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A detailed comparison between data from experimental measurements and numerical simulations of
Lagrangian velocity structure functions in turbulence is presented. Experimental data, at Reynolds
number ranging from R�=350 to R�=815, are obtained in a swirling water flow between
counter-rotating baffled disks. Direct numerical simulations �DNS� data, up to R�=284, are obtained
from a statistically homogeneous and isotropic turbulent flow. By integrating information from
experiments and numerics, a quantitative understanding of the velocity scaling properties over a
wide range of time scales and Reynolds numbers is achieved. To this purpose, we discuss in detail
the importance of statistical errors, anisotropy effects, and finite volume and filter effects, finite
trajectory lengths. The local scaling properties of the Lagrangian velocity increments in the two data
sets are in good quantitative agreement for all time lags, showing a degree of intermittency that
changes if measured close to the Kolmogorov time scales or at larger time lags. This systematic
study resolves apparent disagreement between observed experimental and numerical scaling
properties. © 2008 American Institute of Physics. �DOI: 10.1063/1.2930672�

I. INTRODUCTION

Understanding the statistical properties of a fully devel-
oped turbulent velocity field from the Lagrangian point of
view is a challenging theoretical and experimental problem.
It is a key ingredient for the development of stochastic mod-
els for turbulent transport in such diverse contexts as com-
bustion, pollutant dispersion, cloud formation, and industrial
mixing.1–4 Progress has been hindered primarily by the pres-
ence of a wide range of dynamical time scales, an inherent
property of fully developed turbulence. Indeed, for a com-
plete description of particle statistics, it is necessary to fol-
low their paths with very fine spatial and temporal reso-
lution, on the order of the Kolmogorov length and time
scales � and ��. Moreover, the trajectories should be tracked
for long times, on the order of the eddy turnover time TL,
requiring access to a vast experimental measurement region.
The ratio of the above time scales can be estimated as
TL /���R�, and the Taylor microscale Reynolds number R�

ranges from hundreds to thousands in typical laboratory ex-
periments. Despite these difficulties, many experimental and
numerical studies of Lagrangian turbulence have been re-
ported over the years.5–33 Here, we present a detailed com-
parison between state-of-the-art experimental and numerical
studies of high Reynolds number Lagrangian turbulence. We
focus on single-particle statistics, with time lags ranging
from smaller than �� to order TL. In particular, we study the
Lagrangian velocity structure functions �LVSFs�, defined as

Sp��� = ����v�p� = ��v�t + �� − v�t��p� , �1�

where v denotes a single velocity component.
In the past, the corresponding Eulerian quantities, i.e.,

the moments of the spatial velocity increments, have at-
tracted significant interest in theory, experiments, and nu-
merical studies �for a review, see Ref. 34�. It is now widely
accepted that spatial velocity fluctuations are intermittent in
the inertial range of scales, for ��r�L, L being the largest
scale of the flow. By intermittency, we mean anomalous scal-
ing of the moments of the velocity increments, correspond-
ing to a lack of self-similarity of their probability density
functions �PDFs� at different scales. In an attempt to explain
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Eulerian intermittency, many phenomenological theories
have been proposed, either based on stochastic cascade mod-
els �e.g., multifractal descriptions35–37� or on closures of the
Navier–Stokes equations.38 Common to all these models is
the presence of nontrivial physics at the dissipative scale, r
��, introduced by the complex matching of the wild fluc-
tuations in the inertial range and the dissipative smoothing
mechanism at small scales.39,40 Numerical and experimental
observations show that clean scaling behavior for the Eule-
rian structure functions is found only in a range 10�
�r�L �see Ref. 41 for a collection of experimental and
numerical results�. For spatial scales r�10�, multiscaling
properties, typical of the intermediate dissipative range, are
observed due to the superposition of inertial and dissipative
range physics.40

Similar questions can be raised in the Lagrangian frame-
work: �i� Is there intermittency in Lagrangian statistics? �ii�
Is there a range of time lags where clean scaling properties
�i.e., power law behavior� can be detected? �iii� Are there
signatures of the complex interplay between inertial and dis-
sipative effects for small time lags ��O����?

In this paper, we shall address the above questions by
comparing direct numerical simulations �DNSs� and labora-
tory experiments. Unlike Eulerian turbulence, the study of
which has attracted experimental, numerical, and theoretical
efforts since the past 30 years, Lagrangian studies become
available only very recently mainly due to the severe diffi-
culty of obtaining accurate experimental and numerical data
at sufficiently high Reynolds numbers. Consequently, the un-
derstanding of Lagrangian statistics is still poor. This ex-
plains the absence of consensus on the scaling properties of
the LVSF. In particular, there have been different assess-
ments of the scaling behavior,

Sp��� = ����v�p� � ���p�, �2�

when a single number, i.e., the scaling exponent ��p�, is ex-
tracted over a range of time lags.

Measurements using acoustic techniques10,15 gave the
first values of the exponents ��p�, measuring scaling proper-
ties in the range 10�����TL. Subsequently, experiments
based on complementary metal oxide semiconductor
�CMOS� sensors26,28 provided access to scaling properties
for shorter time lags, 2�����6��, finding more intermittent
values, although compatible with Ref. 10. DNS data, ob-
tained at lower Reynolds number, allowed simultaneous
measurements in both of these ranges.23,29 For 10����
�50��, scaling exponents were found to be slightly less in-
termittent than those measured with the acoustic techniques,
although again compatible within error bars. On the other
hand, DNS data29,33,42 for small time lags, 2�����6��,
agree with scaling exponents measured in Ref. 26.

