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Modeling the velocity gradient tensor A=�u along Lagrangian trajectories in turbulent flow
requires closures for the pressure Hessian and viscous Laplacian of A. Based on an Eulerian–
Lagrangian change in variables and the so-called recent fluid deformation closure, such models were
proposed recently �Chevillard and Meneveau, Phys. Rev. Lett. 97, 174501 �2006��. The resulting
stochastic model was shown to reproduce many geometric and anomalous scaling properties of
turbulence. In this work, direct comparisons between model predictions and direct numerical
simulation �DNS� data are presented. First, statistical properties of A are described using conditional
averages of strain skewness, enstrophy production, energy transfer, and vorticity alignments,
conditioned upon invariants of the velocity gradient. These conditionally averaged quantities are
found to be described accurately by the stochastic model. More detailed comparisons that focus
directly on the terms being modeled in the closures are also presented. Specifically, conditional
statistics associated with the pressure Hessian and the viscous Laplacian are measured from the
model and are compared with DNS. Good agreement is found in strain-dominated regions.
However, some features of the pressure Hessian linked to rotation-dominated regions are not
reproduced accurately by the model. Geometric properties such as vorticity alignment with respect
to principal axes of the pressure Hessian are mostly predicted well. In particular, the model predicts
that an eigenvector of the rate of strain will be also an eigenvector of the pressure Hessian, in accord
with basic properties of the Euler equations. The analysis identifies under what conditions the
Eulerian–Lagrangian change in variables with the recent fluid deformation closure works well, and
in which flow regimes it requires further improvements. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3005832�

I. INTRODUCTION

Fundamental understanding of universal features of the
small-scale structure of turbulence has been a long-standing
challenge in turbulence research.1–7 While considerable phe-
nomenological understanding has been accumulated in re-
cent decades, the challenge of relating observed phenomena
and statistical properties to the dynamical equations �Navier–
Stokes� remains unmet. The velocity gradient tensor Aij

=�ui /�xj �where u denotes the velocity vector� provides a
rich characterization of the topological and statistical prop-
erties of the fine-scale structures in turbulence. Having a
spectral peak at around the Kolmogorov wavelength k�

��−1 �� is the Kolmogorov dissipative length scale�, Aij is a
quantity dominated by motions in the viscous range. The
antisymmetric part of the tensor is the vorticity representing
small-scale rotation of fluid elements, while its symmetric
part, the strain-rate tensor, represents fluid deformation rate.
The Lagrangian evolution of this tensor can be described by

an evolution equation that is obtained from taking the gradi-
ent of the Navier–Stokes equations. The resulting system is
unclosed since it contains the anisotropic part of the pressure
Hessian and the viscous term. When both of these are ne-
glected, the system is closed �called restricted Euler �RE�
dynamics�.8–11 The RE equations already predict several
known geometric turbulence phenomena associated with
Aij,

12–20 such as preferential alignments of vorticity with
strain-rate eigenvectors and preponderance of axisymmetric
expansion and positiveness of the intermediate eigenvalue of
the strain rate. Nevertheless, RE produces singularities in a
relatively short, finite time �see Ref. 7 for a review�.

Phenomenologically, other phenomena such as small-
scale intermittency may also be probed, by studying the
probability distribution functions �PDFs� of individual veloc-
ity gradient elements. For instance, it is known that the PDFs
of longitudinal and transverse gradients, e.g., A11 and A12, in
particular directions, respectively, can be described by elon-
gated stretched exponential tails5,21–23 or by superposition of
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stretched exponential.24 Also the moments of these gradients
scale in nontrivial �anomalous� ways with the Reynolds
number.25,26 Understanding such anomalous scaling behavior
of turbulence is another open challenge. Therefore, the
wealth of geometric, dynamical, and statistical turbulence
phenomena that can be described by the velocity gradient
tensor, coupled with the fact that a dynamical equation �even
though unclosed� is available from the gradient of the
Navier–Stokes equations, makes Aij a tensor variable of con-
siderable interest for further study. The role of pressure in the
intermittent nature of velocity gradients was also pointed out
by Kraichnan in early works.27,28

Based on prior works,10,11,29–33 a stochastic dynamical
model for the time evolution of Aij has been proposed.34,35

The model includes a closure for the pressure Hessian, i.e.,
�2p /�xi�xj, and the viscous term, i.e., ��2A in terms of the
local value of the velocity gradient tensor. The approach,
reviewed in detail in Sec. II, consists in a change in variables
from Eulerian positions to Lagrangian labels before assum-
ing isotropy in the associated gradient tensors to be modeled.
The Eulerian–Lagrangian transformation involves a Jacobian
matrix that is modeled using the local value of the velocity
gradient tensor by using the “recent fluid deformation” clo-
sure. The model system is forced using a Gaussian white-in-
time random force. The resulting stochastic model consists
of eight independent coupled stochastic differential equations
�SDEs� that aim to describe the time evolution of each of the
tensor elements of Aij, following a fluid particle in a turbu-
lent flow.

The results of Ref. 34 show that the finite-time diver-
gence exhibited by the RE system is regularized with the
inclusion of the proposed models for pressure Hessian and
viscous term. Moreover, with the random forcing, stationary
statistics of the velocity gradient tensor are obtained, with
realistic statistical properties such as preferential alignment
of vorticity and the preferential state of axisymmetric expan-
sion. The shape of PDFs of longitudinal and transverse gra-
dients is quite realistic and even some well-known properties
of anomalous scaling in turbulence are reproduced.34,35 A
limitation of the model is that at high Reynolds numbers the
resulting distribution functions became increasingly unreal-
istic. One approach to remedy this problem has been
explored36 by constructing a multiscale version of the model,
i.e., a matrix shell model that describes the velocity gradient
tensors in various shells at different scales. The closure for
the interscale interaction terms is based on the criterion that
the total kinetic energy must be preserved by the modeled
quadratic interscale interaction terms. The introduction of
nonlocal �in scale� interactions leads to a structure of the
model that is more difficult to analyze theoretically, but it
provides an interesting connection between the gradients’
evolution at various scales and the energy cascade mecha-
nism. While the matrix shell model successfully eliminates
the problems at high Reynolds numbers, it does not make an
explicit connection with the physics of the pressure Hessian.
At this stage, then, it is of interest to further improve our
understanding of the fundamental properties of the closures
proposed in Ref. 34, developed from the expression of pres-
sure Hessian and viscous term as given from the Navier–

Stokes equations, within the range of Reynolds numbers in
which the model of Ref. 34 works well.

In Sec. III various model predictions of statistical and
geometric properties of A beyond those already studied in
Ref. 34 are compared with direct numerical simulation
�DNS� at a moderate Reynolds number �R�=150�. The
model is evaluated using statistical measures already studied
in Ref. 30 in the context of the “tetrad model.” These mea-
sures include conditional averages of the “dissipation” ��S�2
=SijSij, where S is the symmetric part of A� and of the “en-
strophy” �i.e., ���2=�ij�ij, where � is the antisymmetric
part of A�. Then, a similar analysis is performed with the
enstrophy production and the strain skewness. The condi-
tional averages are expressed in terms of the two principal
invariants of A, namely R=−�1 /3�Tr�A3� and Q
=−�1 /2�Tr�A2�. Different regions in the “�R ,Q�-plane” have
distinct physical interpretations11,13,15,37 and the behavior of
the computed conditional averages in these different regions
thus provide useful and statistically meaningful insights into
the performance of the model in dynamically very different
regions of the flow.

