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Very long integrations, involving hundreds of millions of time steps, have been performed for the 
Gledzer-Ohkitana-Yamada “shell model” of fully developed turbulence, thereby allowing the 
computation of essentially noise-free structure functions at all inertial- and dissipation-range 
scales. Previously reported results by Jensen et al. [Phys. Rev. A 43, 798 (1991)] on the 
multifractal behavior of this model are confirmed. Oscillations in the structure functions are 
found to be genuine. An exact relation for certain cubic moments, equivalent to Kolmogorov’s 
four-fifth law, is derived and tested. The third-order structure function, here defined in terms of 
the third moment of shell amplitudes, is not directly determined by this relation and need not 
have its exponent equal to one. Significant discrepancies are actually found when the ratio 
between successive shell wave numbers is less than two. 

1. INTRODUCTION 

Kolmogorov’s 1941 (K41) theory of fully developed 
turbulence predicts that the structure function of order p, 
i.e., the pth order moment of the velocity increment, scales 
with an exponent p/3 over inertial-range separations. Dis- 
crepancies for p=2, which are sometimes reported, are 
usually considered too small to be significant. Measure- 
ments of high-order structure functions are rather difficult. 
Indeed, by definition, they require accurate measurements 
of high-order moments of velocity increments. The latter 
involve the tail of the corresponding probability distribu- 
tion functions, corresponding to very rare events. Hence, it 
is necessary to process very long records of the turbulent 
signal. Early measurements of structure functions were 
limited by recording capabilities. As shown by Anselmet 
et al. this can lead to vastly overestimating the discrepancy 
between the measured exponents and their K41 
predictions.’ Also, high-order structure functions are not 
well represented by pure power laws, as evidence, for ex- 
ample, by Fig. 13 of Ref. 1. Still, Ansehnet et al. do present 
a good case for the existence of discrepancies from K41. 

From a theoretical viewpoint, intermittency may be 
seen as a breaking of (statistical) scale invariance due to 
the presence of an external scale. Intermittency is ruled out 
in closure models, which are generally constructed in such 
a way that K41 is an exact stable solution at small scales, 
unaffected by the external scale. Stability in closure models 
is intimately related to the fact that the dynamical vari- 
ables are averaged quantities. A very interesting class of 
“toy models” for turbulence, in which chaotic fluctuations 
and intermittency are not a priori ruled out are the shell 

models which originated with the Russian school in the 
seventies (see Refs. 2, 3-6, and references therein). Shell 
models are constructed by retaining only the slimmest con- 
tact with the Navier-Stokes equations, viz. the determin- 
istic and quadratic character of the equations, energy con- 
servation, and scale invariance. Shell models may also be 
viewed as severe truncations of the Navier-Stokes equa- 
tions, retaining only one real or complex mode u, as a 
representative of all the Fourier modes in the shell of wave 
numbers k between k,= k,q” and k,, 1 (an octave in the 
simplest case of q=2). In order to mimic the supposed 
“local” (in scale) character of nonlinear interactions, only 
couplings to the nearest or next nearest shells are kept. In 
this paper we shall be interested in the Gledzer-Ohkitani- 
Yamada (GOY) model which is governed by the following 
set of complex coupled ODE’s: 

(1) 

where * stands for complex conjugation. Although, this 
model is sometimes referred to as the Ohkitani-Yamada 
model, these authors have pointed out in Ref. 4 that “... it 
may be considered as a complex version of Gledzer’s2 
model.” Hence, the name here proposed. Most of the miss- 
ing details in the definition of the model will be given in the 
next section. Let us just stress that in the shell models, the 
moments of order p of the absolute value of U, and the 
wave number k,=k,,bf are used in lieu of the structure 
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functions and the inverse of the spatial increment, respec- 
tively. Averages are computed over time and/or over en- 
sembles of random initial conditions. 