The primary goal of this paper is to critically compare
state-of-the-art numerical and experimental data in order to
analyze intermittency at both short, ����, and intermediate,
�����TL, time lags. This is a necessary step both to bring
Lagrangian turbulence up to the same scientific standards as
Eulerian turbulence and to resolve the conflict between ex-
periment and simulations �see also Refs. 33, 42, and 43�.

To illustrate some of the difficulties discussed above, in

Fig. 1, we show a compilation of experimental and numerical
results for the second-order Lagrangian structure function at
various Reynolds numbers �see later for details�. Here and in
the following, we consider the LVSF averaged over the three
components, so that expression �1� for moment of order p is
generalized to Sp���= � 1

3
�	i����vi�p�, and the index i runs over

the spatial components. The curves are compensated with the
dimensional prediction given by the classical Kolmogorov
theory in the inertial range,44 S2���=C0��, where � is the
turbulent kinetic energy dissipation. The absence of any ex-
tended plateau and the trend with the Reynolds number in-
dicate that the inertial range, if any, has not developed yet.
The same trends have been observed in other DNS studies27

and by analyzing the temporal behavior of signals with a
given power law Fourier spectrum.45

We stress that assessing the actual scaling behavior of
the second �and higher� order LVSFs is crucial for the devel-
opment of stochastic models for Lagrangian particle evolu-
tion. Indeed, these models are based on the requirement that
the second-order LVSF scales as S2���	��. The issues of
whether the predicted scaling is ever reached and ultimately
how the LVSF deviate as a function of the Reynolds numbers
remain to be clarified.

Moreover, an assessment of the presence of Lagrangian
intermittency calls for more general questions about phe-
nomenological modeling. For instance, multifractal models
derived from Eulerian statistics can be easily translated to the
Lagrangian framework10,23,46,47 with some degree of
success.10,13,18

The material is organized as follows. In Sec. II, we de-
scribe the properties of the experimental setup and the DNSs,
detailing the limitations in both sets of data. A comparison of
LVSFs is considered in Sec. III. Section III A presents a
detailed scale-by-scale discussion of the local scaling expo-
nents, which is the central result of the paper. Section IV
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FIG. 1. Log-log plot of the second-order LVSF �averaged over the three
components� normalized with the dimensional prediction, i.e., S2��� / ����, at
various Reynolds numbers and for all data sets. Details can be found in
Tables I and II. EXP2 and EXP4 refer to experiments at the same Reynolds
number �R�=690�, but with different measurement volumes �larger in
EXP4�; in particular, EXP2 and EXP4 better resolve the small and large
time lag ranges, respectively, and intersect for � /���2. We indicate with a
solid line the resulting data set made of data from EXP2 �for � /���2� and
EXP4 �for � /��
2�; a good overlap among these data is observed in the
range 2�� /���8. For all data sets, an extended plateau is absent, indicat-
ing that the power law regime typical of the inertial range has not yet been
achieved, even at the highest Reynolds number, R��815, in experiment.
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draws conclusions and offers perspectives for the future
study of Lagrangian turbulence.

II. EXPERIMENTS AND NUMERICAL SIMULATIONS

Before describing the experimental setup and the DNS,
we shall briefly list the possible sources of uncertainties in
both experimental and DNS data. In general, this is not an
easy task. First, it is important to discern the deterministic
from the statistical sources of errors. Second, we must be
able to assess the quantitative importance of both types of
uncertainties on different observables.

Deterministic uncertainties. For simplicity, we report in
this work the data averaged over all three components of the
velocity for both the experiments and the DNS. Since neither
flows in the experiments nor the DNS are perfectly isotropic,
a part of the uncertainty in the reported data comes from the
anisotropy. In the experiments, the anisotropy reflects the
generation of the flow and the geometry of the experimental
apparatus. The anisotropy in DNS is introduced by the finite
volume and by the choice of the forcing mechanism. In gen-
eral, the DNS data are quite close to statistical isotropy, and
anisotropy effects are appreciable primarily at large scales.
This is also true for the data from the experiment, especially
at the higher Reynolds numbers. An important limitation of
the experimental data is that the particle trajectories have
finite length due both to finite measurement volumes and to
the tracking algorithm, which primarily affect the data for
large time lags. It needs to be stressed, however, that in the
present experimental setup due to the fact that the flow is not
driven by bulk forces, but by inertial and viscous forces at
the blades, the observation volume would anyhow be limited
by the mean velocity and the time it takes for a fluid particle
to return to the driving blades. At the blades, the turbulence
is strongly influenced by the driving mechanism. Therefore,
in the experiments reported here, the observation volume
was selected to be sufficiently far away from the blades to
minimize anisotropy. For short-time lags, the greatest experi-
mental difficulties come from the finite spatial resolution of
the camera and the optics, the image acquisition rate, data
filtering, and postprocessing, a step necessary to reduce
noise. For DNS, typical sources of uncertainty at small time
lags are due to the interpolation of the Eulerian velocity field
to obtain the particle position, the integration scheme used to
calculate trajectories from the Eulerian data, and the numeri-
cal precision of floating point arithmetic.

The statistical uncertainties for both the experimental
and DNS data arise primarily from the finite number of par-
ticle trajectories and—especially for DNS—from the time
duration of the observation. We note that this problem is also
reflected in a residual, large-scale anisotropy induced by the
nonperfect averaging of the forcing fluctuations in the few
eddy turnover times simulated. The number of independent
flow realizations can also contribute to the statistical conver-
gence of the data. While it is common to obtain experimental
measurements separated by many eddy turnover times, typi-
cal DNS results contain data from at most a few eddy turn-
over times.

