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We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of
nonlinear models of turbulence. We construct, for any given nonlinear model, a linear model of passive
advection of an auxiliary field whose anomalous scaling exponents are the same as the scaling exponents
of the nonlinear problem. The statistics of the auxiliary linear model are dominated by ‘‘statistically
preserved structures‘‘ which are associated with exact conservation laws. The latter can be used, for
example, to determine the value of the anomalous scaling exponent of the second order structure function.
The approach is equally applicable to shell models and to the Navier-Stokes equations.
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The calculation of the scaling exponents of structure
functions of nonlinear turbulent velocity fields remains
one of the major open problems of statistical physics [1].
Dimensional considerations fail to provide the measured
exponents, and present theory cannot even specify the
mechanism for the so-called ‘‘anomaly,’’ i.e., the deviation
of the scaling exponents from their dimensional estimates.
Theoretical attempts to calculate the exponents were
mainly based on perturbative expansions [2] or on closures
of the infinite correlation function hierarchy [3]. In this
Letter we propose a new idea to ascertain the anomaly of
the scaling exponents in turbulence. In addition, we exhibit
an alternative way to determine the anomalous scaling
exponent of the second order structure function. The pro-
posed approach is equally applicable to Navier-Stokes
turbulence and to simplified models of turbulence, like
nonlinear shell models. The only distinction is in the ease
of numerical demonstration.

The central idea is to construct a linear model whose
scaling exponents are the same as those of the nonlinear
problem. In this linear problem the exponents are universal
to the forcing, and we understand the mechanism for the
anomaly of the scaling exponents; we use this to show that
also the nonlinear problem must have anomalous expo-
nents. We exemplify the idea first in the context of the
Navier-Stokes equations. Consider a model for two
coupled vector fields u and w,

 

@u
@t
� u � ru� �w � ru � �rp� �r2u� f ; (1)

 

@w
@t
� u � rw� �w � rw � �r~p� �r2w� ~f : (2)

Here � is the kinematic viscosity, p and ~p are pressure
fields imposing r � u � r � w � 0, and f and ~f are two
uncorrelated Gaussian random forcing. Finally, � is a real
number. Here and below we assume that the scaling ex-
ponents are universal to the forcing. We want to demon-

strate their anomaly and to find their numerical values. For
� � 0 Eq. (1) reduces to the Navier-Stokes equations for u,
whereas Eq. (2) becomes a linear equation for w, passively
advected by u. This linear problem was referred to before
as a ‘‘passive vector with pressure’’ [4–6]. It exhibits
anomalous exponents that are universal to the forcing. In
addition, one understands the mechanism for the anomaly
[7–10]; the linear model possesses ‘‘statistically preserved
structures’’ (SPS) which are evident in the decaying prob-
lem. These are left eigenfunctions of eigenvalue 1 of the
linear propagator for each order (decaying) correlation
function; see below for more detail. Evidently, for any
finite value of 0< �<1 the scaling exponents of the
two fields u and w must be the same, due to the symmetry
�w$ u and the assumed universality to the forcing.
Consider the two composite fields u� � u��w and
u� � u��w. Choose the forcing terms in (1) and (2)
such that h�f �� ~f��f �� ~f�i � 0. Then u� satisfies pre-
cisely the Navier-Stokes equations (with forcing f �� ~f)
while u� is a passive vector advected by u� and forced by
f �� ~f . Namely, u� and u� satisfy Eqs. (1) and (2) for u
and w for � � 0. Our main proposition is that the scaling
exponents of the Navier-Stokes field u� and of the passive
vector u� are the same. If true, we can study the anomalous
scaling of the Navier-Stokes problem by using the success-
ful tools and the concepts employed to understand the
anomalous scaling for passive fields (scalar or vector).

