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LETTER TO THE EDITOR 

One-dimensional asymmetrically coupled maps with defects 
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Absbad. In this leaer we study chaotic dynamical properties of an asymmetrically coupled 
one-dimenswnal chain of maps. We discuss the existence of coherent regions in tenns of ule 

around one single defect and that the tangent vector jumps from one defect to another in an 
apparently nndom way. We m m  quantitatively the IocaliZatiMl properties by defining an 
enhupy-like function in the space of tangent vc~fors. 

presence of defects along the chain. We find out that temporal chaos is im"x usly locaiired 

Spatio-temporal chaos has been recently studied in many fields, as B&nard convection, 
optical turbulence, chemical reaction-diffusion systems, and so on [ 11. One of the paradigms 
of spatial chaos is the chaotic evolution of a spatial pattern. order and chaos are often 
considered to be opposite notions in nature. One may think of order as a stable and 
regular behaviour, and of chaos as unstable and erratic behaviour. Then one may be 
tempted to conclude that spatial order cannot exist in temporally chaotic systems. There 
are, however, many examples where spatial order coexists with temporal chaos, e.g. in 
convection, boundary layers and shear flows. 

Generally, it is difficult to study this spatio-temporal behaviour from the full equations, 
e.g. the Navier-Stokes equations in fluids. As a consequence, to gain more insight and to 
facilitate computation, model systems with a set of coupled dynamical systems, coupled- 
map lattice, have been introdua- These are a crude. but non-trivial, approximation of 
extended systems with discrete space and time, but continuous states [I]. The simplest 
example is given by a set of N continuous variables xi which evolve in (discrete) time as 

~ ( n +  l ) = ( l - a i - B i ) f ( x i ( n ) ) + c r i f ( x i - l ( n ) ) + B i f ( ~ i + l ( n ) ) .  (1) 

Usually, the coupling constants are assumed to be independent of the site i and equal, i.e. 
ai = Pi = y ,  and periodic boundary conditions are taken. 

In m e  physical problems, e.g. shear flow, boundary layers or conveon,  there is 
a privileged direction. 'This can be introduced in the model (1) by taking asymmetric 
couplings [2,3] 

(2) 

The system (1H2) with periodic boundary conditions shows convective instability 
[41. In a reference frame moving with a constant velocity U in some band [ u , ~ ,  vm] an 
initial perturbation Sxk(0) grows exponentially with a rate given by a co-moving Lyapunov 
exponent A(v) 

ai = YI # BI = YZ . 

Sx,+,(n) 2 Sxk(o)eA'"l" . , (3) 
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The situation becomes much more intriguing and interesting if one introduces non- 
periodic boundary conditions. For example, see [2], in which a unidirected lattice map is 
used to mimic convective turbulence. Recently Aranson er al [5] studied the system (I) 
with the following coupling constantx 

a ; = y l  & = y z  for i = 2 ,  ..., N - I  
1 

Yl > Yz (4) 
a1 = o  PI = n  a N = Y I  B N = o  

and f ( x )  = R - x2 with R = 1.67, for which the behaviour of a single map is chaotic. 
The system ( I ) ,  (4) has the stable uniform solution 

xi(n) = Z(n) Y(n + 1) = f E ( n ) ) .  (5) 

Aranson et 01 [5] found that starting from randomly non-uniform initial conditions, after 
some iterations the xi(n) become partially synchronized: xi(n) ZI Z(n) for i < l,, while for 
i Zc the x; are spatially irregular. The finite coherence length 1, is due to the numerical 
noise. Indeed, they found that 1, increases logarithmically with the noise level in the 
numerical calculations. 

The synchronized zone appears for small values of the index i because of the structure 
of the map: numerical noise, like any other disturbances, propagates from left to the right 
due to the choice of the y’s. Therefore, starting from site i = 1 and moving to the right one 
observes a growing of numerical noise up until the coherent region is completly destroyed. 

This situation seems rather pathological, since the main features of a chaotic system 
should not be destroyed by the presence of a small noise. 

In order to gain intuition on this behaviour, we have studied the evolution of the tangent 
vector of the system (1). (4). The evolution law of the tangent vector% is obtained linearizing 
equation (I)  about the trajectoly 

zi(n + 1) = (1 -ai -Bi)g(xi(n))zi(n) +aig(xi-i(n))zi-i(n) +Big(Xi+i(n))zi+i(n) 
(6) 

where g(y) = df(y)/dy, and the coupling constants are given by (4). 
A numerical analysis reveals that if the tangent vector is initially localized in the irregular 

zone of the system, i.e. zi(0) = 0 for i < l,, then one has a behaviour similar to the 
convective instability. The vector translates, while growing, in the direction of increasing i. 
However, unlike the case of periodic boundary conditions, as soon as the perturbation 
reaches the boundary i = N, its amplitude decreases rapidly to zero. 

