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PACS. 47.55.D- – Drops and bubbles.
PACS. 83.50.Rp – Wall slip and apparent slip.
PACS. 47.11.-j – Computational methods in fluid dynamics.

Abstract. – The phenomenon of apparent slip in micro-channel flows is analyzed by means
of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-
wall interactions. The weakly inhomogeneous limit of this model is solved analytically. The
present mesoscopic approach permits to access much larger scales than molecular dynamics,
and comparable with those attained by continuum methods. However, at variance with the
continuum approach, the existence of a gas layer near the wall does not need to be postulated a
priori, but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is therefore
argued that a mesoscopic lattice Boltzmann approach with non-ideal fluid-fluid and fluid-wall
interactions might achieve an optimal compromise between physical realism and computational
efficiency for the study of channel micro-flows.

The microscopic physics underlying fluid/solid interactions is fairly rich and complex, for it
depends on specific details of molecular interactions as well as on the micro-geometrical details
of the boundary. However, on a macroscopic scale, these details can often be safely ignored by
assuming that the net effect of surface interactions is simply to prevent any relative motion
between the solid walls and the fluid elements next to them. This is the so-called “no-slip”
boundary condition, which forms the basis of mathematical treatments of bounded flows as
continuum media [1]. No-slip boundary conditions are extremely successful in describing a
huge class of viscous flows. Yet, the evidence is that certain classes of viscous flows do slip
on the wall. Recent advances in microfluidics experiments [2], as well as numerical investiga-
tions [3–7], have identified the conditions which seem to underlie the validity of the no-slip
assumption. Namely: i) single-phase flow; ii) wetted surfaces and iii) low levels of shear rates.
Under such conditions, careful experiments have shown that fluid comes to rest within a few
molecular diameters from the surface [8–11]. Conditions i)-iii) are not exhaustive, though.
For instance, partial slips of simple (Newtonian) flows, such as alkanes and water, is predicted
by an increasing number of experiments [12–15] and simulations [3–7] (see [16] for a review
on experiments and numerics). Under this state of affairs, there appears to be a great need
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to provide a convincing, and possibly general, theoretical picture for the onset of slip motion.
Among others, an increasingly popular explanation is that the flowing fluid would develop a
lighter (less dense) phase and dynamically segregate it in the form of a thin film sticking to
the wall [17,18]. This thin film would then provide a “gliding” surface for the bulk fluid which
would slip on it without ever coming in contact with the solid wall. This gives rise to the so-
called apparent slip phenomenon, that is, the extrapolated bulk flow speed would vanish far-out
away from the wall, even though the actual flow speed in the film does vanish exactly at the wall
location. This film-picture is very appealing, but still in great need of theoretical clarification.
In particular, the underlying mechanisms of film formation are still under question: are they
generic or detail-driven? In this paper, we shall propose that film formation is a generic phe-
nomenon, which can be captured by a one-parameter mesoscopic approach, lying in between
the microscopic (atomistic) and macroscopic (continuum) levels. The mesoscopic approach is
based on a minimal two-phase (lattice) Boltzmann equation (LBE) [19–21], including non-ideal
interactions [22–25], which can drive dynamic phase transitions. At variance with previous
attempts using single-phase LBE with a mixture of free-slip and bounce-back boundary condi-
tions to mimic different slippage properties at the boundaries [26] here we aim at investigating
in deeper detail the origin of a finite slip lenght by resolving the density variations in the prox-
imity of the walls. The only free parameter in the two-phase LBE here adopted is the strength
of these non-ideal (potential energy) interactions. Hopefully, the present mesoscopic approach
provides an optimal compromise between the need of including complex physics (phase transi-
tion) not easily captured by a continuum approach, and the need of accessing experimentally
relevant space-time scales which are out of reach to microscopic Molecular Dynamics (MD)
simulations [3,5–7]. In particular, at variance with the macroscopic approach, the gas film does
not need to be postulated a priori, but emerges dynamically from the underlying mesoscopic
description, by progressive switching of potential interactions. One major advantage of this
formulation is that it allows to develop a simple and straightforward analytical interpretation
of the results, based on the macroscopic limit of the model achieved by a standard Chapman-
Enskog expansion, as well as of the effective slip length arising in the flow. The lattice Boltz-
mann model, used in this paper to describe multiple phases, has been developed by Shan and
Chen in [22] (hereafter SC), well documented in the literature. Among the basic facts to recall,
the model is a minimal discrete version of the Boltzmann equation, and reads as follows:

fl(x+ cl, t+ 1)− fl(x, t) = −1
τ

(
fl(x, t)− f

(eq)
l (x, t)

