we obtain: 

2C6n;+,4((l - PS)S) 

- C3n,+,17,+*((1 - PS)S) 

- Up+r((l - j3S)YS) = 0. (17) 

Given the probability distribution of S we can 
consider (17) as a set of equations F,,(p) = 0. It 
is not clear at this stage whether this infinite set 
of equations can be simultaneously satisfied for 
the same values of p and C. Let us now consider 
the equation for p = 1. We obtain 

2c6n~-c3173-1=o. (18) 

The solutions are C”Il, = 1 and C”I& = - 1. Be- 
cause the aj are positive definite, the only phys- 
ical solution is C3113 = 1 corresponding to l(3) = 
1. Eq. (18) is equivalent to the Kolmogorov 
equation and it is a consequence of the assump- 
tion that we have done on the independence of 
the aj among themselves. 

Eq. (18) also tells us that C is not an in- 
dependent quantity and it is fixed by 

c3=1/I13. (19) 

We can get a better insight into eq. (17) by using 
the following trick. Let us assume that j3 # 0 and 
let use define X = 1 - PS, so that S = (1 - X) lp. 
Eq. (17) can be rewritten as: 

2c6q+*(G- X2)40 - c”q+Jp+, 

x ((X-X2)@) - np+,((xp - x”+‘>/p) 

= 0. (20) 

By noticing that np = (XP), we obtain: 

2c”q+2~2(4 - 17,) - c’~,+,~,+2w1 - n2) 

- rip+*<<<< - n,+,) = 0. (21) 

These equations show the Kolmogorov solution 
I$ = 1 = C. Also they can be used to compute 
np as function of 17, and I12. Indeed from eq. 
(21) at p = 1 we have an equation for C”. Next 
from p = 2 we can compute II, as function of 
(II,, I12). From p = 3 we can compute 17, and so 
on. At this stage we can check whether or not 
the assumption we have done on the nature of 
the multiplicative process are at least consistent 
with the numerical results obtained by Jensen et 
al. [9]. Notice that this check is independent 
from the probability distribution of S. In order to 
perform this check we compute the exponent 
l(p), linked to II, in the following way: 

5(P) = f P - l%2(CPn,) * (22) 

In fig. 2 we show l(p) computed from Hi, I& by 

1 

t 

Fig. 2. Circles are the value of l(p) obtained from a numeri- 

cal integration of eq. (3) [9]. The solid line is computed by 
inserting in eq. (21) the values of IZ,, II, coincident with the 

correspondent numerical results [9]. 
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eq. (21) and l(p) obtained numerically in [9]. 

Here we have chosen II, and II, by imposing that 

the values of c(l) and l(2) coincide with the 

numerical data of [9]. As we can see the numeri- 

cal agreement is quite good. This tells us that our 

assumption on the multiplicative process could 

be considered to be a good first approximation. 

4. The approximate solution to the closure 

equations 

We next go back to eq. (17) and try to specify 

more about the probability distribution of S. Our 

starting point is to assume Aj to be uniformly 

distributed in the interval [-IT, 01. This assump- 

tion turns out to be reasonably good for j in the 

inertial range (see fig. 3). 

Under this hypothesis we can compute the 

functions F,(p). In fig. 4 we plot them for p = 0, 

2, 3, 4 (F,(p) is identically equal to zero for all /3 

corresponding to the Kolmogorov equation). As 

we can see, the F,(p) functions cross the value 0 

at /3 = 0 and at p = @,, ; p = 0 corresponds to 

Kolmogorov scaling. The values /3,, are not the 

same for all p, although they do not differ much 

-1 -0.6 -0.6 -0.4 -0.2 0 

3 
Fig. 3. Probability distribution function P(.S,) of the variable 
S, for j = 9 in the inertial range. The histogram has been 

carried out from a numerical integration of the shell model 

while the solid curve is our analytical ansatz. In the zone 

corresponding to positive value of S,, P(.S,) is nearly zero. 

0.10 

7 

: 0.05 
d 
II 

4 

G 
0 00 

2 
-0.05 

-0.10 
0 0.2 0.4 0.6 0.6 1 

P 

Fig. 4. The F,,(p) curves for p = 0, 2. 3, 3 obtained with A 

uniformly distributed in the interval [-71, 01, as a function of 

p; the exact zero’s of the F,,(p) function at p = 0 correspond 

to the Kolmogorov scaling while there is a weak dependence 

on p for the non trivial p,, values at which I$( p,) = 0. 

one from the other. By considering p = &, we 

can compute the function J(p) for all p. Once 

again the c(p) so obtained are in quite good 

agreement with those computed in [9]. This re- 

sult is rather impressive, because (contrary to the 

previous case) no numerical informations have 

been used here (apart from the distribution of 

A). It is also quite remarkable that although 

there is no small parameter (indeed & = 0.4 = 

O(l)), the deviations from Kolmogorov scaling 

are very small (less than 0.02 for 05~ 52). 