In order to quantify and understand the average local
evolution of the turbulence dynamics in the �R ,Q�-plane, the
probability current of the joint probability density P�Q ,R� is
also studied in Sec. IV. These statistics depend explicitly on
both pressure Hessian and viscous Laplacian, and thus the
effect of the proposed closures for these terms may be com-
pared with the real effects obtained from the DNS.

In Sec. V the preferential alignment of vorticity with
eigendirections of both pressure Hessian and the symmetric
part of the viscous Laplacian are studied in detail. Connec-
tions with theoretical results pertaining to the Euler equa-
tions are also made. Finally, in Sec. VI the results are sum-
marized and conclusions are presented.

II. THEORETICAL BACKGROUND

A. Lagrangian description of the velocity
gradient tensor

A description of small-scale structure of turbulence
based on the velocity gradient tensor Aij =�ui /�xj begins by
taking the gradient of the Navier–Stokes equation. One then
obtains the system

dAij

dt
= − AikAkj −

�2p

�xi � xj
+ �

�2Aij

�xk � xk
, �1�

where d /dt stands for the Lagrangian material derivative
�i.e., d /dt�� /�t+uk� /�xk�, p is the pressure divided by the
density of the fluid, and � is the kinematic viscosity. Because
of incompressibility, A must remain trace-free, i.e., Aii=0.
Equation �1� is not closed in terms of A at the position x and
time t. This can be easily seen noting that the pressure field is
the solution of the Poisson equation Tr��2p /�xi�xj�=�2p
=−AlkAkl which shows that pressure is highly nonlocal.
Moreover the viscous term requires the Laplacian of A
which is not known simply in terms of A.

As already mentioned in Sec. I, neglecting pressure Hes-
sian anisotropy and viscous effects leads to finite-time singu-
larities because of the strong and unopposed effects of the
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self-stretching term −A2. One can find in the literature sev-
eral efforts at regularizing this finite-time divergence, while
keeping the exact self-stretching term. First, Girimaji and
Pope29 succeeded to do so by constructing a stochastic model
with an imposed constraint. This constraint is imposed by
modifying the nonlinear term so that the pseudodissipation
�=AijAij �Ref. 38� is lognormal with a prescribed mean and
variance. Intermittency trends are put in explicitly, by pre-
scribing a known variance of log��� as function of the Rey-
nolds number.

More recently, two groups proposed the idea that the
local geometry of the accumulated fluid deformation, i.e.,
formally the Cauchy–Green tensor, may represent the miss-
ing information which allows to regularize the RE diver-
gence. Accumulated fluid deformation thus has been used to
model the pressure Hessian in the so-called tetrad model of
Pumir and co-workers.30,39,40 A similar idea from Jeong and
Girimaji31 has been used to model the viscous part of Eq. �1�,
explicitly using the Cauchy–Green tensor. Whether or not the
finite-time divergence is regularized, the direct use of the
Cauchy–Green tensor is limited by the fact that this tensor is
fundamentally nonstationary, i.e., as time evolves it main-
tains memory of the initial condition. Hence the resultant
models for pressure Hessian and viscous term are intrinsi-
cally nonstationary and depend on the initial condition cho-
sen to initialize the material deformation tracking. In the fol-
lowing sections, we discuss these issues in more detail and
also review the simplified model of Ref. 34 that avoids these
problems of nonstationarity.

We also point out an alternative approach41 that renor-
malizes the time variable in RE dynamics so as to relegate
the finite-time singularities to infinite time.

B. Lagrangian mapping and Cauchy–Green tensor

Following Refs. 4, 42, and 43, one may define a map-
ping Tt0,t between Eulerian and Lagrangian coordinates,

Tt0,t:X � R3 � x � R3, �2�

where x�X , t� denotes the position at a time t of a fluid par-
ticle which was at the position x�X , t0�=X at the initial time
t0. Given the initial position of a fluid particle, this mapping
�Eq. �2�� is fully defined at any time by

dx

dt
= u�x,t� . �3�

A quantity of much interest in continuous mechanics is the
deformation gradient tensor D, defined as Dij =�xi /�Xj,
which relates the variation in the position of a particle when
one slightly changes the initial position. Differentiating Eq.
�3� with respect to Xj, one gets the time evolution of D, i.e.,

dD

dt
= A�t�D�t� , �4�

and one can show4,43 that the Jacobian of the mapping Tt0,t,
i.e., det�D�t��, is equal to unity at any time by virtue of
incompressibility, stating that this mapping is always invert-
ible. Equation �4� can be exactly solved using the product
integral44 or alternatively, the time-ordered exponential,45,46

D = �
t0

t

edsA�s� = T + exp	

t0

t

dsA�s�� . �5�

The Cauchy–Green tensor C�t� is defined as the symmetric
tensor C=DD� and its eigenvalue and eigenvector system
describes the rotation and deformation of initially isotropic-
shaped fluid volumes into various shapes as time goes on.
The transport equation of the Cauchy–Green tensor can be
obtained in straightforward fashion47 from Eq. �4�,

dC

dt
= A�t�C�t� + C�t�A��t� . �6�

Based on the properties of C, studies of isotropic and homo-
geneous turbulence in both numerical48 and laboratory7,19

flows have shown that cigar �one large and two small eigen-
values of C� and pancake �two large and one small eigen-
value� shapes are the most common shapes of fluid deforma-
tion.

C. Fluid deformation and pressure Hessian models

Let us first remark that the pressure Hessian is not
among the most studied objects in the turbulence literature
�although, see Ref. 49�. One reason perhaps is that it cannot
be described naturally from a standard transport equation
along a Lagrangian trajectory. Instead, the pressure Hessian
is related to the spatial distribution of the velocity gradient
using singular integral operators,43,50,51

�2p

�xi � xj
= − Tr�A2�

�ij

3
− P.V.
 kij�x − y�Tr�A2��y�dy ,

�7�

where the integral is understood as a Cauchy principal value
and kij is the Hessian of Laplace’s Green’s function, namely

kij�x� =
�2

�xi � xj

1

4��x�
=

�x�2�ij − 3xixj

4��x�5
. �8�

One can see from Eq. �7� that only the isotropic part of the
pressure Hessian is purely local �the first term of the right
hand side of Eq. �7��. All the nonlocal effects of pressure
Hessian enter through the anisotropic part �or deviatoric part
corresponding to the second term of the right hand side of
Eq. �7��. Hence, in this view, the RE approximation can be
understood as the neglect of all the nonlocal effects implied
by the incompressibility condition: the corresponding La-
grangian particle evolves with the flow completely indepen-
dent from its neighbors. As far as we know, the tetrad
model30 is the first model to have been proposed for the
anisotropic �i.e., nonlocal� part of the pressure Hessian.
While the authors introduced the model using the language
of multipoint dispersion of particles that define an evolving
tetrad shape, a simple interpretation of the model can also be
given in terms of the deformation and Cauchy–Green
tensors.