Jensen et aL6 have reported high-Reynolds number in- 
tegrations of the GOY model (for q=2) which reveal de- 
partures from K41: the structure function of order p varies 
as k, -‘p in the inertial range and the graph of &, vs p drops 
significantly below the K41 value p/3 for p>5. Further- 
more, the graph displays curvature, an indication of 
multifractality.’ The aforementioned difficulties, encoun- 
tered in the determination of the scaling exponents cp from 
experimental data, are also present in the case of numeri- 
cally simulated shell models. Such issues were not in the 
focus of the studies reported in Ref. 6. One of our goals is 
to repeat the calculations for GOY model, while carefully 
examining the question of error bars for scaling exponents. 
In the next section, we present our numerical results, 
which are substantially confirming those of Ref. 6 and 
make several new observations. Section III is devoted to 
the generalization of Kolmogorov’s four-fifth law for the 
third-order structure function. 

II. NUMERICAL SIMULATIONS: STRUCTURE 
FUNCTIONS AND SCALING EXPONENTS ( 

Before describing our numerical implementation, we 
give a few more details concerning the GOY model, gov- 
erned by ( 1) . The “shell index” y1 runs from one to infinity. 
All u,‘s with n<O are taken to be zero. The coefficients, 
chosen to ensure energy conservation, are given by 

1 
an=kn=kOqn, b,= - f knnr, c,= -- k,,--2, 2 (2) 

where k. is a reference wave number and q is the aspect 
ratio (ratio between successive shell wave numbers). Un- 
less otherwise specified, we take k,= 2-4 and q= 2 (octave 
shells), as in Ref. 6. The “forcing,” restricted to the fourth 
shell, is given by 

f,=6,,(l+i)X5X10-3. (3) 
In the numerical implementation, the model is trun- 

cated to a fmite number of shells, with 12 running from 1 to 
N=22 and un=O for IZ > N. Temporal discretization uses a 
(second-order) slaved Adams-Bashforth scheme, viz. 

u,(t+St) =e-vkkf,(t) + 

1 -e-vk”,st 

-x- 

x ;gnw -;gJt--St) , ( 1 (4) 

where g,(t) stands for the right-hand side of ( 1). This 
scheme is a variant of the “slaved frog” scheme of Ref. 8. 
Such slaved schemes take advantage of the very fast damp- 
ing of high wave-number modes. At the initial time to, the 
same scheme is used with g,( to-&) =gn( to), which is only 
first order accurate, an irrelevant point in the context of the 
present study. In all runs reported in this section, the vis- 
cosity has the value V= lo-‘, which ensures a well- 
resolved dissipation range (see below). The time step is 

Sf=lO-“, small enough to ensure stability of integration. 
Initial conditions (communicated to us by K. Ohkitani and 
M. Yamada) were chosen “on the attractor,” i.e., from the 
output of a preliminary very long run with the same pa- 
rameters. (This was also used for debugging purposes.) 
The total number of time steps is 250X 106. This corre- 
sponds roughly to five thousand turnover times at the forc- 
ing scale and to a million turnover times at the high wave- 
number end of the inertial range. Note that the inverse of 
the square root of these numbers gives a measure of the 
relative noise in time-averaged statistical quantities. 

The moduli of the u,‘s are stored at each time step and 
time averages are then computed over the whole run or 
fractions thereof. Such operations must be performed in 
double precision (64 bits) to avoid roundoff problems in 
summing huge numbers of data. Most computations were 
performed on a SONY 3410 workstation and took about 
15 min of CPU per million time steps (including postpro- 
cessing). The main quantities of interest are the structure 
functions, here defined as 

&A~)=(I~,IP>. (5) 

Figures 1 (a) and 1 (b) are plots of the computed struc- 
ture functions for p=2, 3,..., 10 (from top to bottom). The 
horizontal scale is linear in the shell index and the vertical 
is logarithmical, so that powers laws kif” can be identified 
from the slope of the graph. Figure 1 (a) shows the aver- 
ages after the first 20x lo6 time steps, while Fig. 1 (b) is 
after 250X lo6 time steps (in identical scales). Superposing 
the figures, very significant discrepancies are observed at 
wave numbers less or equal to the forcing wave number. At 
inertial-range scales, i.e., those scales where the structure 
functions follow power laws, there are still significant dis- 
crepancies for large orders. But comparisons of outputs 
after 150X lo6 (not shown) with those of Fig. 1 (b), indi- 
cate that, over the entire inertial range and the part of the 
dissipation range shown, structure functions are essentially 
noise-free beyond 150X lo6 time steps. The discrepancies 
at the very smallest wave numbers (to the left of the forc- 
ing wave number) are easily explained by noting that the 
corresponding turnover times are so large that longer time 
averaging would be required (if one cared). 

