
Physica D 237 (2008) 1969–1975
www.elsevier.com/locate/physd

A

c
t
©

K

0
d

Statistical behaviour of isotropic and anisotropic fluctuations
in homogeneous turbulence

Luca Biferalea,b, Alessandra S. Lanottec,d,∗, Federico Toschie,f

a Department of Physics, University of Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
b INFN, Sez. Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

c CNR - Istituto di Scienze dell’Atmosfera e del Clima, Via Fosso del Cavaliere 100, 00133 Rome, Italy
d INFN, Sez. Lecce, 73100 Lecce, Italy

e CNR - Istituto per le Applicazioni del Calcolo, Viale del Policlinico 137, 00161 Rome, Italy
f INFN, Sezione di Ferrara, Via G. Saragat 1, 44100 Ferrara, Italy

Available online 15 February 2008

bstract

We review recent progresses on anomalous scaling and universality in anisotropic and homogeneous hydrodynamic turbulent flows. As a
entral matter, we discuss the validity and the limits of classical ideas of statistical isotropy restoration. Finally, we comment on a still open issue,
he observed different scaling behaviour of longitudinal and transverse velocity increment moments in purely statistically isotropic ensemble.
c 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical restoration of symmetries of the Navier–Stokes
equations is at the base of modern theories of turbulence [1].
The presence of geometrical boundaries or obstacles, or the way
energy is injected in the flow usually break exact symmetries of
the equation of motion. However, for high enough Reynolds
number flows, those symmetry properties are supposed to be
locally restored in a statistical sense, e.g. only for average
quantities. Local homogeneity and local isotropy deserve a
particular attention, since they are key features of theoretical
approaches to turbulence and transport models. While there
has been just a few attempts to make a systematic theory for
deviations from statistical homogeneity [2] (see also [3,4] for
recent results), it is remarkable that about isotropy restoration,
there has been a considerable progress in the last years, as
reviewed in Ref. [5]. As a result of this progress, effective
data analysis and systematic theoretical studies have been
possible, such as to separate isotropic from anisotropic features
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of turbulent homogeneous statistical fluctuations. Motivation
for these researches is related to puzzling experimental and
numerical observations, dubbed persistence of anisotropies,
contradicting classical expectations of recovery of isotropy
[6–9]. Persistence of anisotropy accounts for the fact that purely
anisotropic adimensional quantities, such as the skewness of
velocity gradients transverse to the mean flow do not decay, but
remain order O(1) at very large Reynolds numbers.

On a more general perspective, a proper understanding of
scaling behaviours in statistically homogeneous but anisotropic
flows is crucial to assess the universality of statistical properties
of hydrodynamic turbulence [10].

Some crucial steps toward a clear understanding of the
statistics of anisotropic fluctuations have been done in the
context of Kraichnan models [11–13], simple linear models for
passive transport of scalar or vector quantities by homogeneous,
isotropic and Gaussian velocity fields, in the presence of large-
scale homogeneous but anisotropic forcing [14–18]. While
we cannot review these works, it is worth to recall their
fundamental results. Isotropic and anisotropic fluctuations
can be characterized by different scaling exponents, whose
statistical importance is governed by their degree of anisotropy;
these exponents are independent of large-scale forcing or
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boundary conditions, hence universal (see also [19] for a
discussion of the case in the presence of an anisotropic and
inhomogeneous forcing). The symmetry breaking and peculiar
nature of the forcing is revealed in the coefficients appearing in
the scaling laws, which are not universal.

In the absence of analytical approaches able to show the
validity of these results in the full nonlinear problem, accurate
experimental [20–24] and numerical [25–31] measurements
become of fundamental importance. Encompassing all results
achieved so far, or attempting an historical review of different
approaches to homogeneous isotropic – where anisotropic
effects are neglected, – and anisotropic turbulence, go beyond
our goal and can be found in Ref. [5]. Also we mention
that different approaches to anisotropy, mainly focused on
large scale flow properties, have been extensively studied in
Ref. [32].

