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a Dipartimento di Fisica and INFN, Università di Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy
b Istituto Applicazioni Calcolo, CNR, Viale del Policlinico 137, 00161 Roma, Italy

c INFN, Via del Paradiso 12, 44100 Ferrara, Italy

Available online 26 July 2006

Abstract

The phenomenon of apparent slip in micro-channel flows is analyzed by means of a two-phase mesoscopic lattice Boltzmann
model with non-ideal fluid–fluid and fluid–wall interactions. Analytical solutions of the weakly inhomogeneous hydrodynamic limit
of this model are successfully compared with numerical simulations and show that the present mesoscopic approach is capable of
filling the gap between the atomistic size of the interaction potential and the millimetric size of the slip length reported in microflow
experiments. In the critical interplay between fluid–fluid and fluid–wall interactions, our approach indicates an exponential inflation
of the slip length as a function of the ratio of potential to thermal energy.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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The microscopic physics underlying fluid/solid interactions depends on a host of specific details of molecular
interactions and geometrical/chemical details of the confining surfaces. However, on a macroscopic scale, these details
can often be conveyed into synthetic statements regarding the nature of collective motion of the fluid relative the
solid walls. The simplest such statement is the so-called “no-slip” boundary condition, which states the absence
of any relative fluid–wall motion. This boundary condition forms the basis of mathematical treatments of bounded
flows as continuum media [9]. Yet, from recent advances in microfluidics experiments [7,12], as well as numerical
investigations [1,2,4,3], the evidence is that a large class of viscous flows do slip on the wall. Therefore, a general
theoretical picture for the onset of slip motion is much needed. Among others, an increasingly popular explanation
is that the flowing fluid would develop a lighter (less dense) phase and dynamically segregate it in the form of
a thin film sticking to the wall [13,6]. This thin film would then offer a reduced resistance to the near-wall fluid
flow, thus providing the basis for slip motion. Although appealing, this film picture is still in need of theoretical
consolidation. This phenomenon of ‘apparent slip’ will be here addressed by means of numerical simulations as
well as analytical solutions of the weakly inhomogeneous hydrodynamic equations with a non-ideal equation of
state.

∗ Corresponding author.
E-mail address: Mauro.Sbragaglia@roma2.infn.it (R. Benzi).

0378-4754/$32.00 © 2006 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.matcom.2006.05.034

mailto:Mauro.Sbragaglia@roma2.infn.it


R. Benzi et al. / Mathematics and Computers in Simulation 72 (2006) 84–88 85

For this purpose, we shall make use of the lattice Boltzmann model developed by Shan and Chen in [10] (hereafter
SC). This reads as follows:

fl(x + cl, t + 1) − fl(x, t) = −1

τ
(fl(x, t) − f

(eq)
l (x, t)) + Fl (1)

where fl(x, t) is the probability density function associated to a mesoscopic velocity cl, τ a mean collision time,
f

(eq)
l (x, t) the equilibrium distribution that corresponds to the Maxwellian distribution in the fully continuum limit

and, finally, Fl is an external forcing associated with intermolecular interactions. The bulk interparticle interaction is
controlled by a free parameter, Gb, entering the balance equation for the momentum change:

d(ρu)

dt
= Gb

∑
l

wlΨ [ρ(x)]Ψ [ρ(x + cl)]cl (2)

where wl is the equilibrium weights and Ψ is the potential describing non-ideal fluid–fluid interactions. By Taylor
expanding Eq. (2) one recovers, in the hydrodynamic limit, the equation of motion for a non-ideal fluid with equation
of state P = c2

s (ρ − (1/2)GbΨ
2(ρ)), where cs is the sound speed velocity. With the choice Ψ (ρ) = 1 − exp(−ρ/ρ0)

with ρ0 = 1 a reference density, the model supports phase transitions whenever the control parameter exceeds the
critical threshold Gb > Gc

b. In our case, Gc
b = 4 for an averaged density 〈ρ〉 = log(2).

Let us now consider the central point of this work, namely the critical interplay between bulk physics and wall
effects. In fact, in order to make contact with experiments and MD simulations, it is important to include fluid–wall
interactions, and notably a parametric form of mesoscopic interactions capable of mimicking wettability properties as
described by contact angles between droplets and the solid wall [5]. This effect can be achieved by assuming that the
interaction with the wall is represented as an external force Fw normal to the wall and decaying exponentially [14,11],
i.e.

Fw(x) = Gwρ(x) e−|x−xw|/ξ (3)

where xw is a vector running along the wall location and ξ is the typical length-scale of the fluid–wall interaction. Here,
we aim at studying the effects of Gw when the thermodynamically stable bulk physics is governed by a single phase.
The main result is that the presence of the wall may trigger a local phase coexistence, inducing the formation of a less
dense phase in the vicinity of the walls and an apparent slip of the bulk fluid velocity profile extrapolated at the wall
location.

With the flow driven by a constant pressure gradient in the x (streamwise) direction, Fi = δi,x ∂xP0, and the walls
located at y = 0 and Ly, Eqs. (1)–(3) have been numerically solved in two dimensions. No-slip boundary conditions
are used at the boundary and Gw is such that a repulsive force for the liquid at the wall is introduced. The macroscopic
limit of our model reads then as follows:

∂tρ + ∂i(uiρ) = 0

ρ[∂tui + (uj ∂j)ui] = −∂iP + ν ∂j(ρ ∂iuj + ρ ∂jui) + Fi

(4)

where subscripts i and j run over the two spatial dimensions, ν = c2
s (τ − 1/2) and P = c2

s ρ − Veff(ρ, y) is the total
pressure consisting of an ideal-gas contribution (c2

s ρ) plus the so-called excess pressure, Veff, due to potential–energy
interactions. The expression of Veff in terms of both Gb and Gw reads:

Veff(ρ, y) = c2
s

2
Gb(1 − exp(−ρ))2 + Gw

∫ y

0
dsρ(s) exp

(
− s

ξ

)
.