We stress that, particularly for Lagrangian turbulence,

only an in-depth comparison of experimental and numerical
data will allow the quantitative assessment of uncertainties.
For instance, as we shall see below, DNS data can be used to
investigate some of the geometrical and statistical effects in-
duced by the experimental apparatus and measurement tech-
nique. This enables us to quantify the importance of some of
the above mentioned sources of uncertainty directly. DNS
data are, however, limited to smaller Reynolds number than
experiment; therefore, only data from experiments can help
to better quantify Reynolds number effects.

A. Experiments

The most comprehensive experimental data of Lagrang-
ian statistics are obtained by optically tracking passive tracer
particles seeded in the fluid. Images of the tracer particles are
analyzed to determine their motion in the turbulent flow.6,7,48

Due to the rapid decrease of the Kolmogorov scale with Rey-
nolds number in typical laboratory flows, previous experi-
mental measurements were often limited to small Reynolds
numbers.6,8 The Kolmogorov time scale at R��103 in a
laboratory water flow was so far resolved only by using four
high speed silicon strip detectors originally developed for
high-energy physics experiments.9,11 The one-dimensional
nature of the silicon strip detector, however, restricted the
three-dimensional tracking to a single particle at a time, lim-
iting severely the rate of data collection. Recent advances in
electronics technology now allow simultaneous three-
dimensional measurements of O�102� particles at a time by
using three cameras with two-dimensional CMOS sensors.
High-resolution Lagrangian velocity statistics at Reynolds
numbers comparable to those measured using silicon strip
detectors are therefore becoming available.26

Lagrangian statistics can also be measured acoustically.
The acoustic technique measures the Doppler frequency shift
of ultrasound reflected from particles in the flow, which is
directly proportional to their velocity.10,15 The size of the
particles needed for signal strength in the acoustic measure-
ments can be significantly larger than the Kolmogorov scale
of the flow. Consequently, the particles do not follow the
motion of fluid particles,11 and this makes the interpretation
of the experimental data more difficult.15

The experimental data here presented are discussed in
much detail in Refs. 26 and 28. In the following, we only
briefly recall the main aspects of the experimental technique
and data sets, whose parameters are summarized in Table I.
Turbulence was generated in a swirling water flow between
counter-rotating baffled disks in a cylindrical container. The
flow was seeded with polystyrene particles of size dp

=25 �m and density �p=1.06 g /cm3 that follow the flow
faithfully for R� up to 103.11 The particles were illuminated
by high-power Nd:YAG lasers, and three cameras at different
viewing angles were used to record the motion of the tracer
particles in the center of the apparatus. Images were pro-
cessed to find particle positions in three-dimensional physi-
cal space; the particles were then first tracked using a pre-
dictive algorithm to obtain the Lagrangian trajectories.48 Due
to fluctuations in laser intensity, the uneven sensitivity of the
physical pixels in the camera sensor array, plus electronic
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and thermal noise, images of particles sometimes fluctuate
and appear to blink. When the image intensity of a particle
was too low, the tracking algorithm lost that particle. Conse-
quently, the trajectory of that particle was terminated. When
the image intensity is high again, the algorithm started a new
trajectory. The raw trajectories therefore contained many
short segments that in reality belonged to the same trajectory.
It is, however, possible to connect these segments by apply-
ing a predictive algorithm in the six-dimensional space of
coordinates and velocities. The trajectories discussed in this
paper were obtained with the latter method, which allows for
much longer tracks.

The Lagrangian velocities were calculated by smoothing
the measured positions and subsequently differentiating. A
Gaussian filter has been used to smooth the data. Smoothing
and differentiation can be combined into one convolution
operation by integration by parts; the convolution kernel is
simply the derivative of the Gaussian smoothing filter.16 The
width of the Gaussian kernel was chosen to remove the noise
in position measurements, but not to suppress the fluctua-
tions, whose characteristic time scale is O���� or above. The
velocity statistics have been found to be insensitive to the
width  of the Gaussian filter, provided that it is between
�� /6 and �� /3 �see also below�. The temporal resolution of
the camera system in the experiments reported here was suf-
ficiently high to ensure that the fluctuations with time scale
greater than �� /6 were well resolved.

The uncertainty in position measurement, or the spatial
resolution, is directly proportional to the size of the spatial
discretization determined by the optical magnification and by
the size of the pixels on the CMOS sensor. Larger magnifi-
cation gives better spatial resolution but also a smaller mea-
surement volume. Indeed, the number of usable pixels of the
camera sensor array is fixed by the chip size and, at higher
speeds, by the imaging rate. The dynamic range of the cam-
eras is not sufficient to cover the entire range of scales of the
turbulence at the Reynolds numbers of interest. Therefore,
two sets of experiments with different magnifications have
been performed. The former set has a high spatial resolution

and focuses on the small scale quantities, although with a
relatively small measurement volume �EXP1, 2, and 3 in
Table I�. Then, in order to probe longer times and larger
scales, the size of the measurement volume in the second set
of measurements was chosen to be slightly smaller than the
integral scale �EXP4 in Table I�. In this data set, however, the
uncertainty in position was larger and the short-time statistics
were severely affected. As a result, in order to have experi-
mental data covering a wide range of time lags �����
�100��� at a given Reynolds number, one needs to merge
data from the two different experiments. This could be done
at R�=690 by using data from the small measurement vol-
ume �EXP2� up to times ���6–7��� and using data from
large measurement volume �EXP4� at larger times. The pro-
cedure is well justified as the two data sets match for inter-
mediate time lags.