To verify our proposition we present in Fig. 1 the scaling
properties of u� and u� for � � 1 obtained by direct
numerical simulations of Eqs. (1) and (2). The pseudospec-
tral code used for the simulations has a resolution of 1283,
dealiased with 2=3 rule, with a normal viscosity 0.075,
time step 1:6� 10�3. The forcing was an Ornstein-
Uhlenbeck process with amplitude 0.75 on jkj � 1 modes,
and with amplitude scaled down dimensionally up to
modes with jkj 	 2. In Fig. 1 we show an extended self-
similarity plot and a direct plot of the sixth order structure
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functions for both u� and u�. One observes convincing
scaling behavior with the same exponent for both field. In
the upper inset we show the anomalous exponents zp �
�p=�3 � p=3 for the field u� (line) and u� (circles) com-
puted up to order 8: the agreement is excellent. Thus, the
Navier-Stokes field appears to have the same scaling ex-
ponents as the passive vector field. For additional strong
evidence we turn to shell models [11–13].

To reach a deeper understanding of the relation between
the nonlinear and the linear models, and to clearly present
the role of the statistically preserved structures, we con-
sider the Sabra shell model which is a truncated description
of the Navier-Stokes equations:
 �
d
dt
� �k2

n

�
un � i
kn�1u

�
n�1un�2 � �knu

�
n�1un�1

� �1� ��kn�1un�1un�2� � fn: (3)

Here un are the velocity modes restricted to ‘‘wave vec-
tors’’ kn � k02n with k0 determined by the inverse outer
scale of turbulence. The model contains one additional
parameter, �, and it conserves two quadratic invariants
(when the force and the dissipation term are absent) for
all values of �. The first is the total energy

P
njunj

2 and the
second is

P
n��1�nk�n junj2, where � � log2�1� ��. In this

Letter we consider values of the parameters such that 0<
�< 1 where the second invariant contributes only sublead-
ing exponents to the structure functions [14,15]. The ex-
ponents characterize the structure functions:

 S2�kn� � hunu�ni  k
��2
n ; (4)

 S3�kn�� Imhun�1unu�n�1ik
��3
n ; Sp�kn�k

��p
n : (5)

The values of the scaling exponents were determined ac-
curately by direct numerical simulations. Besides �3 which
is exactly unity [16], all the other exponents �p are anoma-

lous, differing from p=3. It was established numerically
that the scaling exponents are universal, i.e., they are
independent of the forcing fn as long as the latter is
restricted to small n [12]. Despite of the much simpler
structure of shell models in comparison with Navier-Stokes
equations, there are no analytical calculations of scaling
exponents. Previous attempts being manly based on sto-
chastic closures [17,18].

Consider then a passive advected field which in the dis-
crete shell space has the complex amplitudes wn. The dy-
namical equations for this field are linear and constructed
under the following requirements: (i) the structure of the
equations is obtained by linearizing the nonlinear problem
and retaining only such terms that conserve the energy;
(ii) the resulting equation is identical with the sabra model
when wn � un; (iii) the energy is the only quadratic in-
variant for the passive field in the absence of forcing and
dissipation. These requirements lead to the following linear
model:

 

dwn
dt
�
i
3

�n�u;w� � �k
2
nwn � fn; (6)

where the advection term is defined as
 

�n�u;w� � kn�1
�1���un�2w�n�1��2���u
�
n�1wn�2�

� kn
�1� 2��u�n�1wn�1��1���un�1w�n�1�

� kn�1
�2���un�1wn�2

��1� 2��un�2wn�1�: (7)

Observe that when wn � un this model reproduces the
Sabra model, and also that the total energy is conserved
because

P
nIm 
�n�u;w�w

�
n� � 0. The second quadratic

invariant is not conserved by the linear model. Finally,
both models have the same ‘‘phase symmetry’’ in the sense
that the phase transformations un ! un exp�i�n� and
wn ! wn exp�i�n� leave the equations invariant iff�n�1 �
�n � �n�1, �n�1 � �n � �n�1. This identical phase rela-
tionship guarantees that the nonvanishing correlation func-
tions of both models have precisely the same forms. Thus,
for example, the only second and third correlation func-
tions in both models are those written explicitly in Eqs. (4)
and (5).