Let us now comment on various features observed in 
the plots of structure functions. The wave number where 
the structure functions appear to bend over into a dissipa- 
tion range shows a marked shift to the right (higher wave 
numbers) as the order p increases. This is in qualitative 
agreement with predictions of the multifractal model. In- 
deed, according to Refs. 9 and 10 the viscous cutoff scales 
as v”(‘+~), where h is the multifractal scaling exponent 
which minimizes ph + 3 - D (h ) , a decreasing function of p. 
Still, multifractal phenomenology does not predict the 
variation with p of the dimensionless constants in such 
scaling laws, so that predicting how the viscous cutoff 
changes with p at fixed Y is delicate. In spite of the increase 
of the dissipation wave number with the order, all the 
structure functions shown here have a clean dissipation 
range. [This is not the case for the twelfth-order structure 
function shown in Fig. l(b) of Ref. 6.1 
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FIG. 1. Structure functions of order two through ten (top to bottom) for the Gledzer-Ohkitani-Yamada model. The shell index n is log, of the wave 
number. The data are averaged over (a) 20X lo6 time steps and (b) 250X 10’ time steps. Notice the shift to high wave numbers of the viscous cutoff 
as the order increases. 

The substantial range of scales (about 11 octaves) over 
which the structure functions follow (noise-free) power 
laws allows a quite accurate determination of the expo- 
nents $,. This is done by a linear least-square fit of 
loga Sp(n) to a straight line of slope -cP. The fit is done in 
an interval (L&i* ,p1,,, ) which may be determined either 
visually or, here, by minimizing the fit error. The values 
nmin and nmax depend slightly on p, a good tradeoff being 

nmin=6 and ylmaX= 18. Figure 2 shows a plot of cP vs p 
together with the error bars generated in the fit. The com- 
putation used all 250 x lo6 time steps. The dashed line cor- 
responds to K41: cP=p/3. 

It is immediately seen that the data are not at all con- 
sistent with K41 for p>6, and only marginally consistent 
for p=2,3,5. (The issue of discrepancies for p=3 will be 
discussed separately in Sec. III.) Furthermore, no straight 
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FIG. 2. Scaling exponent &, for the structure functioil vs orderp. The dashed line corresponds to K41 (&,=p/3). The error bars are from a least-square 
fit of the structure functions shown in Fii. l(b) to a power law in the interval 6<n(18. 
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line (as assumed by the P model) can be drawn through 
the data points, so that multifactality of the GOY model is 
here given further support. Recently an analytic method 
giving c&, for the GOY model has been proposed in Ref. 11. 
It involves some heuristic steps but has no continuously 
adjustable parameters and gives values within our error 
bars. 

For all energy-conserving shell models there is an anal- 
ogous relation, which we now derive for the GOY model. 
Multiplying the nth equation in ( 1) by ux, summing from 
n = 1 to n =M>4, adding the complex conjugate and aver- 
aging, we obtain after easy algebra 

One of the major causes of errors in the cP’s are the 
oscillations seen in the structure functions at inertial-range 
scales. There is no doubt that they are genuine. Indeed, our 
results have recently been reproduced by Leveque, using a 
different numerical scheme and averaging over one thou- 
sand systems running in parallel for lo6 time steps.‘* We 
note that oscillatory deviations from pure power-law be- 
havior in experimental results of the sort reported in Ref. 1 
have been interpreted as reflecting the lacuna&y of fractal 
sets by Smith et al. l3 

(&g (Y) ,t”, +y c ~(I%z12)=-nM+E, 
(7) 

where 

(8) 

is the (mean) energy flux through the Mth shell and 

111. 5CALlNG PROPERTIES OF THIRD-ORDER 
MOMENTS 

In his third 1941 turbulence paper, Kolmogorov estab- 
lished an exact relation for the third-order longitudinal 
structure function which, in the limit of vanishing viscos- 
ity, reads 

e=Re( f&$ (9) 

is the (mean) energy input from the force (here restricted 
to the fourth shell). Let us now assume a statistical steady 
state in the limit of vanishing viscosity, such that the mean 
energy input (also the mean energy dissipation) remains 
finite. The left-hand side of (7) vanishes and we obtain an 
identity for third-order moments, viz. 