Our focus is on small-scale anisotropy. At this purpose,
we will first discuss the use of the SO(3) decomposition of
statistical observables in terms of their projections on different
sectors of the group of rotations in three dimensions [33]
(see also Ref. [34] for a rewiew focusing on experimental
measurements). The use of SO(3) decomposition, providing
a complete basis for angular decomposition, enables us to
systematically describe the limits of the idea of isotropy
restoration at sufficiently small scales (or sufficiently high
Reynolds number), as postulated by the Kolmogorov theory [1].
Key working hypothesis, that we will discuss in the sequel, is
that forcing has its support at scales much larger than those of
the inertial range.

Secondly, we will consider the specific case of large-
scale shear flows, for which a theoretical prediction for
the dimensional scaling of exponents of velocity increment
moments (structure functions) of any order and any degree of
anisotropy can be done [35]. Results point to the existence
of universal isotropic and anisotropic scaling exponents,
deviating from their dimensional values. Anomalous scaling
and universality of turbulent fluctuations appear as two
concepts intimately related, as highlighted in Kraichnan
models.

Finally, we will consider statistically homogeneous and
isotropic turbulent flows, which can be realized with some
degree of accuracy in experiments and in numerics. Compared
to strongly anisotropic situations as those encountered in
geophysical or plasma applications, they represent a much
simpler problem. However, a large number of studies
[7,22,36–44] report possible different behaviours for the
longitudinal and transverse velocity structure functions in 3D
flows, for moments high enough. These results contradict
our expectations (for second and third moments, analytical
constraints resulting from isotropy and incompressibility
impose the same scaling to longitudinal and transverse
fluctuations). Recent observations will be here reviewed, and
commented in the light of the SO(3) decomposition.

The paper is organized as follows. Section 2 recalls
the theoretical framework to deal with weak anisotropic
fluctuations and the notion of isotropy recovery; this is done
by means of the SO(3) decomposition, briefly sketched.
In Section 3, by means of the specific case of homogeneous
shear flows, a dimensional argument for the scaling of
anisotropic fluctuations is recalled and compared to numerical
observations. Last Section 4, before concluding remarks, is
devoted to the issue of longitudinal and transverse structure
functions scaling in homogeneous isotropic turbulence.

2. Anisotropic hierarchy and the SO(3) decomposition

The starting point of a systematic approach to small-
scale anisotropic turbulence is to suppose that both boundary
conditions and forcing – which break the invariance under
rotation of the Navier–Stokes equations [45], – give a
dominant contribution only at large scales, while the transfer of
fluctuations from large to small scales is driven by the rotational
invariant terms of the equations of motion. This is equivalent
to say that anisotropy is only weakly affecting the statistical
properties of the turbulent field under exam. Strongly sheared
flows constitute a noticeable exception [46,47], as well as
magneto-hydrodynamic (MHD) flows in the presence of a mean
field for which we still do not have clear evidences [48,49].
However, when the previous hypothesis of large-scale forcing
holds, we can study the behaviour of velocity correlation
functions in the inertial range, at scales η � r � L where
η is the dissipation scale and L is the scale of the forcing.

To separate isotropic from anisotropic contributions, it
is useful to consider their projections on the irreducible
representations of the SO(3) group. As a standard observable,
we consider the two-points homogeneous second-order
structure function

Sαβ(r) ≡
〈
(vα(r) − vα(0))(vβ(r) − vβ(0))

〉
.

The decomposition of Sαβ(r) in terms of the eigenfunctions
of the rotational operator is made by a set of functions
labelled with the usual indices j = 0, 1, . . . and m =

− j, . . . ,+ j , corresponding to the total angular momentum and
to the projection of the total angular momentum on a arbitrary
direction, respectively.

For scalars quantities, as the longitudinal structure function,
S(2)

L (r) ≡
〈
[(v(r) − v(0)) · r̂]2

〉
, the set of basis functions

are the spherical harmonics, Y jm(r̂). For a generic pth order
tensor, in addition to indices j and m, another index q is
necessary, labelling different irreducible representations within
each fixed j sector [5,33]. It is easy to show that there are only
q = 1, . . . , 6 irreducible representations of the SO(3) group
for the space of two-indices symmetrical tensors as Sαβ(r).
Accordingly, the second order structure function can be exactly
decomposed as