One noticeable difference between experiments and nu-
merical simulations is the number of independent realiza-
tions included in the statistics. While it is difficult to have
many statistically independent DNS results at one Reynolds
number, the experimental data usually contained O�103�
records separated by a time interval of about 102TL. Each of
these records lasted for �1–2�TL. The variation of the veloc-
ity fluctuations calculated from the statistics of many records
is shown in Fig. 2�a�. As it is clear from it, the three compo-
nents do not fluctuate about the same value, indicating the
presence of anisotropy, which does not average away even
after many eddy turnover times. These effects are introduced
by the flow generation in the apparatus. In the following, the
uncertainties in the data sets due to anisotropy were esti-
mated by the difference between measurements made on dif-
ferent components of the velocity field.

B. DNS

Nowadays, state-of-the-art numerics19,23,49,50 best suited
for Eulerian statistics is able to reach Taylor scale Reynolds
numbers of the order of R��1000 by using up to 40963

mesh points.50 Such extremely high Reynolds number DNS

TABLE I. Parameters of the experiments. Column 2 gives the Taylor microscale Reynolds numbers taken from previous experiments �Ref. 11� in the same
flow generating apparatus at the same driving speeds of the motors reported here. In Ref. 11, a small volume ��2 mm�3 at the center of the apparatus was
measured, while the measurement volumes in the current experiments were ��2 cm�3 and ��5 cm�3. We found that the local velocity fluctuations, measured
in subvolumes with size of �2 mm�3, varied by 5%–10%. This might be attributed to statistical convergence �typically �105 samples in each subvolume� and
possibly to the inhomogeneity of the flow. At the center of the apparatus, the fluctuation velocity was the highest and agreed with the value reported in Ref.
11. The fluctuation velocities reported in column 3 are the spatial averages over the entire measurement volume. They are approximately 5% lower than the
values given in Ref. 11. Since R�	vrms�2 , a 5% difference in vrms� corresponds to a 10% difference in R�. Column 3 gives the value of the root-mean-square
velocity fluctuations vrms� averaged over the three components. The integral length scale L
vrms�3 /�=7 cm was determined to be independent of Reynolds
number. TL
L /vrms� is the eddy turnover time. Nf is the temporal resolution of the measurement in units of frames per ��. The measurement volume was
nearly a cube in the center of the tank and its linear dimensions are given in units of the integral length scale L. �x is the spatial discretization of the recording
system. The spatial uncertainty of the position measurements is roughly 0.1�x. NR is the number of independent realizations recorded �see text�. Ntr is the
number of Lagrangian trajectories measured. We note that the energy dissipation rate was inferred from measurements of the second-order Eulerian structure
functions.

No. R�

vrms�
�m/s�

�
�m2 /s3�

�
��m�

��

�ms�
TL

�s�
Nf

�f /���
Measured volume

in �L3�
�x

��m /pix� NR Ntr

EXP1 350 0.11 2.0�10−2 84 7.0 0.63 35 0.4�0.4�0.4 50 500 9.3�105

EXP2 690 0.42 1.2 30 0.90 0.16 24 0.3�0.3�0.3 80 480 9.6�105

EXP3 815 0.59 3.0 23 0.54 0.11 15 0.3�0.3�0.3 80 500 1.7�106

EXP4 690 0.42 1.2 30 0.90 0.16 24 0.7�0.7�0.7 200 1200 6.0�106
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is, however, limited by the impossibility of integrating the
flow for long time durations, due to the extremely high com-
putational cost. In Lagrangian studies, it is necessary to
highly resolve the Eulerian velocity field to obtain precise
out-of-grid interpolation. The maximum achievable Rey-
nolds number, on the fastest computers, is currently limited
to R��600 in order to accurately calculate the particle posi-
tions and to achieve sufficiently long integration
times.4,19,23,27

Typically, such Lagrangian simulations last for a few
large-scale eddy turnover times, implying some unavoidable
remaining anisotropy at large scales, even for nominally per-
fectly isotropic forcing. The simulations analyzed here were
forced by fixing the total energy of the first two Fourier-
space shells:51 E�k1�=	�k��I1

�v̂�k�� and E�k2�=	�k��I2
�v̂�k��,

where I1= �0.5:1.5� and I2= �1.5:2.5� �the �k�=0 mode is
fixed to zero to avoid a mean flow�. The three velocity com-
ponents can instantaneously be quite different: when one of
the three fluctuates, the others must compensate in order to
keep the total amplitude fixed �see, for instance, Fig. 2�b� for
a visualization of this effect�. However, by averaging over
many eddy turnover times—when possible, as for the lower-
resolution DNS shown in the inset of Fig. 2�b�—the forcing
produces a perfectly statistically isotropic flow. As the re-
maining large-scale anisotropy is the main source of uncer-

tainty in the DNS results, we will estimate confidence inter-
vals from the difference between the three components.

In the simulations, the main systematic error for small
time lags comes from the interpolation of the Eulerian veloc-
ity fields needed to integrate the equation for particle posi-
tions,

Ẋ�t� = v�X�t�,t� . �3�

Of course, high-order interpolation schemes such as third-
order Taylor series interpolation or cubic splines, now cur-
rently used in parallel codes, partially remove this problem.27

If we compare DNS with the same value of kmax�, where
kmax is the maximum wavenumber resolved, cubic splines
give higher interpolation accuracy. It has been reported52 that
cubic schemes may resolve the most intense events better
than linear interpolation, especially for acceleration statistics;
the effect, however, appears to be rather small especially as
far as velocity is concerned.