As already remarked, the anomalous scaling of wn can
be investigated in terms of the SPS [7,9,10]. For example,
for the second order correlation function denote the propa-
gator P�2�n;n0 �tjt0�; this operator propagates any initial condi-
tion hwnw�ni�t0� (with average over initial conditions, inde-
pendent of the realizations of the advecting field un) to the
decaying correlation function (with average over realiza-
tions of the advecting field un)

 hwnw�ni�t� � P�2�n;n0 �tjt0�hwn0w
�
n0 i�t0�: (8)

The second order SPS, Z�2�n , is the left eigenfunction with
eigenvalue 1,

 Z�2�n0 � Z�2�n P
�2�
n;n0 �tjt0�: (9)

Note that Z�2�n is time independent even though the operator
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FIG. 1. Log-log plot of the sixth order structure functions of
the fields u� and u� (circles and squares, respectively), for � �
1, as a function of the third order structure functions. The dashed
line corresponds to the best fit in the scaling region with slopes
1.77. Lower inset: the sixth order structure function of the two
fields as a function of r. Upper inset: zp � �p=�3 � p=3 com-
puted for the structures functions of u� (line) and u� (circles).
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P�2�n;n0 �tjt0� is time dependent. Each order correlation func-

tion is associated with another propagator P�p��tjt0� and
each of those has an SPS, i.e., a left eigenfunction Z�p� of
eigenvalue 1. These nondecaying eigenfunctions scale with
kn, Z�p�  k

�	p
n , and the values of the exponents 	p are

anomalous. Finally, one can show that these SPS are also
the leading scaling contributions to the structure functions
of the forced problem (6) [7,9]. Thus the scaling exponents
of the linear problem are independent of the forcing fn,
since they are determined by the SPS of the decaying
problem.

Using Eqs. (6), we can now write the (Sabra) shell model
version of Eqs. (1) and (2):

 

dun
dt
�
i
3

�n�u; u� �
i�
3

�n�w; u� � �k
2
nun � fn; (10)

 

dwn
dt
�
i
3

�n�u; w� �
i�
3

�n�w;w� � �k2
nwn � ~fn: (11)

For � � 0 we recover the equations for the nonlinear and a
linear models, Eqs. (3) and (6). At this point we present
strong evidence that the scaling exponents of either field
exhibit no jump in the limit �! 0. Accordingly, the scal-
ing exponents of either field can be obtained from the SPS
of the linear problem.

Equations (10) and (11) were solved numerically for 25
shells with k1 � 2, � � 10�7, � � 0:5 and � � 10�1,
10�3, 10�4, 10�5, 0. In Fig. 2 we show, for example, results
for the sixth order objects hjun�1unu�n�1j

2i and
hjwn�1wnw

�
n�1j

2i. Plotted are double-logarithmic plots of
these object as a function of kn. For the shown values of �
the scaling exponent �6 was measured using the range n �
4–12, with the results 1:71� 0:05, 1:71� 0:03, 1:71�
0:02, 1:73� 0:02, and 1:73� 0:02, respectively. We see
that the exponents of the linear and nonlinear model at � �
0 are the same and they coincide with the exponents of the
two coupled models (10) and (11) for � > 0. The same
results were obtained for all the exponents up to order 10.

We stress at this point that the two problems do not share
exactly the same statistics; the linear problem, being sym-
metric in wn ! �wn has an even probability distribution
function (PDF) and thus zero prefactors for all the odd
structure functions. The statement is only about the identity
of the scaling exponents, neither the trajectory in phase
space nor the PDF. In the inset of Fig. 2 we also demon-
strate that the linear and the nonlinear problems share the
same scaling properties for correlations that depend on
more than one shell. The data pertain to Fp;q�kn; km� �
hjunj

pjumj
qi, with p � 2, q � 2 for both models. Finally,

we comment that the limit �! 0 can be considered mathe-
matically for the shell model equations (10) and (11), to
prove that it is not singular [19].