Sαβ(r) ≡

6∑
q=1

∞∑
j=0

+ j∑
m=− j

S(2)
qjm(r)Bαβ

qjm(r̂), (1)

where the tensors Bαβ

qjm(r̂), defined on the unit sphere, can
be seen as a generalization of the spherical harmonics to the
tensorial case, and the superscript 2 in the projection S(2)

qjm(r)

reminds the order of the analysed correlation function.
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In Ref. [33], it has been shown that, if the forcing is at
large scales, by projecting the rotational invariant part of the
evolution equation for Sαβ(r) on the irreducible representations
of the SO(3) group, we obtain a set of dynamic – unclosed –
equations for each projection, in each separate sector. The terms
of the equations that are not coupled with the forcing, do not
depend explicitly on the index m (invariance of Navier–Stokes
eqs. with respect to the orientation of the z-axis) and they
mix all possible q-representations, for a given j . In other
words, if forcing terms are neglected, projections obey separate
dynamic equations within each j sector, which corresponds to
the foliation of the dynamic equation for any correlation in each
given sector j of the rotational group [5]. This is a powerful
result since, if forcing can be neglected at small scales, it allows
to analyse separately the scaling behaviour of isotropic and
anisotropic fluctuations in a systematic and quantitative way by
studying the behaviour of the projection coefficients S(2)

q jm(r),
for any degree of anisotropy j .

Moreover, in the limit of infinite Reynolds numbers,
Navier–Stokes equations become scaling invariant, sector by
sector. It is thus natural to expect the existence of scaling laws
characterizing each sector separately, that is:

S(2)
qjm(r) ∼ c(2)

qjmr ξ j (2), (2)

where the coefficients c(2)
jmq have to be matched with large-

scale boundary conditions and forcing. Decomposition similar
to that of Eq. (1) can be generalized to any p-th order tensor,
associated to velocity increment moments of order p > 2.
In principle, nothing prevents the existence of more than one
exponent characterizing each separate anisotropic sector, so that
the power-law in Eq. (2) has to be considered the dominant
term.

When we deal with numerical or experimental data,
measuring behaviour of undecomposed velocity increment
moments at smaller and smaller scales might not be enough
to extract clean results about scaling exponents, even for
very large Reynolds number flows. Indeed the presence of
anisotropic fluctuations which have not yet decayed even
at very small scales, can spoil scaling, thus resulting in a
superposition of different power laws.

In particular, measuring scaling properties in each separate
sector becomes compulsory if we mean to assess isotropy
recovery of turbulent statistics. Such a recovery may exist only
if, for any moment of given order p, the isotropic scaling
exponent is always smaller than the anisotropic ones,

ξ j=0(p) < ξ j (p), ∀ j. (3)

More generally, a whole hierarchy among the different
anisotropic exponents is naturally expected, within any order
p:

ξ j=0(p) ≤ ξ j=1(p) ≤ ξ j=2(p) < · · · , (4)

where the exponents ξ j (p) are supposed to be independent of
the (m, q) indices.

In models for passive advection [15,17,18], it has been
demonstrated that a similar hierarchy exists, and also that
scaling exponents do not show any dependence on the q, m
indices. On such basis, we expect that a hierarchy like (4) might
exist also in the full hydrodynamic case, and that it is robust at
changing large-scale conditions.

The independence of scaling exponents from the m index
is given by the arbitrariness in defining the orientation of the
coordinate axis in 3D space. That from the q index, i.e. from
the set of irreducible representations of the rotation group,
is much less trivial and with interesting consequences. A
dependence on the q index would weaken the whole foliation
pattern, according to which rotationally invariant properties
do not depend on the set of eigenfunctions (with the same
rotational properties) chosen to decompose the observables.
For example, admitting that projections with different
q-indices have different scaling properties could possibly
explain the observed different scaling between transverse
and longitudinal high-order structure functions in a isotropic
statistics ( j = 0) [22,36,39].

In Ref. [15], it has been shown for the case of passive vector
advection that the differential equations for the vector field
covariance foliate into independent closed equations for each
j sector, which mix different irreducible representations of the
SO(3) group, but the scaling exponents do not exhibit any
dependence on the q index. We cannot prove that the very same
happens for the Navier–Stokes case, although, on a physical
ground, we do not see any reason why it should not be like that.

A possible explanation for the observed discrepancy in the
scaling exponents of longitudinal and transverse high-order
moments might rather be sought in terms of finite Reynolds
effects, which prevent from having a unique clear scaling in the
inertial range. In this case the differences would become smaller
and smaller by going to larger and larger Reynolds numbers. In
Section 4, we will come back to this point.