To begin, one can re-express various Eulerian quantities
such as the pressure Hessian and the viscous term in terms of
Lagrangian coordinates, i.e., in terms of the fluid particle’s
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position at some initial time t0, X. For the Hessian tensor of
the pressure at the current point and time �x , t�, one may
write

�2p�x,t�
�xi � xj

=
�Xp

�xi

�Xq

�xj

�2p�x,t�
�Xp � Xq

+
�2Xq

�xi � xj

�p�x,t�
�Xq

. �9�

The second term entering in the right hand side of Eq.
�9� requires the knowledge of the spatial distribution of the
�inverse� deformation gradient, through its spatial derivative.
As will be seen later, the adopted approach neglects short-
time variations in the velocity gradient and in the context of
the proposed Lagrangian model, it is natural to neglect spa-
tial fluctuations of the deformation gradient, i.e.,
�2Xq /�xi�xj �0. Next, we discuss the remaining term of the
right hand side of Eq. �9�. The fourth-order tensor �iXp� jXq

can be solved along its trajectory using the dynamical evo-
lution for the deformation tensors �Eq. �4��. For the remain-
ing factor, the Lagrangian pressure Hessian �2p /�Xp�Xq, we
choose the simplest assumption, namely the isotropic
assumption,

�2p

�Xp � Xq
=

1

3

�2p

�Xm � Xm
�pq. �10�

Physically, this assumption states that as time progresses, one
loses memory about the relative orientations of the initial
locations X as far as the present value of pressure is con-
cerned. The contraction between �pq and �iXp� jXq then con-
nects the model to the Cauchy–Green tensor introduced in
the preceding section.

So far the pressure Hessian can then be rewritten, using
Eq. �10�, according to

�2p

�xi � xj
�

�Xm

�xi

�Xn

�xj

�2p�x,t�
�Xm � Xn

= Cij
−11

3

�2p�x,t�
�Xk � Xk

. �11�

To determine �2p /�Xk�Xk, we follow Ref. 30 and use the
Poisson equation �2p=−AnmAmn= �1 /3�Cqq

−1�2p /�Xk�Xk. Re-
placing back into Eq. �11� leads to30,34

�2p�t�
�xi � xj

= −
Tr�A2�
Tr�C−1�

Cij
−1 =

2Q

Tr�C−1�
Cij

−1. �12�

D. Fluid deformation and modeling
the viscous Laplacian

In a similar fashion, following Ref. 31, this procedure
can be applied to the viscous Laplacian entering in the gra-
dient of the Navier–Stokes equation �Eq. �1��, i.e.,

�
�2A

�xk � xk
�

�Xp

�xk

�Xq

�xk

�

�2A

�Xp � Xq
� . �13�

The resulting Lagrangian Hessian of A entering in Eq. �13�
will be considered as �i� isotropic, i.e., �2A / ��Xp�Xq�
=�2A / ��Xm�Xm��pq /3, and �ii� its trace will be modeled by a
friction term, i.e., �2A / ��Xm�Xm�=−1 /�2A. The characteris-
tic length scale � reflects the typical length in the Lagrangian
frame over which A is correlated. To estimate this length
scale, we note that the typical decorrelation time of A along
its Lagrangian trajectory is known to be on the order of �K

= �� /	�1/2, the Kolmogorov time scale �where 	 is the dissi-
pation rate�.2 During that time, a fluid particle is advected by
the turbulence over a distance of the order of �=u��K=�,
where u� is the root mean square velocity �chosen as advec-
tive velocity scale� and � the Taylor microscale. Finally, rec-
ognizing that � /�2=T−1, where T is the integral time scale,
one then obtains the following model for the viscous term:

�
�2A

�xk � xk
� −

1

T

Tr�C−1�
3

A . �14�

This model is similar to the one obtained by Jeong and
Girimaji31 but using a different, more physically motivated
time scale.

E. Stochastic model based on the recent fluid
deformation closure

The various terms entering in the right hand side of Eqs.
�12� and �14� include the tensor C. If this tensor is obtained
from its transport equation �Eq. �6�� subject to the natural
initial condition Cij�t0�=�ij, then the closures for pressure
Hessian and viscous term depend strongly on the initial time
t0 or, equivalently, on the initial position X. Due to the dis-
persive nature of turbulent flow, C continues to evolve with
exponentially growing and decreasing eigenvalues. Instead
of solving for C from its transport equation and having to
deal with the problems associated with nonstationarity, in
Ref. 34 a simple closure was proposed. It consists of a sort of
“Markovianization” of the dynamics of C in that it is as-
sumed that C evolves in a frozen velocity gradient tensor
field during a characteristic �short� time �. The value of A
during that time is taken as the most recent value �i.e., the
current, local, value�. Additionally the time scale chosen is
the typical decorrelation time scale of A during its Lagrang-
ian evolution, which is known to be of the order of the Kol-
mogorov time scale �K. Thus, the initial time is taken to be at
t0= t−�K, which allows to write in a simple way the time-
ordered exponential entering in Eq. �5�. We thus replace the
true Cauchy–Green tensor by a new tensor, called the “recent
Cauchy–Green tensor” C�K

that can be expressed in terms of
simple matrix exponentials,

C�K
= e�KAe�KA�

. �15�

This leads to an explicit A-dependent model for the full pres-
sure Hessian

�2p

�xi � xj
= −

Tr�A2�
Tr�C�K

−1�
�C�K

−1�ij �16�

and for the viscous Laplacian

�
�2A

�xk � xk
= −

1

T

Tr�C�K

−1�

3
A . �17�

Inserting Eqs. �16� and �14� into Eq. �1� and writing the
equation in the Itô’s language of SDEs,52 the full model for
the time evolution of the velocity gradient reads
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dA = 	− A2 +
Tr�A2�
Tr�C�K

−1�
C�K

−1 −
Tr�C�K

−1�

3T
A�dt + dW . �18�

The stochastic time evolution of the velocity gradient tensor
A �Eq. �18��, as proposed in Refs. 34 and 35, relates the joint
deterministic action of the self-stretching term −A2, the pres-
sure Hessian �Eq. �16��, and the viscous term �Eq. �17��.
Moreover, the system is forced with a stochastic Gaussian
noise. The deterministic part provides two time scales: a
small time scale �K and a large one T. The latter arises in
modeling the viscous diffusion term when combining the vis-
cosity with the Taylor microscale, which in turn is related to
the large-scale velocity rms. Hence, the deterministic part
gives the dependence on the Reynolds number Re to the
model through the ratio �T /�K��Re1/2, according to classical
Kolmogorov dimensional arguments.5 Dependence on the
Reynolds number of higher order moments of velocity de-
rivatives �i.e., anomalous scalings and the intermittency phe-
nomenon� has been studied and quantified in Ref. 35. The
purpose of this article is to focus on a single Reynolds num-
ber and to compare it with a DNS flow �see next paragraph�.

The term W is a tensorial delta-correlated noise term
that has been added in order to represent possible forcing
effects, e.g., from neighboring eddies.34,35 In Appendix A,
we describe this noise extensively and propose a way to
simulate it.