More crucial than the order of the interpolation scheme
is the resolution of the Eulerian grid in terms of the Kolmog-
orov length scale. To enlarge the inertial range as much as
possible, pure Eulerian simulations may not resolve the
smallest scale velocity fluctuations sufficiently well, by
choosing a grid spacing �x larger than the Kolmogorov scale
�. Since this strategy may be particularly harmful to La-
grangian analysis, here it has been chosen to better resolve
the smallest fluctuations by choosing �x�� and to use the
simple and computationally less expensive linear interpola-
tion.

We stress that having well resolved dissipative physics
for the Eulerian field is also very important for capturing the
formation of rare structures on a scale r��. Moreover, as
discussed in Ref. 53, such structures, because of their fila-
mentary geometry, may influence not only viscous but also
inertial range physics.

Another possible source of error comes from the loss of
accuracy in the integration of Eq. �3� for very small veloci-
ties due to round-off errors. This problem can be overcome
by adopting higher-order schemes for temporal discretiza-
tion. For extremely high Reynolds numbers, it may also be
necessary to use double precision arithmetic, while for mod-
erate R�, single precision, which was adopted in the present
DNS, is sufficient for accurate results �see, e.g., Ref. 52�. We
also remark that in our runs, round-off errors are always
subleading with respect to errors coming from interpolation
or temporal discretization schemes.

Details of the DNS analyzed here can be found
elsewhere;23 here, we simply state that the Lagrangian trac-
ers move according to Eq. �3�, in a cubic, triply periodic
domain of side B=2�. DNS parameters are summarized in
Table II.

III. COMPARISON OF LAGRANGIAN STRUCTURE
FUNCTIONS

Let us now compare the experimental and numerical
measurements of the LVSFs directly. Figures 3�a� and 3�b�
show a direct comparison of LVSFs of order p=2 and p=4
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FIG. 2. �a� Time evolution of the components of the velocity fluctuation vx�
2

�dashed line�, vy�
2 �thick black line�, and vz�

2 �solid line� for EXP2. �b� Time
evolution of velocity fluctuations vi�

2, with i=x ,y ,z, for DNS2. In the inset,
we show the same time evolution for a DNS at a smaller R��75 �obtained
with a spatial resolution of 1283 grid points and the same forcing�, which
was integrated for a much longer time. In the latter case, the three compo-
nents fluctuate around the same value, showing the recovery of isotropy for
long enough time.
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for all data sets. The curves are plotted using the standard
Kolmogorov scaling, which assumes that in the inertial
range,

S2��� 	 �� 	 vrms�2 R�
−1��/���

�where we have used the following relations: �	vrms�3 /L �Ref.
54� and TL /��	R��. Such a formulation can be generalized
to Sp���	vrms�p R�

−p/2�� /���p/2. Both the second- and fourth-
order moments show a fairly good collapse, especially in the
range of intermediate time lags. However, some dependence
can be observed both on R� �see Fig. 3�b�� and on the size of
the measurement volume �compare EXP2 and EXP4�. Both
effects call for a more quantitative understanding.

A. Local scaling exponents

A common way to assess how the statistical properties
change for varying time lags is to look at dimensionless
quantities such as the generalized flatness,

F2p��� =
S2p���

�S2����p . �4�

We speak of intermittency when such a function changes its
behavior as a function of �: This is equivalent to the PDF of
the velocity fluctuations ��v, normalized to unit variance,
changing shape for different �.34

When the generalized flatness varies with � as a power
law, F2p�������2p�, the scaling laws are intermittent. Such
behavior is very difficult to assess quantitatively since many
decades of scaling are typically needed to remove the effects
of subleading contributions �for instance, it is known that
Eulerian scaling may be strongly affected by slowly decay-
ing anisotropic fluctuations56�.

We are interested in quantifying the degree of intermit-
tency at changing �. In Fig. 4, we plot the generalized flat-
ness F2p��� for p=2 and p=3 for the data sets DNS2, EXP2,
and EXP4. Numerical and experimental results are very
close and clearly show that the intermittency changes con-
siderably going from small to large �.

TABLE II. Parameters of the numerical simulations. Taylor microscale Reynolds number R�
15vrms�2 /��, root-mean-square velocity fluctuations vrms�
=2E /3, where E is the kinetic energy, energy dissipation �, viscosity �, Kolmogorov length scale �= ��3 /��1/4, integral scale L equal to half side of the
numerical box, large-eddy turnover time TL=L /vrms� , Kolmogorov time scale ��= �� /��1/2, total integration time T, grid spacing �x, resolution N3, and the
number of Lagrangian tracers Np. In the DNS, energy dissipation is measured as �=15����zvz�2�. Note that the values of vrms� and of T differ from those
reported in Ref. 23, where these values were misprinted.