Experimental and numerical measurements often deal with
the scaling properties of longitudinal structure functions
S(p)

L (r) ≡ 〈[(v(r)− v(0)) · r̂]p
〉. As anticipated before, these are

scalar objects whose decomposition onto the eigenfunctions of
the SO(3) group is particularly simple,

S(p)
L (r) =

∞∑
j=0

j∑
m=− j

S(p)
jm (r)Y jm(r̂). (5)

In the sequel, we will consider the scaling behaviour of low
order (in p and in j) projections S(p)

jm (r).

3. Dimensional prediction for anisotropic fluctuations

A phenomenological theory for dimensional expectation of
the scaling exponents of structure functions is important when
we try to assess the intermittent behaviour of homogeneous
turbulent fluctuations, isotropic as well as anisotropic.
Lumley [50] first formulated a dimensional prediction for the
scaling exponent of the second order structure function in the
sector j = 2: ξ

( j=2)
d (p = 2) = 4/3. In Ref. [35] an argument

was given for the dimensional value of scaling exponents of
longitudinal structure functions of any order and any degree of
anisotropy, which generalizes Lumley’s one.
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The idea is the following. The overall effect of the large-
scale energy pumping and/or boundary conditions is to produce
a large-scale anisotropic driving velocity field U. This is quite
natural and very often encountered in geophysical or laboratory
flows. The time evolution equation for the velocity field v can
be written as

∂tvα + vβ∂βvα + Uβ∂βvα + vβ∂βUα = −∂α p + ν∆vα. (6)

The major effect of the large-scale field is the instantaneous
shear Iαβ = ∂βUα which acts as an anisotropic forcing term
on small scales, i.e. for scales much smaller than the typical
shear-injection scale, L S =

√
ε/|I|3.

To build up a dimensional matching for velocity fluctuations,
we first consider the equation of motion for two points
quantity 〈vα(r)vδ(0)〉 in the stationary regime. Inertial and
shear-induced contributions can be balanced:〈
vδ(0)vβ(r)∂βvα(r)

〉
∼

〈
Iαµ(r)vδ(0)vµ(r)

〉
, (7)

to obtain a dimensional estimate of the anisotropic components
of the LHS in terms of the RHS shear intensity and of the
isotropic part of

〈
v(r̂)v(0)

〉
. Similarly for three point quantities

and higher order velocity correlation. Since the shear is a large-
scale slow quantity, a safe estimate is the following:〈
Iαµ(r)vδ(0)vµ(r)

〉
∼ Dαµ

〈
vδ(0)vµ(r)

〉
.

The Dαβ tensor, associated to the combined probability to have
a given shear and a given small scale velocity fluctuation, brings
angular momentum only up to j = 2. Composition of angular
momenta ( j = 2 ⊕ j − 2), then results in the following
dimensional matching:

S(p)
j (r) ∼ r |D| · S(p−1)

j−2 (r), (8)

where S(p)
j (r) is a shorthand notation of the projection on the

j- th sector of the p- th order correlation function previously
introduced, neglecting further possible dependencies on q and
m indices. In Eq. (8), |D| denotes the typical intensity of the
shear term Dαβ in the j = 2 sector. For instance, the leading
behaviour of the j = 2 anisotropic sector of the third-order
correlation is: S(3)

j=2(r) ∼ r |D|S(2)
j=0(r) ∼ r ξ2

d (3).
By using a similar argument, we can obtain dimensional

predictions for the j = 2, 4 sectors of the fourth order structure
function. The procedure is easily extended to all orders, leading
to the following expression:

ξ
j

d (p) =
(p + j)

3
. (9)

Direct numerical simulations (DNS), at moderate Reynolds
number Reλ ∼ 100, of a fully periodic, incompressible flow
with a statistically homogeneous but anisotropic large-scale
energy injection have been reported in Ref. [27,35]. They can
be used to test the validity of the dimensional prediction (9).