)
+ Fl, (1)

where fl(x, t) is the probability density function associated to a mesoscopic velocity cl, τ is a
mean collision time, f (eq)

l (x, t) the equilibrium distribution that corresponds to the Maxwellian
distribution in the fully continuum limit and, finally, Fl is an external forcing to be defined
later. The bulk interparticle interaction is proportional to a free parameter, Gb, entering the
balance equation for the momentum change:

d(ρu)
dt

= Gb

∑
l

wlΨ [ρ(x)] Ψ [ρ(x+ cl)] cl, (2)

being wl the equilibrium weights and Ψ the potential function which describes the fluid-
fluid interaction triggered by density variation. By Taylor-expanding eq. (2) one recov-
ers, in the hydrodynamical limit, the equation of motion for a non-ideal fluid with equa-
tion of state P = c2s(ρ − 1

2GbΨ2(ρ)), cs being the sound speed velocity. With the choice
Ψ(ρ) = 1− exp[−ρ/ρ0] with ρ0 = 1 a reference density, the model supports phase transitions
whenever the control parameter exceeds the critical threshold Gb > Gc

b . In our case, Gc
b = 4

for an averaged density 〈ρ〉 = log(2).
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We consider Gb as an external control parameter, with no need of responding to a self-
consistent temperature dynamics. It has been pointed out [27] that the SC model is affected
by spurious currents near the interface due to lack of conservation of local momentum. This
criticism can be ruled out once the instantaneous pre- and post-collisional currents are replaced
by a time average over a collisional time [28]. Let us now consider the main result of this letter,
namely the critical interplay between the bulk physics and the presence of wall effects. In fact,
in order to make contact with experiments and MD simulations, it is important to include
fluid-wall interactions, and notably a parametric form of mesoscopic interactions capable of
mimicking wettability properties as described by contact angles between droplets and the solid
wall [29]. This effect is achieved by assuming that the interaction with the wall is represented
as an external force Fw normal to the wall and decaying exponentially [25,30], i.e.

Fw(x) = Gwρ(x)e−|x−xw|/ξ, (3)

where xw is a vector running along the wall location and ξ the typical length-scale of the
fluid-wall interaction, also known as the Kac range parameter [30].
Equation (3) has been recently used in a similar study to investigate the formation of a

depletion layer close to the wall [31]. Previously, by using a slightly different LBE scheme, it
has been used to show how the wetting angle depends on the ratio Gw/Gb in the presence of
phase coexistence between vapor and liquid [25]. Here we want to study the opposite situation,
i.e. the effects of Gw when the thermodynamically stable bulk physics is governed by a single
phase. The main result is that the presence of the wall may trigger a local phase coexistence
inducing the formation of a less dense phase in the vicinity of the walls and an apparent slip
of the bulk fluid velocity profile extrapolated at the wall location.
In the single-phase situation one cannot use the natural matching with the vapour-liquid

interface in order to extract the physical units of the grid spacing. The only way to match
the physical dimensions is via the pressure definition P = PlukbT/(∆x)3, where Plu is the
pressure in lattice units, kb the Boltzmann constant and ∆x the lattice spacing. Doing this,
we obtain ∆x ∼ 1 nm at room temperature and atmospheric pressure.
Equations (1)-(3) have been numerically solved for different values of the parameters Gb,Gw

and ξ in a two-dimensional channel with periodic boundary conditions in the stream-wise x
direction, being y = 0 and y = Ly the wall positions (Ly = 80∆x for the present calculation).
The sign of Gw is such to give a repulsive force for the liquid particles at the wall. The flow
is driven by a constant pressure gradient in the x direction Fi = δi,x∂xP0. No-slip boundary
conditions (i.e. bounce back boundary conditions with no constraint on the density) are used
at the wall. These boundary conditions are consistent with the fact that the Knudsen number
of the flow is well below unity. For small Knudsen numbers, i.e. in the large-scale limit,
the numerical solutions have been checked against its weakly inhomogeneous macroscopic
hydrodynamic limit, namely