No. R� vrms� � � � L TL �� T �x N3 Np

DNS1 178 1.4 0.886 0.002 05 0.01 3.14 2.2 0.048 5 0.012 5123 0.96�106

DNS2 284 1.4 0.81 0.000 88 0.0054 3.14 2.2 0.033 4.4 0.006 10243 1.92�106
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FIG. 3. �a� Log-log plot of the second-order structure function compensated
as R�S2��� /vrms�2 vs � /�� for all data sets at several Reynolds numbers. �b�
The same for the fourth-order structure function R�

2S4��� /vrms�4 . The solid line
is made to guide the eyes through the two data sets �EXP2 and EXP4�
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umes, as explained in Sec. II A.
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The difficulty in trying to characterize these changes
quantitatively is that, as shown by Fig. 4, one needs to cap-
ture variations over many orders of magnitude. For this rea-
son, we prefer to look at observables that remain O�1� over
the entire range of scales and which convey information
about intermittency without having to fit any scaling expo-
nent. With this aim, we measured the logarithmic derivative
�also called local slope or local exponent� of structure func-
tion of order p, Sp���, with respect to a reference structure
function,57 for which we chose the second-order S2���,

�p��� =
d log�Sp����
d log�S2����

. �5�

We stress the importance of taking the derivative with re-
spect to a given moment: this is a direct way of looking at
intermittency with no need of ad hoc fitting procedures and
no request of power law behavior. This procedure,57 which
goes under the name of extended self-similarity57 �ESS�, is
particularly important when assessing the statistical proper-
ties at Reynolds numbers not too high and/or close to the
viscous dissipative range.

A nonintermittent behavior would correspond to �p���
= p /2. In the range of � for which the exponents �p��� are
different from the dimensional values p /2, structure func-
tions are intermittent and correspondingly the normalized
PDFs of ���v / ����v�2�1/2� change shape with �. Figures 5�a�
and 5�b� show the logarithmic local slopes of the numerical
and experimental data sets for several Reynolds numbers for
p=4 and p=6 versus time normalized to the Kolmogorov
scale, � /��. These are the main results of our analysis.

The first observation is that for both orders p=4 and p
=6, the local slopes �p��� deviate strongly from their nonin-
termittent values �4=2 and �6=3. There is a tendency toward
the differentiable nonintermittent limit �p= p /2 only for very
small time lags ����. In the following, we shall discuss in
detail the small and larger time lag behavior, where by large,
we mean �����TL.

Small time lags. For the structure function of order p
=4 �Fig. 5�a��, we observe the strongest deviation from the
nonintermittent value in the range of time 2�����6��. It
has previously been proposed that this deviation is associated
with particle trapping in vortex filaments.23 This fact has
been supported by DNS investigations of inertial
particles.14,17,29 The agreement between the DNS and the ex-
perimental data in this range is remarkable. For p=6 �Fig.
5�b��, the scatter among the data is higher due to the fact that
with increasing order of the moments, inaccuracies in the
data become more important. Still, the agreement between
DNS and the experimental data is excellent. Differently from
the p=4 case, a dependence of mean quantities on the Rey-
nolds number is here detectable, although it lies within the
error bars. The experimental data set for p=6, at the highest
Reynolds number �R�=815�, shows a detectable trend in the
local slope toward less intermittent values in the dip region,
2�� /���6. This change may potentially be the signature of
vortex destabilization at high Reynolds number—which
would reduce the effect of vortex trapping. It is more likely,
however, that at this very high Reynolds number, both spatial

and temporal resolution of the measurement system may not
have been sufficient to resolve the actual trajectories of in-
tense events.23 We consider this to be an important open
question for future studies.

Larger time lags. For � larger than �6–7��� up to TL, the
experimental data obtained in small measurement volumes
�EXP1, 2, and 3� are not resolving the physics, as they de-
velop both strong oscillations and a common trend toward
smaller and smaller values for the local slopes for increasing
�. This may be attributed to the finite measurement volume
effect �see also Sec. III B�. For these reasons, the data of
EXP1, 2, and 3 are not shown for these time ranges. On the
other hand, the data from EXP4, obtained from a larger mea-
surement volume, allow us to compare experiment and simu-
lation. Here, the local slope of the experimental data changes
slower very much akin to the simulations. This suggests that
in this region, high Reynolds number turbulence may show a
plateau, although the current data cannot give a definitive
answer to this question. For p=6, a similar trend is detected,
although with larger uncertainties. The excellent quantitative
agreement between DNS and the experimental data gives us
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FIG. 5. Logarithmic derivatives �p��� of structure functions Sp��� with re-
spect to S2��� for orders p=4 �a� and p=6 �b�. The curves are averaged over
the three velocity components and the error bars are computed from the
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ment volume� are shown in the time range 7�� /���50.
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high confidence into the local slope behavior as a function of
time lag.

In light of these results, we can finally clarify the recent
apparent discrepancy between measured scaling exponents of
the LVSFs in experiments26 and DNS,23 which have lead to
some controversy in the literature.33,42,43 In the experimental
work,26 scaling exponents were measured by fitting the
curves in Fig. 5 in the range 2�����6��, where the com-
pensated second-order velocity structure functions reach a
maximum, as shown in Fig. 1 �measuring the fourth- and
sixth-order scaling exponents �p��� to be 1.4�0.1 and
1.6�0.1, respectively�. On the other hand, in the
simulations,23 scaling exponents were measured in the re-
gions in the range of times 10�����50�� �finding the val-
ues �4=1.6�0.1 and �6=2.0�0.1�.

It needs to be emphasized, however, that the limits in-
duced by the finiteness of volume and of the inertial range
extension in both DNS and experimental data do not allow
for making a definitive statement about the behavior in the
region �
10��. We may ask instead if the relative extension
of the interval where we see the large dip at ��2�� and the
possible plateau, observed for �
10�� both in the numerical
and experimental data �see EXP4 data set�, become larger or
smaller at increasing the Reynolds number.32 If the dip
region—the one presumably affected by vortex filaments—
flattens, it would give the asymptotically stable scaling prop-
erties of Lagrangian turbulence. If instead the apparent pla-
teau region, at large times, increases in size while the effect
of high intensity vortex remains limited to time lags around
�2–6���, the plateau region would give the asymptotic scal-
ing properties of Lagrangian turbulence. This point remains a
very important question for the future because, as of today, it
cannot be answered conclusively either by experiments or by
simulations.