F. DNS data and comparisons with the model

In the following, we will make extensive use of a stan-
dard DNS of the Navier–Stokes equation for a Taylor based
Reynolds number of order R�=150. Pseudospectral simula-
tions are performed, of an isotropic turbulent flow in a
�0,2��3 box using 2563 nodes. Fourier modes in shells with
�k�
2 are forced by a term added to the Navier–Stokes
equations, which provides constant energy injection rate 	 f

=0.1. The viscosity of the fluid is �=0.00113. The time step
�t is chosen adaptively to ensure the Courant number
�tumax /�x�0.15, where umax is the maximum velocity and
�x is the grid size. In order to make comparisons between
DNS data and the model, one has to specify a value for the
parameter of the model �K. At R�=150, it has been estimated
by Yeung et al.53 that the ratio of the Kolmogorov scale and
the integral �i.e., velocity correlation time scale� time scale is
�K /T�0.1. Thus, in the following, DNS data will be com-
pared to the model run with �K=0.1 T. Without loss of gen-
erality, the integral time scale T will be set to unity. It corre-
sponds to set time as units of T. The model as written out as
in Eq. �18� is solved numerically, with the parameter �K

=0.1, using a second-order predictor-corrector method �see
Ref. 52� with a time step of �t=10−3. One obtains time series
of all of the components of the tensor A that display tempo-
rally stationary statistics. In this article, we have worked with
a time series of length of �106 in units of the integral time
scale T. These can then be directly compared to DNS results.
Furthermore the model provides statistically stationary time
series for both pressure Hessian and viscous Laplacian that
can be also directly compared to DNS data.

III. CONDITIONAL STATISTICS OF THE VELOCITY
GRADIENT TENSOR

We are interested here in studying various properties of
the velocity gradient tensor conditioned upon the value of its
two invariants R and Q defined earlier. The joint probability
density of �R ,Q� �the RQ-plane� has been studied in the
past10,11,13,15,37 and can be used to characterize the frequency
of occurrence of the various local topologies of the flow.

For instance, in a simple way, the second invariant

Q = − 1
2Tr�A2� = 1

4 �
�2 − 1
2Tr�S2� �19�

can be understood as the competition between enstrophy �

denotes vorticity� and dissipation �per unit viscosity�. Then,
positive Q represents rotation-dominated regions and nega-
tive Q dissipation-dominated regions. Analogously, the third
invariant

R = − 1
3Tr�A3� = − 1

4
iSij
 j − 1
3Tr�S3� �20�

represents competition between enstrophy production enter-
ing in the enstrophy evolution,7,54 i.e.,

1

2

d�
�2

dt
= 
iSij
 j + �
i�

2
i, �21�

and the dissipation production �or strain skewness30� entering
in the dissipation evolution, i.e.,

d Tr�S2�
dt

= − 2 Tr�S3� −
1

2

iSij
 j − 2Sij

�2p

�xi � xj

+ �Sij�
2Sij . �22�

Let us remark that one may interpret the RQ plane in a
different way, based on the eigenvalues of A �two of them
can be the complex conjugate� and the zero-discriminant line
�i.e., the “Vieillefosse” line, namely 27

4 R2+Q3=0�. See, for
instance, Refs. 11, 13, and 37.

A. The joint PDF in the RQ-plane

We show in Fig. 1 the joint PDF of R and Q or, equiva-
lently, the joint PDF P�Q� ,R�� of the nondimensionalized
invariants R�=R / �SijSij�3/2 and Q�=Q / �SijSij� for both DNS

R*

Q
*

DNS

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

R*

Model

(b)

−1 −0.5 0 0.5 1

FIG. 1. Joint PDF P�Q� ,R�� of R�=R / �SijSij�3/2 and Q�=Q / �SijSij� calcu-
lated from DNS �a� and the present model �b�. Contour lines are the same in
the two cases, logarithmically spaced by a factor of 10, and start at 10 near
the origin. The thick line represents the zero-discriminant �or Vieillefosse�
line: 27

4 R2+Q3=0.

101504-5 Modeling the pressure Hessian Phys. Fluids 20, 101504 �2008�

Downloaded 03 Oct 2011 to 141.108.253.253. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



and the model �Eq. �18��. In order to compute various con-
ditional averages, a range �−1;1� of values of the two non-
dimensionalized invariants R� and Q� of A is discretized in
25 equally spaced bins. For the DNS, one observes the pre-
dominance of the enstrophy-enstrophy production quadrant
�R�
0 and Q��0� and the dissipation-dissipation produc-
tion quadrant �R��0 and Q�
0�. The predominance of
these two quadrants has been observed before in the
literature.13 The model reproduces these basic trends fairly
accurately, with the characteristic “tear-shape” elongation
along the “Vieillefosse tail” in the dissipation-dissipation
production quadrant. But one also observes that the model
overestimates the total probability in the enstrophy-
dissipation production region �i.e., R��0 and Q��0� and
underestimates the dissipation-enstrophy production region
�i.e., R�
0 and Q�
0�. It will be shown later that this is
caused by limitations in how the pressure Hessian is closed
and modeled.

Next, we check whether or not dissipation �enstrophy� is
dominantly associated with the R��0 and Q�
0 �R�
0
and Q��0� quadrants. Following the approach already used
in Ref. 30 we present in Fig. 2 the conditional averages of
dissipation, i.e., �Tr�S2� �Q� ,R��P�Q� ,R�� and enstrophy
�
i
i �Q� ,R��P�Q� ,R��. Averages are weighted by the joint
density P�Q� ,R�� to ensure that the sum over all possible
values of R� and Q� gives the averages of, respectively, dis-
sipation and enstrophy. We clearly see that the quadrants
R��0 and Q�
0 �or R�
0 and Q��0� are dominated by
dissipation �or enstrophy�. The model reproduces these con-
ditional averages quite accurately.

B. Enstrophy production, strain skewness,
and energy transfer

A similar study is performed with the various quantities
entering in the definition of the third invariant R �Eq. �20��,
namely, the enstrophy production and the strain skewness.30

In Figs. 3�a�–3�d� these various quantities are shown, to-
gether with the predictions from the stochastic model. In all
cases, it is apparent that model predictions are quite accurate.
We see also that enstrophy production is clearly dominant in
the R�
0 and Q��0 quadrants. Let us mention that in the
enstrophy-dissipation production dominated region �R��0
and Q��0�, enstrophy production becomes weakly negative,
stating that in this region, enstrophy decreases with time �see
Eq. �21��. Also, in Figs. 3�a� and 3�b�, we see that strain
skewness is dominating in the bottom-right quadrant, but re-
mains very important in the top-left quadrant. This is mainly
linked to the fact that the evolution of dissipation not only
depends on the strain skewness �or dissipation production�
but also on enstrophy production and a term linked to the
pressure Hessian �see Eq. �22��.

A related quantity of interest is

− Tr�A2A�� = − Tr�S3� − 1
4
iSij
 j , �23�

which describes the time evolution of the pseudodissipation
d Tr�AA�� /dt=−Tr�A2A�� in the RE approximation. This
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quantity is sometimes called “energy transfer”30,55,56 when A
is defined by filtering in the inertial range in the context of
large eddy simulations �see Ref. 57�. While here A is not
filtered and therefore no such direct physical interpretation is
available, this quantity is still presented as additional docu-
mentation of the properties of A. Results are displayed in
Figs. 3�e� and 3�f�. Once again, the model reproduces well
the trends observed in DNS, including negative regions in
the top-right quadrant.