∂tρ+ ∂i(uiρ) = 0, P = c2sρ− Veff (ρ), (4)
ρ [∂tui + (uj∂j)ui] = −∂iP + ν∂j(ρ∂iuj + ρ∂jui) + Fi,

where subscripts i, j run over the two spatial dimensions, ν = c2s(τ − 1/2) and P is the
total pressure consisting of an ideal-gas contribution, c2sρ, plus the so-called excess pressure,
Veff , due to potential-energy interactions. The expression of Veff in terms of both Gb and
Gw reads: Veff (ρ) =

c2
s

2 Gb(1 − exp[−ρ)]2 + Gw

∫ y

0
dsρ(s) exp[−s/ξ]. Let us notice that the

continuum equation (4) naturally predicts the increase of the mass flow rate in the presence of
a density profile which becomes more and more rarefied by approaching the wall [17]. Indeed,
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under stationary conditions, the continuity equation in (4) reduces to ∂y(ρuy) = 0, which,
because of the boundary conditions, implies ρuy = 0, i.e. uy = 0 everywhere. Thus, in a
homogeneous channel along the stream-wise direction, the velocity ux satisfies the equation

ν∂y(ρ∂yux) = −∂xP0. (5)

In the new variable, y′ = y −H, where H = Ly/2, we may express the solution of (5) as

ux(y′) = −
∫ H

y′

s∂xP0

νρ(s)
ds. (6)

Using (6) and assuming that density variations are concentrated in a smaller layer of thickness
δ near the wall, we can estimate the mass flow rate Qeff for small δ as

Qeff

Qpois
= 1 +

3
2
∆ρw

ρw

δ

H
, (7)

where Qpois corresponds to the Poiseuille rate 2∂xP0H
3/3ν valid for incompressible flows with

no-slip boundary conditions. In eq. (7), the quantity ∆ρw is defined as the difference between
ρ computed in the center of the channel and ρw computed at the wall. The effective slip
length is then usually defined in terms of the increment in the mass flow rate [16]:

λs ∼ δ∆ρw/ρw. (8)

This is the best one can obtain by using a purely continuum approach. Our eq. (7) exhibits
the same dependence on the inverse wall density as eq. (16) of [32]. However, the prefactor
in eq. (16) of [32] takes into account atomistic details which in our case are represented
by the single parameter, Gw. The added value of the mesoscopic approach here proposed
consists in the possibility to directly compute the density profile, and its dependency on the
underlying wall-fluid and fluid-fluid physics. To this purpose, we consider the momentum
balance equation in (4) for the direction normal to the wall, i = y. Since uy = 0, we simply
obtain ∂yP = 0, i.e.

c2s∂yρ− 2Gbc
2
s(1− e−ρ)e−ρ∂yρ− Gwρe−y/ξ = 0. (9)

Let us first study the effects of the wall in (9) by setting Gb = 0. One can easily obtain
log(ρ(y)/ρw) = ξGw

c2
s
(1−exp[−y/ξ]), which enables us to estimate ∆ρw = ρw(exp[ξGw/c2s]−1).

Using (8), we obtain for the effective slip-length:

λs/ξ ∼ eξGw/c2
s [Gb = 0]. (10)

As expected, eq. (10) provides the dimensionless slip length in units of the interatomic length,
as a function of the dimensionless ratio of potential to thermal energy [33]. We now turn
our attention to the non-trivial interference between bulk and wall physics whenever Gb > 0.
Defining the bulk pressure as Pb = c2sρ− c2

s

2 Gb(1−exp[−ρ])2, we can rewrite eq. (9) to highlight
its physical content as follows:

log
(

ρ(y)
ρw

)
= ξGw(1− e−y/ξ)/∂Pb/∂ρ, (11)

where the bulk effects appear only through the following term:

∂Pb

∂ρ
≡ 1
log(ρ(y)/ρw)

∫ ρ(y)

ρ(0)

∂Pb

∂ρ

dρ
ρ

. (12)
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Fig. 1 – Rarefaction effects in the full-interaction case Gw, Gb �= 0. Density profiles normalized to the
average density are plotted as a function of the distance from the wall (y). The wall interactions have
been fixed assuming Gw = 0.03 and ξ = 2∆x. The following values of Gb are considered: Gb = 1.5 (+),
Gb = 2.5 (×), Gb = 3.5 (∗), Gb = 3.9 (�), Gb = 3.98 (◦). We remind that the bulk phase transition is
set at Gc

w = 4. Here, the lattice spacing ∆x ∼ 1 nm as explained in the text. As a result, we observe
that δ, the rarefaction layer thickness, is ranging between 4 nm and 20 nm [34] .