In Fig. 1 isotropic and anisotropic fluctuations, which have
a signal-to-noise ratio high enough to ensure stable results,
are shown. Sectors with odd js are absent due to the parity
symmetry of the longitudinal structure functions. We notice a
Fig. 1. Log–log plot of the second-order structure function projections S(2)
jm (r)

versus the scale r , for sectors with a good signal-to-noise ratio. Sectors:
( j, m) = (0, 0), (+); ( j, m) = (2, 2), (×); ( j, m) = (4, 0), (empty square);
( j, m) = (4, 2), (?); ( j, m) = (6, 0), (◦); ( j, m) = (6, 2), (black square).
The statistical and numerical noise induced by the SO(3) decomposition is
estimated as the threshold where the j = 6 sector starts to deviate from
the monotonic decreasing behaviour ∼O(10−3). This figure is taken from
Ref. [27]. Data come from the integration of Navier–Stokes equation for an
incompressible flow, solved on a triply periodic box with 2563 grid points;
Taylor scale based Reynolds number is Reλ ∼ 100.

clear foliation in terms of the j index: sectors with the same
j but different ms behave very similarly. In Table 1 the best
power law fits for structure functions of orders p = 2, 4, 6
and sectors j = 2, 4, 6 are presented. It is important to
notice the presence of a hierarchical organization as assumed
in (4), which implies isotropy restoration at sufficiently small
scales, and also that there is no saturation for the exponents
as a function of the j value. Second, the measured exponents
in the sectors j = 4 and j = 6 are anomalous, i.e. they
differ from the dimensional estimate ξ

j
d (p) = ( j + p)/3.

This implies that isotropy is restored at small scales, but
subleading anisotropic fluctuations decay slower than predicted
by dimensional argument. Such difference with the dimensional
scaling has been exploited in Ref. [26] to explain the puzzling
results on gradients statistics mentioned in the introduction [6–
9]. Persistence of anisotropy can be understood of a combined
effect of anisotropy and intermittency, causing anisotropic
quantities to decay at high Reynolds at much slower rates that
what expected by dimensional predictions (see e.g. Ref. [51]).

Moreover, the comparison between new experimental and
numerical results [24,29,30] with the data presented in Table 1
suggests that anisotropic fluctuations are indeed universal,
i.e. scaling exponents for scales smaller then the typical shear
length do not depend on the particular mechanism used to
inject anisotropy. A different scenario may emerge if we look
at scaling properties for scales larger than the typical shear
length, L S , i.e. where the external forcing mechanism cannot
be neglected and therefore the foliation pattern is no longer
valid [30,46,47] (consider for example turbulent convection in
the Bolgiano regime). If foliation cannot be invoked, all sectors
are in principle entangled and scaling properties of isotropic
and anisotropic sectors may even become not universal. Further
work is needed in this direction, by comparing experiments
with different injection mechanisms to better highlight the
statistical behaviour at scales r � L S .
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Table 1
Scaling exponents in the isotropic and anisotropic sectors obtained in Refs. [27,35] by means of DNS

p ξ j=0(p) [ξ
j=0

d (p)] ξ j=2(p) [ξ
j=2

d (p)] ξ j=4(p) [ξ
j=4

d (p)] ξ j=6(p) [ξ
j=6

d (p)]

2 0.70 ± 0.2 [0.66] 1.15 ± 0.5 [1.33] 1.65 ± 0.5 [2.00] 3.2 ± 0.2 [2.66]
4 1.28 ± 0.4 [1.33] 1.56 ± 0.5 [2.00] 2.25 ± 0.1 [2.66] 3.1 ± 0.2 [3.33]
6 1.81 ± 0.6 [2.00] 2.07 ± 0.8 [2.33] 2.60 ± 0.1 [3.33] 3.3 ± 0.2 [4.00]

Notice that values for the anisotropic sector j = 2, at different order moment order p, are taken from the experiments [21,22]. For the values extracted from the
numerical simulation (columns j = 0, 4, 6), error bars are estimated on the oscillation of the local slopes. For the experimental data, error bars are given as the

mismatch between the two experiments. For all sectors, the dimensional estimates for the scaling exponents ξ
j

d (p) = (p + j)/3 are also reported in square brackets.
4. Discussions and open issues

An issue still much debated concerns scaling in purely
isotropic ensemble. Velocity tensors can be decomposed, inside
the j = 0 isotropic sector, in q-different eigenvectors,
corresponding for example to purely longitudinal, purely
transverse or mixed longitudinal and transverse fluctuations [5].
Purely longitudinal structure functions are given by S(p)