C. Geometric alignments of vorticity
with strain-rate eigenvectors

An important universal feature of fully developed turbu-
lent flows is the preferential alignment of vorticity along the
eigendirection of the intermediate eigenvalue of the strain-
rate tensor S �see Ref. 7 and references therein�. To study the
alignment properties of vorticity conditioned on various val-
ues of R and Q the �R ,Q� plane is divided into four regions
related to the eigenvalue structure of A. Instead of the Q
=0 line to separate high and low rotation regions as was
done in the qualitative discussions of the previous sections,
we now use the quantitatively more precise classification, in
which the �R ,Q� plane is divided into high and low rotation
regions by the zero-discriminant line, i.e., Q=−�27R2 /4�1/3.

Figure 4 shows the PDF of the cosine of the angle be-
tween vorticity and eigendirections with the most negative
�Figs. 4�a� and 4�b��, intermediate �Figs. 4�c� and 4�d��, and
most positive �Figs. 4�e� and 4�f�� eigenvalue of the stress,
for both DNS and the model. The different symbols denote
the results obtained in separate quadrants as separated by the
Vieillefosse �i.e., zero discriminant� and the R=0 lines. In
Figs. 4�g� and 4�h� is displayed the unconditional PDF inde-
pendent of the quadrant, i.e., as obtained in all regions. As
already observed in Ref. 34 the model predicts accurately the
preferential alignment with the intermediate eigendirection
�solid line�, a trend of being orthogonal to the most contract-
ing direction �dashed line�, and an almost entirely decorre-
lated trend with the most extensive eigendirection �dash-
dotted line�. The agreement between DNS and the model is
excellent in all cases, even when conditioning on the sepa-
rate quadrants. It is interesting to note that in Figs. 4�a� and
4�b� as well as in Figs. 4�e� and 4�f�, the alignment PDF is
essentially the same in three quadrants but very different in
the R�0 and Q�−�27R2 /4�1/3 quadrant. In Figs. 4�a� and
4�b� we observe that while the vorticity is mostly perpen-
dicular to the most contracting eigendirection, in the top-
right quadrant the vorticity is, in fact, not orthogonal to the
contracting eigendirection. This is the “vortex contracting”
quadrant with an unstable focus and one contracting direc-
tion. This would suggest that the vorticity is aligned with the
contracting direction. There is instead no strong preferred
alignment but there is an almost zero probability that the
vorticity is perpendicular to the contracting eigendirection.
But, on average, when taking into account all the possible
values for R and Q �Figs. 4�g� and 4�h��, vorticity remains
weakly orthogonal to this eigendirection. In terms of the
alignments with the intermediate eigendirection, one may
have expected the preferential alignments to come mainly

from the bottom-right quadrant as predicted by the
asymptotic diverging state of the RE equations.10,11 Never-
theless, in Figs. 4�c� and 4�d� we observe instead that the
alignment with the intermediate eigendirection occurs quite
independently of the characteristic values in the �R ,Q� plane.
In Figs. 4�e� and 4�f� we observe that the alignment with the
most extensive strain-rate eigendirection is random in all
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quadrants except, again, in the top-right quadrant where R
�0 and Q�−�27R2 /4�1/3. Vortex “contraction,” when it
happens, appears to occur because it is mostly orthogonal to
the extensive direction and also “not orthogonal” to the con-
tracting direction, rather than being preferentially aligned
with the contracting direction. The stochastic model predicts
these nontrivial statistical geometric behaviors quite well.

IV. PRESSURE HESSIAN AND VISCOUS TERM

Let us now focus directly on the terms requiring closure,
namely, the pressure Hessian and the viscous term, instead of
the statistics of the velocity gradient tensor considered in the
previous section. One option could be to compare individual
realizations of the model terms with the corresponding DNS
values along Lagrangian trajectories. However, since these
terms fluctuate greatly in the DNS, a statistically more robust
comparison is performed using conditional averages, condi-
tioned on R and Q.

A. Probability current and conditional averages

The approach used in Ref. 16 is followed, based on a
Fokker–Planck equation for the dynamics of R and Q. To
summarize the approach, we notice that along a Lagrangian
trajectory, appropriately contracting �1� with A and A2, using
the Cayley–Hamilton theorem,11 one can show that the time
evolutions of the invariants R� and Q� are given by

dQ�

dt�
= − 3R� −

1

�3AikHki
p −

1

�3AikHki
� �24�

and

dR�

dt�
=

2

3
�Q��2 −

1

�4AikAklHli
p −

1

�4AikAklHli
� , �25�

where �2= �SijSij� is the strain variance and t�=�t the non-
dimensional time. Also, Hp stands for �minus� the deviatoric
part of the pressure Hessian, i.e.,

Hij
p = − 
 �2p

�xi � xj
−

�ij

3

�2p

�xk � xk
� , �26�

and H�=��2A is the viscous term �recall that in the RE
approximation, Hp=H�=0�. The Fokker–Planck equation
describing the time evolution of the joint density P�Q� ,R��
may be written as58

�P
�t�

+�
�

�Q�

�

�R�
� · W = 0, �27�

where the divergence of the probability current W controls
time variations in the joint probability density P. The prob-
ability current can be written in terms of conditional aver-
ages as

W =���
dQ�

dt�

dR�

dt�
��Q�,R��P�Q�,R�� . �28�

It can be decomposed into W=WRE+Wp+W�, with

WRE =��
 − 3R�

2
3 �Q��2 ��Q�,R��P�Q�,R�� , �29�

which describes the deterministic �closed� part of the evolu-
tion of the two invariants,

Wp =��
 − AikHki
p /�3

− AikAklHli
p/�4 ��Q�,R��P�Q�,R�� , �30�

describing the pressure Hessian effects on the evolution of
R� and Q� and, finally,

W� =��
 − AikHki
� /�3

− AikAklHli
�/�4 ��Q�,R��P�Q�,R�� , �31�

describing the effects of the viscous term. An additional cur-
rent might be considered in this description, linked to an
additional forcing term that has been neglected in the
Navier–Stokes equations �Eq. �1��. This forcing is indeed
negligible in front of the other terms of the right hand side of
Eq. �1� since it can be written as the �small-scale� gradient of
the large-scale forcing of the velocity, and thus, we will ne-
glect its associated probability current.

Conversely, in the Fokker–Planck equation �Eq. �27�� for
the joint probability distribution of R� and Q� obtained from
the model �Eq. �18��, one has to take into account another
term which comes from the delta-correlated Gaussian forc-
ing. Appendix B provides the required background needed to
compute the probability flux resulting from the stochastic
forcing term in our model, i.e., the diffusion terms entering
in Eqs. �24� and �25�. It is shown that the currents associated
with the deterministic and random parts of the joint stochas-
tic evolution of R and Q predicted by the model �see Eq.
�B4�� are of the same order of magnitude.

B. Results

In Fig. 5 the vector plots and associated streamlines cor-
responding to the various probability flux terms are pre-
sented. Both results obtained from DNS and from the model
are shown.

First, as reference we present in Figs. 5�a� and 5�b� the
closed RE current WRE �Eq. �29��. As is well known,10,11 the
deterministic WRE probability current pushes probabilities
toward the right tail of the Vieillefosse line. Since the model
predicts accurately the joint probability P�Q� ,R��, agree-
ment between DNS and the model predictions �length of
vectors� is quite good because the self-stretching term −A2 is
taken into account exactly in the model �Eq. �18��.