Equation (11) highlights two results. First, the effect of the bulk can always be interpreted as
a renormalization of the wall-fluid interaction by GR

w ≡ Gw/∂Pb/∂ρ. Second, as is evident from
the above expression, one must notice that near the bulk critical point where ∂Pb/∂ρ → 0,
the renormalizing effect can become unusually great. In other words, the presence of the
wall may locally push the system toward a phase transition even if the bulk physics is far
from the transition point. As a result, the effective slip length in the presence of both wall
and bulk non-ideal interactions can be estimated as λs ∼ ξ exp[ξGR

w ]. In fig. 1 we show ρ(y)
for different values of Gb and Gw = 0.03, ξ = 2∆x as obtained by numerically integrating
eqs. (1)-(3). The numerical simulations have been carried out by keeping fixed the value of
〈ρ〉 = 1

Ly

∫ Ly

0
ρ(s)ds = log(2). As one can see, while Gb → Gc = 4, the density difference

∆ρw between the center of the channel and the wall increases, as predicted by eq. (9). Conse-
quently, the mass flow rate increases as shown in fig. 2. Let us notice in the same figure that
also with Gw = 0, the wall initiates a small rarefaction effect due to the fact that fluid par-
ticles close to the boundary are attracted only by particles in the bulk of the channel. What
we showed here is that the combined actions of Gw and Gb → Gc

b may strongly increase the
formation of this less dense region in the proximity of the surface. For a quantitative check,
we have numerically integrated eqs. (9) and (6) for a given value 〈ρ〉 = log(2). The analytical
estimate for ρux is compared with the numerical results in fig. 3. This is a stringent test
for our analytical interpretation. The result is that the analytical estimate is able to capture
the deviations from a pure parabolic profile at approaching the wall region, where rarefaction
effects are present. The crucial point in our analysis is that, even for very small Gw, large
apparent slip can occur in the channel if Gb is close to its critical value, i.e. the limit Gw → 0
and Gb → Gc

b do not commute. For example, let us consider the case when Gw ∼ ε � 1, ξ ∼ ε

and Gb ∼ Gc
b − ε3; we obtain ∂Pb

∂ρ ∼ ε3 and therefore, λs ∼ ξ exp[ξGR
w ] ∼ O(1) for ε → 0.

The wall effect, parametrized by Gw and ξ, can act as a catalyzer in producing large apparent
slip. Let us remark that in the limit of large channel (H/ξ → ∞) and finite specific heat (i.e.
∂Pb/∂ρ > 0) the whole effect disappears and the standard Poiseuille flow profile is recovered.
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Fig. 2 – Increase of the mass flow rate with the coupling strength Gb of fluid-fluid bulk interactions.
Fixing the wall correlation function ξ = 2∆x, we plot the mass flow rate (Qeff ) normalized to its
Poiseuille value (Qpois) as a function of Gb for different values of Gwall: Gwall = 0.0 (◦), Gwall =
0.04 (�), Gwall = 0.08 (×). Inset: same as the main figure for ∆ρw/ρ.

Most of the results shown in figs. 1 and 2 are conducive to the same physical picture emerging
by MD numerical simulations [3, 4, 6, 7]. Our analysis points out that, close to the wall, one
can observe a “local phase transition” triggered by the presence of the wall itself. In sum-
mary, we have shown that a suitable form of the lattice Boltzmann equation can be proposed
in order to simulate apparent slip in microchannels. Slip boundary conditions arise sponta-
neously because, close to the wall, a “gas” layer is formed. If the system is close to a state
where coexistence of different phases (liquid and gas) are thermodynamically achievable, then
macroscopic slip effects can result. We have shown that for large-scale separation, the model
reduces to a continuum set of hydrodynamical equations which explain the qualitative and
quantitative behavior of the mass flow rate in terms of the model parameters, i.e. Gb and Gw.
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Fig. 3 – Momentum profile as a function of the channel height. We plot the momentum profile (ρux)
normalized to its center channel value ((ρux)c) as a function of the distance from the wall (y). The
results of numerical simulations (�) with Gb = 3.5, Gw = 0.08 and ξ = 2∆x are compared with the
analytical estimate (continuous line) obtained solving eqs. (9) and (6). To highlight the rarefaction
effect, the parabolic fit in the center channel region (dotted line) is plotted. Inset: estimate of the
apparent slip length in the channel with the same parabolic fit as in the main figure.
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