([su(r)]‘)=-$z, (6) 

where E is the mean rate of energy dissipation (assumed to 
stay finite and positive in the limit Y-PO) and I is the sep- 
aration. It follows from this “four-fifth” relation that the 
exponent for the third-order structure function c3= 1. 

n,=e. (10) 

A consequence of (10) is that the particular third- 
order quantity 

IL 
( 

1 
F=Im 4(U”-1UnUn+l+4u,u,+*~,+*) > (11) It 
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scales as k,; ‘, that is with the exponent 3‘s = 1. The quantity 
IT,,/k,z is however not exactly the standard third-order mo- 
ment ( 1 u,~] ‘) which was calculated in Sec. II and was 
found to scale with an exponent c3 very close to one (see 
Fig. 2). In Fig. 3 we replot the third-order structure func- 
tion together with II,,/k,, the latter being now evaluated 
from the same simulation. We notice that the graph of 
I&/k, is absolutely straight in the inertial range (as al- 
ready observed in Ref. 4) and has exactly the scaling ex- 
ponent Es== 1. A similar plot (of II, rather than TI,/k,) 
may be found in Fig. 2 of Ref. 5. The discrepancy between 
the scaling exponents c3 and & is here very slight. 

We now take advantage of some freedom in the defi- 
nition of the GOY model, to demonstrate that the discrep- 
ancy reported here is genuine. So far, we assumed that the 
GOY model had a ratio q=2 between successive shell 
wave numbers. The GOY model’with 4#2 has the same 
energy-conservation relation as for q = 2 and, therefore, has 
an expression of the energy flux, similar to (8). We have 
performed numerical integrations of the GOY model ( 1) 
for various values of q and determined each time the third- 
order structure function S3 (n) . Specifically, we now give 
results for 

q= 1.5, N=31, ko=2-4, 

f,*=S4,n(1+i)X5X10-3, Y=lo-6, 

and for 

q=2.5, N=20, ko=2-4/(2.5)2, 

(12) 

fn=&Jl+i) x5x10-3, Y=lo-s. (13) 
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In both instances, we collect statistics for about five- 
hundred eddy-turnover times calculated at the forcing 
scale. In order to bring out possible deviations from the 
“standard” scaling S3 (n) cc k; ‘, we plot in Fig. 4 the quan- 
tity ln[ks3(n)] vs Ink,, for the cases q= 1.5 and q=2.5, 
together with the case q=2 already considered. Two phe- 
nomena are outstanding. First, we observe that, the larger 
the aspect ratio q, the stronger the oscillations in the struc- 
ture functions. Second, for q= 1.5 when there are practi- 
cally no oscillations, we observe an inertial-range behavior 
of&(n) cc kic3, with c3= 1.16 *Q.O4. There is thus a sig- 
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ation from a flat scaling is detectable. 
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nificant discrepancy from the value one, suggested by a 
loose application of the (analog of the) four-fifth law. 

Such discrepancies are not consistent with the usual 
multifractal model of Parisi and Frisch.7 We cannot com- 
pletely rule out the possibility that there is actually no 
discrepancy in the leading term but only in a subdominant 
correction. The latter cannot be predicted by standard 
multifractal phenomenology. 

Anyway, it is of interest to look for similar discrepan- 
cies in experimental turbulence data. Instead of the usual 
third-order structure function based on the third moment 
of the longitudinal velocity increment v(x+ I) -u(x), one 
could try measuring 

s;w = ([u(x+4 -24x> 12[u(x> -4x--0 I >, (14) 

for which there is no “four-fifth law” prediction. 
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