B. Finite volume effects at large time lags

As noted above, the EXP4 data for �4��� develop an
apparent plateau at a smaller value than the DNS data. In this
section, we show how the DNS data can be used to suggest a
possible origin for this mismatch.

We investigate the behavior of the local slopes for the
simulations when the volume of size L3, where particles are
tracked, is systematically decreased. We consider in the
analysis only trajectories which stay in subvolume of size
L3, so partly mimicking what happens in the experimental
measurement volume. We consider volume sizes in the range
that goes from the full box size with side B to boxes with
side L=B /7, and we average over all the sub-boxes to in-
crease the statistical samples. In Fig. 6, we plot the statistics
of the trajectory durations for both the experiment and DNS2
by varying the measurement volume size.

As shown in Ref. 58, the probability of the trajectory
durations in finite volume measurements is independent of
the size of the measurement volume if the trajectory duration
is normalized by the residence time Tres=L /vrms� , which is
the case in Fig. 6�a� for DNS data. For the experimental
trajectories, if the residence time is estimated from the geo-
metrical side Bobs of the measurement volume as Tres

=Bobs /vrms� , the curve is off from others. This is explained by
fact that experimental trajectories might still terminate pre-
maturely for the reasons discussed in Sec. II A. Even after an
attempt was made to connect trajectory segments, the effec-
tive residence time could be smaller than that determined
from the geometrical size of the measurement volume. In
Fig. 6�a�, we show indeed that the probability for experimen-
tal trajectories collapses with DNS curves, if we reduce the
effective side of the measurement box to � 2

3
�Bobs or Tres

= � 2
3

�Bobs /vrms� . From the same plot, we might also notice that
the DNS curve for L=B /2, which has the largest residential
time Tres, slightly departs from the others. This is due to
statistics since those points that deviate belong to the tails of
the distribution, where we do not expect a perfect collapse.

Finally, comparing Tres /�� then indicates that EXP2
could be compared to DNS2 with subdomain of side B /4, as
shown in Fig. 6�b�. Here, we are implicitly assuming that
even if particle track loss might have a different origin in the
experiment �optical and finite volume effects� and in the nu-
merics �only finite volume effect�, the resulting statistics is
biased in a similar way. Also, we are assuming that Reynolds
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FIG. 6. �a� Comparison of the probability P�t /Tres� that a trajectory lasts a
time t vs t /Tres for the experiment EXP2 and for DNS2 trajectories mea-
sured in different numerical measurement domains L /B= 1

2 , 1
4 , 1

6 , 1
7 , where

Tres is the residence time and L=2� is the computational box. For DNS
trajectories, Tres is determined from the size of the subdomain as Tres

=L /vrms� . For experimental trajectories, Tres= � 2
3

�Bobs /vrms� , where Bobs is the
size of the measurement volume, as given in Table I. Data for t /Tres
2, for
DNS at L /B= 1

4 , 1
6 , 1

7 and for the experiment, have been cut out. �b� Com-
parison of the probability P�t /��� that a trajectory lasts a time t vs t /�� for
the same data as before.

065103-8 Biferale et al. Phys. Fluids 20, 065103 �2008�

Downloaded 11 Jun 2008 to 130.89.86.81. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



dependence is well accounted for by normalizing the resi-
dence time with the Kolmogorov time scale. A deeper analy-
sis of these issues is left to future work.

It is now interesting to look at the LVSF measured from
these finite length numerical trajectories. In Fig. 7�a�, we
show the fourth-order LVSF obtained by considering the full
length trajectories and the trajectories living in a subvolume
as explained above. What clearly appears from Fig. 7�a� is
that the finite length of the trajectories lowers the value of
the structure functions for time lags of the order of 20��

���40��. Indeed, the finite-length statistics give a signal
that is always lower than the full averaged quantity: this
effect may be due to a bias to slow, less energetic particles,
which have a tendency to linger inside the volume for longer
times than fast particles, introducing a systematic change in
the statistics. Note that this is the same trend detected when
comparing EXP2 and EXP4 in Fig. 3. In Fig. 7�b�, we also
show the effect of the finite measurement volume on the
local slope for p=4. By decreasing the observation volume,

we observe a trend in the local slope toward a shorter and
shorter plateau with smaller and smaller values. In the same
figure, we also compare the logarithmic local slope of EXP2:
the residence time analysis shows that EXP2 should be com-
pared to DNS2 data in the subvolume with side L=B /4. We
observe that at scales where both signals are present, the
trend is similar. However, we have to remember that in ex-
periment, particles are lost when exiting the measurement
volume �finite volume effect� but also inside the measure-
ment volume due to optical particle tracking limitations. This
may explain the small discrepancy in Fig. 7�b�, among the
EXP2 and the L=B /4 DNS2 signal. More generally, we
think that the loss of particles could be the source of the
small offset between the plateaus developed by the EXP4
data and the DNS data in Fig. 5.

For the sake of clarity, we should recall that in the DNS,
particles can travel across a cubic fully periodic volume, so
during their full history they can re-enter the volume several
times. In principle, this may affect the results for long time
delays. However, since the particle velocity is taken at dif-
ferent times, we may expect possible spurious correlations
induced by the periodicity to be very small, if not absent.
This is indeed confirmed in Fig. 7�b� where we can notice
the perfect agreement between data obtained by using peri-
odic boundary conditions or limiting the analysis to subvol-
umes of side L=B �i.e., not retaining the periodicity� and
even L=B /2.