For steady states (∂t = 0) and under the assumption of homogeneity (∂x = 0), the spanwise (y) momentum balance
equation reduces to:

∂yP(ρ) = c2
s ∂yρ − 2Gbc

2
s (1 − e−ρ) e−ρ∂yρ − Gwρ e−y/ξ = 0 (5)

whose solution delivers the density profile. The corresponding velocity profile is then obtained by the momentum
equation along the streamwise coordinate ν ∂y(ρ ∂yux) = −∂xP0. With density variations concentrated in a thin layer
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of thickness δ near the wall, the mass flow rate Qeff for small δ can be estimated as follows:

Qeff

Qpois
= 1 + 3

2

�ρw

ρw

δ

H
(6)

where Qpois corresponds to the Poiseuille rate 2 ∂xP0H
3/3ν valid for incompressible flows with no-slip boundary

conditions. In Eq. (6), the quantity �ρw is defined as the difference between ρ computed in the center of the channel
and ρw computed at the wall. The effective slip length, usually defined in terms of the increment in the mass flow rate,
reads [8]:

λs ∼ δ
�ρw

ρw
. (7)

This is the best one can obtain using a continuum approach. The added value of the mesoscopic approach rests with
the possibility to directly compute the density profile, and its dependency on the underlying wall–fluid and fluid–fluid
physics.

We now turn our attention to the non-trivial interference between bulk and wall interactions whenever Gb > 0. To
this purpose, we define the bulk pressure as: Pb = c2

s ρ − (c2
s /2)Gb(1 − exp(−ρ))2. For the case Gb = 0, one readily

obtains �ρw = ρw(exp(ξGw/c2
s ) − 1) and, using (7), the effective slip-length as follows:

λs ∼ ξ eξGw/c2
s [Gb = 0]. (8)

This shows that the slip length grows exponentially with the ratio of potential to kinetic energy φ ≡ Gwξ/c2
s . For the

most general case, we can rewrite Eq. (5) to highlight its physical content as follows:

log

(
ρ(y)

ρw

)
= ξGw(1 − e−y/ξ)

∂Pb/∂ρ
(9)

where the bulk effects appear only through the term

∂Pb

∂ρ
≡ 1

log(ρ(y)/ρw)

∫ y

0

∂Pb

∂ρ

dρ

ρ
.

Eq. (9) highlights two results. First, the effect of the bulk can always be interpreted as a renormalization of the wall–fluid
interaction by

GR
w ≡ Gw

∂Pb/∂ρ
. (10)

Second, as it is evident from (10), one notices that near the bulk critical point, where ∂Pb/∂ρ → 0, the renormalizing
effect can drive the effective coupling to extremely large values, thus triggering a sort of local phase transition with no
counterpart in an unbounded fluid. Consequently, while Gb → Gc = 4 and the rarefaction effect grows (see inset of
Fig. 1), the mass flow rate increases as shown in Fig. 1.

What we showed here is that the combined actions of Gw and Gb → Gc
b may strongly increase the formation of

this less dense region in the proximity of the surface. For a more quantitative check, we have numerically integrated
our streamwise momentum equation for a given value 〈ρ〉 = log(2). The analytical estimate for ρux is compared with
the numerical results in Fig. 2. This is a stringent test for our analytical interpretation. The result is that the analytical
estimate is able to capture the deviations from a pure parabolic profile at approaching the wall region, where rarefaction
effects are present.

Most of the results shown here share the same physical picture emerging by MD numerical simulations [1,2,4,3].
Anyway, in our case, the use of explicit fluid–wall potentials in LB simulations might be questioned on account of
the fact that the range of the fluid–wall potential, ξ, is a genuinely atomistic quantity, of the order of the nanometer or
so. As a result, consistent simulations with �x ∼ ξ would – in principle – require millions of grid points to cover the
millimetric distances relevant to microflow experiments. This criticism can be, at least partially, offset by appealing to
universality: as long as the relevant physics is governed by dimensionless numbers, rather than by the actual value of
physical quantities, a mesoscopic approach appears to be fully justified.

In summary, we have shown that a suitable form of the lattice Boltzmann equation with non-ideal interactions
provides a valuable numerical and conceptual framework for the interpretation of the apparent-slip phenomenon in
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Fig. 1. Increase of the mass flow rate with the coupling strength Gb of fluid–fluid bulk interactions. Fixing the wall correlation function ξ = 2,
we plot the mass flow rate (Qeff) normalized to its Poiseuille value (Qpois) as a function of Gb for different values of Gwall: Gwall = 0.0 (©),
Gwall = 0.04 (�), Gwall = 0.08 (×). (Inset) Same as the main figure for �ρw/ρ.

Fig. 2. We plot the momentum profile (ρux) normalized to its center channel value ((ρux)c) as a function of the normalized distance from the wall.
The results of numerical simulations (�) with Gb = 3.5, Gw = 0.08 and ξ = 2 are compared with the analytical estimate (continuous line). The
parabolic fit in the center channel region (dotted line) is also plotted. (Inset) Estimate of the apparent slip length in the channel obtained the same
parabolic fit as in the main figure.

microflows. The advantage over the continuum approach is that slip boundary conditions arise spontaneously because,
close to the wall, a “gas” layer is formed as a consequence of the intermolecular interactions. The major result of our
analysis is that the synergistic combination of fluid–wall and fluid–fluid interactions can trigger local phase transitions
in the vicinity of the wall thus providing large slip effects.
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