The action of the pressure Hessian, given by the prob-
ability current Wp and shown in Figs. 5�c� and 5�d�, is quite
interesting. From the DNS data, two main pressure Hessian
effects can be observed. First, the pressure Hessian counter-
acts the effects induced by the RE terms since the flux goes
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toward the center of the RQ plane along the right tail
Vieillefosse line. This feature is well reproduced by the
model, with vector magnitudes of the same order. Another
important effect of the pressure Hessian is that in the R
0
left half-plane, the probability current leads the probability
toward the left tail of the Vieillefosse line, namely, toward
the dissipation-enstrophy production dominated region �in
lower-left direction�. This feature is not reproduced by the
model, which instead appears to act exclusively in the verti-
cal direction, upward in the Q
0 plane, and downward in
the Q�0 side. This explains perhaps why the model leads to
an underestimation �see Fig. 1� of the probability of
dissipation-enstrophy production events �i.e., the bottom-left
quadrant�. At the same time, the absence of “leftward” flux
out of the enstrophy-dissipation production region �i.e., top-

right quadrant� may explain why the model overpredicts the
probability of events in that quadrant. A very marked feature
of the DNS results is that the magnitudes of the vectors are
essentially negligible in the entire vortex contraction
quadrant above the right Vieillefosse line �R�0 and
Q�−�27R2 /4�1/3�, leading to some uncertainty in the com-
puted streamlines there.

Another main difference between DNS and model pre-
dictions is the fact that for the model, Wp vanishes at van-
ishing Q, but not for the DNS. A general feature of the pres-
sure Hessian model is that its deviatoric part is directly
proportional to Tr�A2�=−2Q �see Eq. �16��. Incidentally, the
same occurs in further generalizations that have been pro-
posed by Gibbon and Holm20 �see their Eq. �5.8��, namely,

��p = − 	�
n=1

N

cn
Gn

Tr�Gn��Tr�A2� with �
n=1

N

cn = 1, �32�

where the scalars cN are undetermined and Gn are any non-
singular symmetric tensors. Once again, we can see that the
deviatoric part of the pressure Hessian Hp is still propor-
tional to Tr�A2�. For the sake of completeness, let us remark
that at least formally, this issue does not arise in the matrix
shell model of Ref. 36. This is because the nonlocal closure
terms in the matrix shell model36 are not directly propor-
tional to Tr�A2� since the connection to pressure Hessian and
Poisson equation for pressure is not included in that ap-
proach. It would be very interesting to check if the compari-
son with DNS for the equivalent probability current in the
matrix shell model, i.e., based on relevant portions of the
quadratic nonlinear interaction terms, is better or not. Such
studies are left for future work.

To more clearly isolate the behavior of the pressure Hes-
sian near the Q=0 line, we study the magnitude of the an-
isotropic �i.e., deviatoric� part of the pressure Hessian, con-
ditioned on the local value of Q. Figure 6 shows the
conditional average of the norm �square� of the deviatoric
part of the pressure Hessian, i.e., ��Hp�2 �Q�, where �Hp�2

=Tr�Hp�Hp���, as a function of the local value of the invari-
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ant Q, for both the DNS and the model. For vanishing Q, the
conditional average �Hp�2 from the DNS does not vanish. As
discussed before this property is not reproduced by the ex-
isting models for the pressure Hessian, namely, the tetrad
model �Eq. �12��, the CM06 model �Eq. �16��, and the gen-
eralized tetrad model �Eq. �32��, because all of them predict
a pressure Hessian proportional to Q. Second, one can see
that for the range of Q under consideration �i.e., Q
� �−�Q ,�Q�� ��Q stands for the standard deviation of Q�, the
conditional average of �Hp�2 behaves as ��Q� �up to a posi-
tive additive constant�, whereas the model predicts it to be
proportional to Q2. The fact that the model predicts a qua-
dratic behavior can be understood from Taylor’s develop-
ment, namely, Hp�−Q�KS, leading to ��Hp�2 �Q��Q2 since
��K

2 �S�2��1. The small asymmetry in the quadratic behavior
seen in Fig. 6 is caused by higher order terms entering in the
expansion for the model.

For the viscous term, one observes in Figs. 5�e� and 5�f�
that the model reproduces the probability flux reasonably
well. Consistent with the observations already made in Ref.
16, the viscous effect is to push the probabilities toward van-
ishing R and Q, not only along the Vieillefosse line but also
everywhere else. We notice that the model overpredicts the
magnitudes, i.e., at this Reynolds number the model provides
too strong damping but is qualitatively correct.

In Figs. 5�g� and 5�h� is shown the sum of all these
terms, namely, the total probability current W=WRE

+Wp+W�. For the model case, another term coming from
the Gaussian delta-correlated forcing �see Appendix B and
Eq. �B9�� has been added. The circular motion around the
origin of the RQ plane has already been reported in Refs. 15
and 30. At this point, from Fig. 5 one can observe that all the
terms �self-stretching, pressure Hessian, and viscous Laplac-
ian� entering in the Navier–Stokes equations �Eq. �1�� are of
the same order of magnitude �viscous Laplacian is a little bit
smaller than the two other terms, but not by much�. Similar
conclusions can be drawn for the deterministic terms enter-
ing in the model �Eq. �18� and Figs. 5�b�–5�f��, although, as
shown in Appendix B, the amplitude of the forcing is not
negligible either. Focusing on the total probability current
�Figs. 5�g� and 5�h��, we reach the conclusion that the fact
that the modeled pressure Hessian �Fig. 5�d�� is not able to
reproduce the probability flux toward R�
0 and Q�
0 re-
gions as it is observed in DNS �Fig. 5�c��, explains why the
model overpredicts R��0 and Q��0 regions and underpre-
dicts R�
0 and Q�
0 regions, as observed in Fig. 1. We
also remark that streamlines shown in the left part of Fig.
5�h� are not significant because of the very low values of the
joint probability P�Q� ,R��.

V. VORTICITY ALIGNMENTS WITH PRESSURE
HESSIAN AND VISCOUS LAPLACIAN
EIGENDIRECTIONS

A. Pressure Hessian

Here we focus on vorticity alignment properties along
the eigendirections of the pressure Hessian. It has been de-
rived, in the inviscid limit �Euler equations�50,59,60 that vor-

ticity 
i tends to be simultaneously an eigenvector of the
rate-of-strain tensor S and the pressure Hessian. When �=0
�see Eq. �21��,

d
i

dt
= Sij
 j , �33�

and taking another time derivative and using the time evolu-
tion of S �see Eq. �22��, we get

d2
i

dt2 = −
�2p

�xi � xj

 j . �34�

Following Ref. 50, we then notice that if vorticity of a fluid
particle continues to be an eigenvector of the rate-of-strain
tensor, then it is also an eigenvector of the pressure Hessian.
To see if such a trend is observed in a finite viscosity turbu-
lent flow we will quantify the alignments of vorticity with
the eigendirections of the pressure Hessian. Such an analysis
based on DNS has been already performed,61,62 but here the
purpose is to compare results with the predictions of the
model.

Let us focus on alignment properties of vorticity with
respect to the eigendirections of the deviatoric part of the
pressure Hessian �i.e., −Hij

p defined in Eq. �26��. Alignment
PDFs are shown in Fig. 7, presented in a similar fashion as in
Fig. 4. We can see in Fig. 7�a� that vorticity is preferentially
orthogonal to the eigendirection of the smallest eigenvalue,
except in the top-left quadrant �i.e., R
0 and
Q�−�27 /4R2�1/3� where the local topology is dominated by
one direction of stretching and a stable focus. Also in this
quadrant, vorticity is preferentially aligned with the extend-
ing eigendirection. The model predicts a slightly different
picture since vorticity is predicted to be also preferentially
orthogonal to the eigendirection except in the top-right quad-
rant �i.e., R�0 and Q�−�27 /4R2�1/3� for which local topol-
ogy is dominated by one compressive direction and an un-
stable focus.