C. Filtering and measurement error effects
at small time lags

As discussed in Sec. II, results at small time lags can be
slightly contaminated by several effects both in DNS and
experiments. DNS data can be biased by resolution effects
due to interpolation of the Eulerian velocity field at the par-
ticle position. In experiments, uncorrelated experimental
noise needs to be filtered to recover the trajectories.7,11,16

To understand the importance of such effects quantita-
tively, we have modified the numerical Lagrangian trajecto-
ries in the following way. First, we have introduced a random
noise of the order of � /10 to the particle position in order to
mimic the noise present in the experimental particle detec-
tion. Second, we have implemented the same Gaussian filter
of variable width used to smooth the experimental trajecto-
ries x�t�. We also tested the effect of filtering by processing
experimental data with filters of different lengths.

In Figs. 8�a� and 8�b�, we show the local scaling expo-
nents for �4���, as measured from these modified DNS tra-
jectories together with the results obtained from the experi-
ment, for several filter widths. The qualitative trend is very
similar for both the DNS and the experiment. The noise in
particle position introduces nonmonotonic behavior in the
local slopes at very small time lags in the DNS trajectories.
This effect clearly indicates that small scale noise may
strongly perturb measurements at small time lags but will not
have important consequences for the behavior on time scales
larger than ��. On the other hand, the effect of the filter is to
slightly increase the smoothness at small time lags �notice
that the shift of local slopes curves toward the right for �
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FIG. 7. �a� The fourth-order structure function S4��� vs � /�� measured from
DNS2 trajectories for both full length trajectories �and with periodic bound-
ary conditions� and for trajectories in smaller measurement volumes L /B
= 1

4 , 1
7 . �b� The logarithmic local slope �4��� measured from DNS2 trajecto-

ries for both the full length trajectories �periodic boundary conditions� and
for trajectories in smaller measurement volumes L /B=1, 1
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4 , 1

7 . Note the
tendency toward a less developed plateau, at smaller and smaller values, as
the measurement volume decreases. In the same plot, we also compare the
local slope of EXP2, whose trajectory length distribution is well reproduced
by DNS2 data in the subvolume L /B= 1

4 .
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��� for increasing filter widths�. A similar trend is observed
in the experimental data �Fig. 8�b��. In this case, choosing
the filter width to be in the range ��� 1

6 , 1
3
��� seems to be

optimal, minimizing the dependence on the filter width and
the effects on the relevant time lags. Understanding filter
effects may be even more important for experiments with
particles much larger than the Kolmogorov scale. In those
cases, the particle size naturally introduces a filtering by av-
eraging velocity fluctuations over its size, i.e., those particles
are not faithfully following the fluid trajectories.11,15

IV. CONCLUSION AND PERSPECTIVES

A detailed comparison between state-of-the-art experi-
mental and numerical data of Lagrangian statistics in turbu-
lent flows has been presented. The focus has been on single-
particle Lagrangian structure functions. Only through the
critical comparison of experimental and DNS data is it pos-
sible to achieve a quantitative understanding of the velocity
scaling properties over the entire range of time scales and for
a wide range of Reynolds numbers.

In particular, the availability of high Reynolds number
experimental measurements allowed us to assess in a robust

way the existence of very intense fluctuations, with high in-
termittency in the Lagrangian statistics around �� �2–6���.
For larger time lags �
10��, the signature of different sta-
tistics seems to emerge, with again good agreement between
DNS and experiment �see Fig. 5�. Whether the trend of loga-
rithmic local slopes at larger times is becoming more and
more extended at larger and larger Reynolds number is an
issue for further research.

Both experiments and numerics show in the ESS local
slope of the fourth- and sixth-order Lagrangian structure
functions a dip region at around time lags �2–6��� and a
flattening at �
10��. As of today, it is unclear whether the
dip or the flattening region gives the asymptotic scaling
properties of Lagrangian turbulence. The question of which
region will extend as a function of Reynolds number cannot
be resolved at present and remains open for future research.

It would also be important to probe the possible relations
between Eulerian and Lagrangian statistics, as suggested by
simple phenomenological multifractal models.13,23,46,47 In
these models, the translation between Eulerian �single-time�
spatial statistics and Lagrangian statistics is made via the
dimensional expression of the local eddy turnover time at
scale r: �r�r /�ru. This allows predictions for Lagrangian
statistics if the Eulerian counterpart is known. An interesting
application concerns Lagrangian acceleration statistics,18

where this procedure has given excellent agreement with ex-
perimental measurements. When applied to single-particle
velocities, multifractal predictions for the LVSF scaling ex-
ponents are close to the plateau values observed in DNS at
time lags �
10��. It is not at all clear, however, if this
formalism is able to capture the complex behavior of the
local scaling exponents close to the dip region �� �2–6���,
as depicted in Fig. 5. Indeed, multifractal phenomenology, as
with all multiplicative random cascade models,34 does not
contain any signature of spatial structures such as vortex fila-
ments. It is possible that in the Lagrangian framework, a
more refined matching to the viscous dissipative scaling is
needed, as proposed in Ref. 13, rephrasing known results for
Eulerian statistics.40 Even less clear is the relevance for La-
grangian turbulence of other phenomenological models
based on superstatistics,43 as recently questioned in Ref. 59.

The formulation of a stochastic model able to capture the
whole shape of local scaling properties from the smallest to
larger time lag, as depicted in Fig. 5, remains an open im-
portant theoretical challenge.
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