The greatest asset of the present approach is that we can
now forge a connection between the SPS of the linear
model and the forced correlation function of the nonlinear
problem. This underlines the anomaly of the scaling prop-
erties of the latter model, and allows us to determine �2. We
start with the second order quantities. We can project a
generic second order decaying correlation function of the
linear model onto the second order SPS, thus creating a
statistically conserved quantity [9]:

 I�2� �
X
n

Z�2�n hwnw
�
ni�t� �

X
n;n0
Z�2�n P

�2�
n;n0 �tjt0�hwn0w

�
n0 i�t0�;

(12)

where the average is over different initial conditions for the
linear fields and different realization of the advecting
velocity field. To show that the forced second order corre-
lation of the nonlinear field is dominated by Z�2�, we use
this forced correlation function instead of Z�2� in Eq. (12).
The test is whether I�2� remains constant on a time window
which increases with Reynolds number. This is shown in
Fig. 3. The success of this test demonstrates that (i) there
exists a SPS for the linear problem; (ii) the SPS is well
represented by the forced nonlinear second order correla-
tion functions. This is a direct demonstration that the
correlation function of the nonlinear model scales with
the same anomalous exponent as Z�2�. An even more
stringent test can be made using SPS of orders large than
2, where also correlations between different shells are
relevant for the decaying properties [9,10]. For example,
I�4� is given by the weighted sum of three contributions:

 I�4� �
X
n;m

Z�a;4�n;m hjwnj2jwmj2i�t��
X
n


Z�b;4�n hwnw2
n�1w

�
n�3i�t��c:c:��

X
n


Z�c;4�n hwnwn�1wn�3w�n�4i�t��c:c:�; (13)
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FIG. 2. The sixth order structure function of the field wn in
Eqs. (11) for � � 10�1, 10�3, and 10�5, together with the sixth
order structure function for the Sabra model (3) and for the linear
model (6), respectively. The structure functions of the field un for
� > 0 are not shown since they are indistinguishable from those
of the wn. Inset: log-log plot of the fourth-order correlation
function F2;2�kn; k7� vs kn calculated for the linear field (�)
and for the nonlinear field (solid line) at � � 0.
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where all the terms allowed by the phase symmetry were
employed. In Fig. 3 we show results for I�4� where again we
swapped the SPS of the linear problem for the measured
forced correlations of the nonlinear problem: Z�a;4�n;m !
hjunj

2jumj
2i and the corresponding expressions for Z�b;4�n

and Z�c;4�n . We thus conclude that the scaling exponents of a
given nonlinear shell model can be understood from the
SPS of an appropriately constructed linear problem. To
make this point crystal clear, we have used in fact the
forced structure functions of the nonlinear model as ap-
proximants for Z�2�, Z�4� in the calculation of I�2� and I�4�

shown in Fig. 3. The constancy of both demonstrates that
the forced correlation function of the nonlinear model are
very well approximated by the SPS of the linear model.
This demonstration can be repeated with higher order
correlation functions with the same (or better) degree of
success. Finally, the existence of a conserved quantity I�2�

can be used to calculate 	2 � �2. Starting from a given
arbitrary initial condition (say a � function on one shell)
and computing Eq. (12) with many realizations of the
advecting velocity field, one finds that there exists a
sharply defined 	2, Z�2�n  k

�	2
n , for which I�2� is indeed

constant. The same approach can be used to determine �3

but we know that �3 � 1. Unfortunately, this simple ap-
proach cannot be used for higher order exponents, because
the corresponding SPS depend on more than one kn, and
cannot be represented as a simple power law.

In conclusion, the anomalous scaling of nonlinear mod-
els of turbulence, either the Navier-Stokes equations or
shell models, are determined by the eigenfunctions of the
inertial operator, which are precisely the SPS of the linear
problem. Thus, although the concept of eigenfunctions

cannot be applied directly in nonlinear problems, we are
able to argue that the mechanism leading to anomalous
scaling in Navier-Stokes equations and other nonlinear
models is identical to the one recently discovered for
passively advected fields. This conclusion may open the
way to a deeper understand of intermittency in turbulent
flows and to a direct computation of the anomalous
exponents.
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FIG. 3. With the symbols (� ) the constants I�2� (bottom) and
I�4� (top) constructed by projecting the decaying structure func-
tion of the linear model on the forced structure function of the
nonlinear model. To emphasize the importance of using the
correct SPS, we also show the result for I�4� using the dimen-
sional Kolmogorov prediction for Z4 (small dots) and Z4 � 1
(solid line).
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