In Figs. 7�c� and 7�d�, we focus on the pressure Hessian
eigendirection of its intermediate eigenvalue. In a similar
way as with eigendirections of the rate of strain, vorticity is
preferentially aligned with this eigendirection in all the quad-
rants, and this is also very well predicted by the model.
About the eigendirection of the largest eigenvalue, we can
see that for the DNS �Fig. 7�e�� vorticity is weakly preferen-
tially aligned with the eigendirection, except again in the
top-left quadrant where vorticity is clearly preferentially or-
thogonal to this eigendirection. In Fig. 7�f�, we can see that
the model predicts most of the trends quite well in all the
quadrants. For the average results over all quadrants, it can
be seen in Figs. 7�g� and 7�h� that the model predicts with a
fairly good accuracy the behavior of vorticity with the eigen-
direction of the intermediate eigenvalue �although it overpre-
dicts the peak a little bit�. In the other extremal eigendirec-
tions, the model reproduces the moderate peak at cos���
�0 but misses the narrow peaks near alignment at
cos����1.

The fact that the model reproduces very well the events
for which vorticity happens to be an eigenvector of the rate-
of-strain tensor can be understood phenomenologically in the
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following way. When vorticity is an eigenvector of the rate
of strain, i.e., S�=��, then vorticity is also an eigenvector
of the velocity gradient tensor itself, namely, A�= �S
+���=��, since by definition ��=0. Let us notice that
vorticity is also an eigenvector of A�=S−� with the same
eigenvalue �. It is then straightforward to show by induction
that for any power n�N, An�= �A��n�=�n�. For these

very particular events in which vorticity is an eigenvector of
the rate of strain, one notices that the matrix exponential
entering the �inverse� recent Cauchy–Green tensor �in Eq.
�15�� can be written as

C�K

−1 = e−�KA�
e−�KA = �

n,m=0

+�
�− �K�n+m

n ! m!
�A��nAm. �35�

From Eq. �35� it is easily seen that vorticity is also an
eigenvector of both the recent Cauchy–Green tensor �Eq.
�15�� and its inverse. For example, C�K

−1�=e−2�K��. Finally,
since the pressure Hessian is modeled as proportional to C�K

−1

�Eq. �16��, we can state here that the present model is such
that when the vorticity is an eigenvector of the rate of strain,
then it is also an eigenvector of the modeled pressure Hes-
sian, the ordering of the associated eigenvalues being re-
spected in absolute value. More precisely, if vorticity is an
eigenvector of S with respective eigenvalue �, then vorticity
is also an eigenvector of the pressure Hessian with eigen-
value −�Tr�A2� /Tr�C�K

−1��e−2�K�.

B. Viscous term

Let us now focus on the geometrical properties of the
viscous tensor, namely, ��2A, appearing in Eq. �1�. Let us
begin with its symmetric part ��2S. The present model �i.e.,
Eq. �18�� contains the closure for the viscous term as written
in Eq. �14� that stated that the Laplacian of A is proportional
to A itself. In terms of eigendirections, it is assumed that
both S and �2S have the same eigendirections. Among oth-
ers, alignment properties of vorticity � and eigendirections
of �2S should be exactly the same as alignments of vorticity
with eigendirections of S. To determine whether this is ob-
served in DNS flows, we present in Fig. 8 the PDFs of the
cosine of the angle between vorticity and eigendirections of
the viscous term, for both DNS �Fig. 8�a�� and the model
�Fig. 8�b��. Figure 8�b� is, in fact, the same as Fig. 4�h� and
is reproduced here for convenience. We see clearly that the
overall geometrical picture is really close between DNS and
the model, and that there is preferential alignment of vortic-
ity with the eigendirection associated with the intermediate
eigenvalue of the Laplacian term as well.
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FIG. 7. PDFs of the cosine of the angle between vorticity and the different
eigendirections of pressure Hessian tensor Hp: ��a� and �b�� for the smallest
eigenvalue eigendirection, ��c� and �d�� for the intermediate eigendirection,
and ��e� and �f�� for the most positive eigendirection. As it is schematically
displayed in the inset of �b�, in a similar fashion as in Fig. 4, different
symbols are obtained from the four different regions of the �R ,Q� plane
delimited by the R�0 and the Vieillefosse �or zero-discriminant� lines given
by Q=−� 27
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most negative �dashed�, intermediate �solid�, and most positive �dash-
dotted�.
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Let us now focus on the antisymmetric part of the vis-
cous term, namely, ��2�. The vorticity vector is given by

i=− 1

2�ijk� jk. The viscous term �=��2� can also be writ-
ten as �i=− 1

2�ijk��2� jk. The model for the viscous term
�Eq. �17�� implies that the angle �= �� ,�� between the vor-
ticity and the vorticity Laplacian is fixed and equals �, i.e.,
same direction but opposite orientation, since the model �Eq.
�17�� is proportional to the velocity gradient tensor A with a
negative coefficient. One may wonder if this is consistent
with DNS data. We represent in Fig. 9 the PDF of cos �
estimated from the same DNS fields. Clearly we see that the
two vectors share preferentially the same direction, but op-
posite orientation. The model is therefore consistent with the
observed alignment trends of the full Laplacian of velocity
gradient.

VI. CONCLUSIONS

Extensive comparisons have been made between predic-
tions of a new stochastic Lagrangian model for the velocity
gradient tensor and results from DNS at a corresponding
moderate Reynolds number. The model reproduces many in-
herent geometric and statistical properties of small-scale tur-
bulence quite well. The statistics of alignment angles be-
tween vorticity and the principal axes of the rate-of-strain
tensor are very well reproduced. The joint statistics of veloc-
ity gradient invariants R and Q are also reproduced well.
Specifically, the joint PDF’s elongation into the top-left and
bottom-right quadrants observed in the DNS also occurs in
the model. Some differences occur in the model in the top-
right and bottom-left quadrants. In order to directly assess
the action of the modeled pressure and viscous terms in a
statistically robust fashion that takes into account the local
topology of the flow, the probability current W has been
studied. The agreement between DNS and model predictions
is good near the dominant Vieillefosse tail in the lower-right
quadrant of the �R ,Q� plane. However, in the dissipation-
enstrophy production dominated region �bottom left�, the

model does not reproduce the true dynamics and requires
further developments. Finally, the alignment properties of
vorticity with respect to the principal axes of the pressure
Hessian tensor have been studied. The model reproduces
quite well the preferential alignment of vorticity with the
eigendirection associated with the intermediate eigenvalue.
We elucidate the fact that in the model an eigenvector of the
rate of strain is also an eigenvector of the pressure Hessian,
and this is, in fact, consistent with known behavior of vor-
ticity in the inviscid limit �i.e., the Euler equations�.