Although this result should be considered quite 

good with respect to the approximation done so 

far, we want to understand whether it could be 

improved within similar approximations to those 

we have done. It turns out that this goal may be 

reached by a slightly more complex formulation 

of the stochastic process /3S. We still consider A, 

to be uniformly distributed. On the other hand 

we consider p not a constant, rather a stochastic 

variable independent of S with probability dis- 

tribution: 

P(P) = @(P - PO) + (I- 4)6(P). (23) 

Using eq. (23) into (20), we obtain a set of 
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0 0.2 0.4 0.6 0.6 1 

B 

Fig. 5. The same as in fig. 4 but choosing the expression (23) 
for the probability distribution of p; it is evident that now 
also the non-trivial zero’s (/3, # 0) collapse to the same value 
for every p’s, 

equations 

(24) 

We have found that for q = 0.95 these equations 
(for p = 0,. . . ,4) are nearly simultaneously 

satisfied as shown in figs. 5 and 6. It is quite 
interesting to look at the values of l(p) with the 
modified assumption (23). The agreement with 
the l(p) computed by Jensen et al. [9] is quite 
good, as one can see in fig. 7. In the case of 

0’01° t 

0.3 0.35 0.4 0.45 0.5 

B 
Fig. 6. An enlargement of the interval of fig. 5 where all the 
F,(p) curves for p = 0, 2, 3, 4 vanish. 

ot.“.“.“““““““.“11 
0 2.5 5 7.5 10 12.5 

P 

Fig. 7. The values of L(p) obtained from a numerical inte- 
gration of eq. (3) (circles) from ref. [9]. The solid line is 
computed by using expression (23) for the probability dis- 
tribution of p and the relation (22) in order to evaluate the 
l(p) function. 

assumption (23) the recursion equation (21) for 
the moment must be modified. Indeed we find: 

2C6LI;+,H,[(17, - Il,)A + B] 

- C’&+J,+,W, - &)A + Bl 

- rr,+,W, - n,+,M + 4 
= 0, (25) 

where A = q/p0 and B=(l-q)(S)=-2/ 
~(1 - q). We note that for p = 1 equation (24) 
reduces to II,C’ = 1. We can now use II,, II, and 
C computed from the definition of the stochastic 
process and then we use (25) to compute all the 
other l(p). As we can see in fig. 8 the agreement 
is once again remarkable. In conclusion we can 
say that for the closure equation obtained from 
dldt( pi) = 0, the assumptions made about the 
multiplicative process seem to satisfy all the 
functional constraints imposed by the equation 
of motion. The multiplicative process we pro- 
pose here differs from that previously proposed 
by Benzi et al. [5]. Indeed in the present case the 
range of the exponents in the multifractal lan- 
guage is [0.2,0.6]: regions with laminar velocities 
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“K 

ot*““‘.,“‘.““‘,““,‘ii 
0 2.5 5 7.5 10 12.5 

Fig. 8. The values of c(p) (circles) obtained using the closure 

relations (25) and the values of II,, I& and C taken from the 

stochastic process (23). The solid line is the results from the 

naive relation (22) using the same stochastic process. 

(i.e. less singular than the Kolmogorov scaling) 

are allowed. This is not possible in the p-random 

formalism where the less singular value is the 

one corresponding to Kolmogorov exponent 

h = l/3. The difference between the two cases 

can be better understood for the moment (p = 

-1). The P-random model predicts in this case 

S(-1) = -113 h’l w i e our multiplicative process 

yields 5(-l) = -0.4, in quite good agreement 

with the numerical results of Jensen et al. [9]. 

5. Discussions and conclusions 

We have seen that the idea of multiplicative 

process seems to play a key role in obtaining a 

reasonable accurate solution of the closure equa- 

tions dldt( pg) = 0. In the solution that we have 

found the moments of ]+j] do not depend on A, 

so that in the model for generic value of A we 

find that 

((q)d o( *-P’“p(P)+P’” . (26) 

The A independence of the corrections to pure 

Kolmogorov scaling is related to the assumption 

we have done of the absence of correlations in 

the multiplicative process. Certainly this is a very 

strong assumption and we do not expect that it 

will be exactly satisfied. In fact we can consider 

the closure equation d/dt( pnpn+,) = 0. After 

some algebra we find that it implies: 

G? = h[C%;((l- PS)S) 

- $Y?z,((l- PS)S) - ic%f(s)] 

+ (((l- PS)S)C- $C‘%,((l - &s)%) 

- ;c”r&n,((l- ps)s)] = 0. (271 

This equation is not satisfied by the multiplica- 

tive process we have just introduced, at least for 

A = 2, although the difference from zero is rather 

small. The same consideration apply to the clo- 

sure equation d/dt( P,,P,,+?) = 0. Actually this 

equation does not depend on A: 

G, = Ch((l - ,&S)s)H; - ;C’ 

x ((l-ps)s)n,n,- i(.s)H, =o. (28) 

All the other closure equations of the kind 

dldt(p,p,,+,) = 0 are automatically satisfied. 

These equations should actually be interpreted 

as equations for the correlations which we have 

neglected. The correlation will be thus A-depen- 

dent and consequently the whole multiplicative 

process will eventually depend on A. The good 

quality of the results obtained in the previous 

section suggest that this dependence on A should 

be rather weak. It would be certainly interesting 

to verify numerically the approximate validity of 

eq. (26). 
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