L (r) ≡

〈[δv(r) · r̂]p
〉; purely transverse structure functions are:

S(p)
T (r) ≡ 〈[δv(rT )]p

〉 (where rT · v = 0). As previously
discussed, arguments based on SO(3) decomposition do
not distinguish among scaling properties inside a given j
sector. If different scaling are observed among transverse and
longitudinal fluctuations within the j = 0 sector for statistically
isotropic flows, new ideas must be presented to explain them.
In Fig. 2, we show a comparison between logarithmic local
slopes of order p = 8 and p = 4 in the ESS sense [52,53],
of longitudinal and transverse structure functions [36,54]:

ζ(p, r) =
d log S(p)

L ,T (r)

d log S(2)
L ,T (r)

,

for data issuing from two different numerical simulations. This
is equal to the ratio of the scaling exponent of the p-th order
longitudinal (transverse) structure function to that of the second
order longitudinal (transverse) one. The two DNS are ideally
statistically isotropic since the forcing mechanism is such, and
the flow has periodic boundary conditions. Residual anisotropic
contribution due to the discretized nature of the numerical grid
and to statistical fluctuations in the velocity statistics induced
by the forcing, can be quantified and result to be very small
in the data shown here. Still, in the inertial range the two
datasets agree in showing a detectable difference between the
longitudinal and the transverse scaling exponents.

This discrepancy is an open theoretical issue, not explainable
using standard symmetry argument in homogeneous and
isotropic turbulence [5]. If this is an effect due to finite-
Reynolds number or a result which remains true even for most
intense turbulent realizations is yet not known (see also [39] for
a discussion on this point).

In recent years, many detailed observations about anisotropic
turbulence have been collected. These have also given a burst
for developing a systematic theory for disentangling isotropic
and anisotropic fluctuations in the case of statistically ho-
mogeneous turbulent flows. We have now observation of
statistical restoration of isotropy in passive transport and hydro-
dynamic turbulence. However, isotropy is recovered at a slower
Fig. 2. Top figure: Log-lin plot of the local slopes, in ESS, of the 8th-order
longitudinal (top lines) and transverse (bottom lines) structure functions versus
the scale r/η, as obtained from DNS data of incompressible turbulence from
Ref. [36], (DNS1: circles). These are compared with DNS data obtained
for a slightly compressible turbulent flow, as reported in Ref. [54], (DNS2:
squares). Bottom figure: The same but for the fourth-order longitudinal and
transverse structure functions. Note the good agreement of the two datasets
in the inertial range, r � η, where they display the same mismatch between
the longitudinal and transverse moments. The discrepancy between DNS1 and
DNS2 data close to the dissipative scale, r/η ∼ 1, is due to the fact that the two
simulations have different small-scale dissipation mechanisms. DNS1 data refer
to an incompressible turbulent flow, with normal viscous dissipation; numerical
resolution is 10243 grid points and Taylor scale-based Reynolds number is
Reλ ∼ 460. DNS2 data refer to a slightly compressible turbulent flow with
Mach number ∼ 0.3; numerical resolution is 18563 grid points, and estimated
Reynolds number is Reλ ∼ 600. In this run, there are two mechanisms of
kinetic energy dissipation. The most important is the transformation of kinetic
energy into heat via compressible effects; the second is a numerical smoothing
of steep velocity gradients tuned to filter out local numerical instabilities. The
latter is important only at scales of the order of the grid spacing.

rate than expected by dimensional argument, due to intermit-
tency. Also, there are evidences that anisotropic exponents, as
well as isotropic ones, are anomalous and universal. Numerical
and experimental results match with the analytical results ob-
tained in linear model for passive advection, where it has been
shown the existence of a hierarchy of exponents depending on
the anisotropy degree, as well as the intermittency and univer-
sality of these exponents.

Our understanding of anisotropic turbulence is, however,
based on the idea that boundary conditions and forcing
contribute only at large scales, and do not break rotational
invariance at scales in the inertial range. This might not be
always true, particularly if we consider the case of MHD
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turbulence, for which there are observations that anisotropy can
grow going at smaller and smaller scales [48]. Similarly, shear
flows in the production range or turbulent convection in the
Bolgiano regime may posses strong departure from the sort of
phenomenology observed within the foliation scheme.
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