This analysis has confirmed that the stochastic model is
capable of predicting many nontrivial properties of small-
scale turbulence as described by the geometric and statistical
properties of the velocity gradient tensor. Nevertheless, there
appear to be difficulties in specific regions of the flow, espe-
cially those in which the vorticity is being contracted such as
in the top-right or bottom-left portion of the invariant �R ,Q�
plane. Whether these drawbacks of the model are also related
to the difficulties observed when raising the Reynolds num-
ber of the flow34,35 also remains to be explored.
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APPENDIX A: DEFINITION AND IMPLEMENTATION
OF TENSOR GAUSSIAN FORCING

In this appendix, the tensorial Gaussian forcing dW
entering in the model �Eq. �18�� is described. It can be writ-
ten as

dWij = DijkldBkl, �A1�

where Dijkl are the diffusion coefficients and dB is a tensorial
isotropic Wiener process, whose components are such that

�dBij� = 0 and �dBijdBkl� = 2dt�ik� jl. �A2�

The coefficients Dijkl are chosen such that the noise dW is
consistent with a trace-free, homogeneous, and isotropic ten-
sor of a given unit variance, namely, �dWijdWkl�
=2dtDijpqDklpq, with

DijpqDklpq = 2�ik� jl − 1
2�ij�kl − 1

2�il� jk. �A3�

As a consequence, longitudinal components of the noise dW
are of variances 2dt and 4dt for the transverse ones. Also, let
us recall that the dimension of the diffusion coefficients is
time−3/2. If the tensor D is assumed isotropic itself, then the
unique solution of Eq. �A3� is given by

Dijpq = a�ij�pq + b�ip� jq + c�iq� jp, �A4�

with

a =
1

3

3 + �15
�10 + �6

, b = −
�10 + �6

4
, c =

1
�10 + �6

.

�A5�
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FIG. 9. PDF of the cosine of the angle � between vorticity 
i=− 1
2�ijk� jk

and �, the Laplacian of vorticity vector �i=− 1
2�ijk��2� jk, obtained from

DNS.
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APPENDIX B: SDEs

The basic tensorial SDE �Eq. �18�� can be written as

dAij = Vijdt + DijkldBkl, �B1�

where Vij are the drift coefficients representing the self-
stretching, pressure Hessian, and viscous terms entering in
Eq. �18� and DijkldBkl is the forcing term described in Ap-
pendix A. The associated Fokker–Planck equation for the
joint probability of the velocity gradients f�A ; t� is given by

� f

�t
= −

�

�Aij
�fVij� +

�2

�Aij � Akl
�fDijpqDklpq� . �B2�

Here we are interested in the joint probability P�Q ,R� of
two invariants of the velocity gradients, namely, R and Q �cf.
Eq. �27��. In Itô interpretation, both the stochastic equations
governing the dynamics of R and Q and the associated
Fokker–Planck equation can be computed �cf. Refs. 29, 52,
58, and 63� from the evolution of A �Eq. �B1��. To do so, one
needs to know how a SDE is written under a nonlinear trans-
formation since R and Q are nonlinear functions of the com-
ponents of A.

In general terms, let us call such a time dependent non-
linear transformation ��t ,A� :A���t ,A� with components
�k, k� �1,2 , . . . ,N�. Starting from the SDE of A �Eq. �B1��,
general formula29,52,58,63 gives the new SDEs that governs �,
namely,

d� = 	 ��

�t
+

��

�Aij
Vij +

1

2

�2�

�Aij � Apq
DijrsDpqrs�dt

+
��

�Aij
DijrsdBrs. �B3�

To compute the time evolution of the invariants R and Q,
we use Eq. �B3� with the particular �time independent� non-
linear transformations �1=Q=−Tr�A2� /2=−AijAji /2 and �2

=R=−Tr�A3� /3=−AijAjkAki /3. We get

dQ = �− VijAji − 1
2DijpqDjipq�dt − AjiDijpqdBpq,

�B4�
dR = �− VijAjqAqi − AliDijpqDjlpq�dt − AjrAriDijpqdBpq,

where, using former notations, we notice that −VijAji=−3R
−Hij

pAji−Hij
� Aji and, using the Cayley–Hamilton theorem,

−VijAjqAqi=
2
3Q2−Hij

pAjqAqi−Hij
� AjqAqi. Furthermore, the

“spurious” drift terms coming from the delta-correlated
Gaussian noise vanish, i.e., using Eq. �A3� one can show that
DijpqDjipq=0 and AliDijpqDjlpq=0. In a straightforward

manner,29,52,58,63 we get from Eq. �B4� the corresponding
Fokker–Planck equation for the joint probability P�Q ,R�,

�P
�t

= −
�

��i
�PNi� +

�

��i � � j
�PMij� . �B5�

In Eq. �B5�, the new coefficients Ni and Mij can be easily
obtained from Eq. �B4�, although they are not known as
functions of �1=Q and �2=R. Therefore, we will use condi-
tional averages to estimate them. Henceforth, we will write
the Fokker–Planck equation with conditional averages and
obtain

�P
�t

= −
�

��i
�PNi��� +

�

��i � � j
�PMij��� , �B6�

where the drift coefficients Ni are given by

Ni = 
 − 3R − Hij
pAji − Hij

� Aji
2
3Q2 − Hij

pAjqAqi − Hij
� AjqAqi

� �B7�

and the diffusion elements by

M11 = 2 Tr�AA�� + Q ,

M12 = M21 = 2 Tr�A�A2� + 3
2R ,

M22 = 2 Tr��A��2A2� − 2Q2 − 1
2Tr�A4� .

Finally, using again the general transformation �B3�, the
probability current W of the joint probability P�Q� ,R�� of
the nondimensional invariants Q� and R�, entering in the
nondimensional Fokker–Planck equation

�P
�t�

+�
�

�Q�

�

�R�
� · W = 0, �B8�

is given by W=Wdrift+Wdiff with �we recall that �2

= �SijSij��

= ���N1/�3

N2/�4 ��Q� R��P�Q�,R�� .,− � �

�Q�

�

�R� �����M11/�5 M12/�6

M21/�6 M22/�7 ��Q�,R��P�Q�,R��	,

drift

W

diff
W

W

�B9�
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We see from Eq. �B9� that one needs to add another term
Wdiff to the probability current W when dealing with a
SDE. This term does not exist when dealing with a determin-
istic equation �Eq. �28��, although the gradient of the forcing
entering in the Navier–Stokes equations for A �Eq. �1�� has
been neglected. The total probability current W �Eq. �B9��
was displayed in Fig. 5�h�. We would like now to display
separately the probability current coming from the drift
terms Wdrift and the one generated by the diffusion coeffi-
cients Wdiff. We represent in Fig. 10 the vector and stream-
line plots of the probability current for the model associated
�Fig. 10�a�� with the drift coefficients Wdrift and �Fig. 10�b��
with the diffusion coefficients Wdiff �Eq. �B9��. We recall
that the total probability current is displayed in Fig. 5�h�. We
see first that Wdrift and Wdiff are of the same order of mag-
nitude. The current Wdrift associated with the deterministic
part of the stochastic evolution �Eq. �B4�� goes toward the
origin in a rotating motion: the dynamics is decaying. To
compensate for this decay, the current Wdiff associated with

the stochastic forcing part of the evolution �Eq. �B4�� points
outward away from the origin. The sum of these two, the
total current displayed in Fig. 5�h�, has a circular motion
around the origin, consistent with a stationary process �i.e.,
�P�Q ,R� /�t=−� ·W�0�.
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