On the other hand, if ~ ( 0 )  # (I for some i c lc. the instability does not travel and there 
is an exponential growth of s ( n )  in the synchronized part of the chain. This means that the 
chaotic part of the system is the spatially coherent one. 

A mpasure of the degree of chaos is given by the Lyapunov exponents. They measure 
the growth of the tangent vector for large time, and hence they are ruled by the synchronized 
part of the system. As a consequence, since 1, depends on the noise level in the numerical 
calculations, we expect that also the Lyapunov exponents should be affected. This is 
confirmed by the numerical analysis. For example, in the case of N = 70 we find only one 
positive Lyapunov exponent, and the others negative, in a four-byte precision calculation, 
while an eight-byte calculation leads to several positive exponents. 

As stated above, a similar scenario is rather pathological in the framework of chaotic 
systems, since one expects a sort of structural stability for the main features. In our opinion 
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the origin of this cdd behaviour is in the open boundary conditions. Indeed, for a one- 
dimensional system, open boundary condition represents a very strong ‘defect’. The chain 
is broken somewhere. For this reason we have studied a slightly modified version of 
the model which in some sense interpolate between the periodic and the open boundary 
conditions. 

y2 and periodic boundary conditions, and we 
introduce some ‘defects’ by changing the coupling constants at certain points i = kl, .... kM 
(with M << N) of the lattice. 

We consider the system (I), (21, with y, 

We have considered the following class of defects: 

a; = y~ p’; = yz but ai = y2 p’; = y1 if i = k j .  (7) 

The dynamic evolution of a defect, i.e. of a variable with the exchanged couplings, xi,, 
is essentially given by the single map solution Y,  equation (5). as can be seen in a return 
map, see figure 1. Thus the motion of the defects are not very much influenced by the other 
variables. Yet there is a small synchronization length, lc, of the variables near the defects: 
x;(n) 2: xa,(n) for i - kj < IC. Unlike the case discussed above, this synchronization length 
does not depend on the noise in the numerical calculation. The doubling of the precision 
in the computation does not produce any change in 1,. 

In spite of this apparently simple behaviour, the dynamics is very interesting if one 
studies the evolution in the tangent space. After a short transient, independent of both z(0) 
and ~(0). the tangent vector %(n) becomes localized around one of the defects. This means 
that its components are sensibly different from zero only in a short region, lo, about the 
defect. This region tums out to be of the order of the synchronization length, le. 

The defect around which the tangent vector is localized changes in time. The passage 
from one defect to another happens suddenly, in few time iterations. The entire process can 
be visualized in terms of random jumping from one defect to another. In the meantime the 
modulus of the tangent vector grows exponentially revealing that the motion is chaotic. 
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One can generalize the analysis by considering the full set of Lyapunov vectors z(j)(n), 
with j = 1, . . . , N, associated with the Lyapunov exponents Aj. Each vector z(ij(n) evolves 
according to (6), but with orthogonal initial conditions, i.e. z'j)(O) I z(y)(O) if j # j'. 
The Lyapunov exponents measure the exponential growth of the volume individuated by 
the Lyapunov vectors. More explicitly 

where A indicates the extemal product. 

i i 

Fwre 2. (@')Iz) versus i for (a) j = 1. (6) 
j = 2  and (c)  j = 3: N = 300 and twodefects ~IE 

p-nt at i = 70 and i = 220. The evolution time 

1: h] 
IW 2w 3w 0.w ~ 

i is 7 =so ooo. 

The study of the time evolution of the tangent vectors for the system (I), (7) reveals 
that z(j'(n), for j Q M has the same qualitative behaviour of &n), while for j 7 M 
does not localize. Figure 2 shows { e.'[') as a function of i, where 

A quantitative characterization of the degree of localization may be obtained from the 
"PY [61 

We find that H ( j ) ,  when j Q M, depends on the density of the defects, p = M/N, and 
that there is a critical density pc N & / N .  For p c pc we have: 

H'j'-InN - c l n p  (1 1) 

where c depends on y~ and yz. while for p z pc all the entropies HI saturate to a constant 
value, see figure 3. 
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Figure 4. Higher positive Lyapunov 
exponents, I i ,  versus i / N  for N = 

and N = 200 (squares). with a 
consmtdensily of defecLs p = 1/50, 

~L 0.15 0 0.m 0.M o.08 100 (crosses). N = 150 (diamonds) 

i/N 

Finally we note that the Lyapunov exponents tend to cluster according to the number of 
the defects, so that the spectrum Ai depends only on the density of the defects, and exhibits 
the following behaviour 

Ai cz Alh,, ( i / N )  (12) 

where AI depends only on the parameter of the local map and h,(i/N) is a p-dependent 
function of i / N ,  see figure 4. Formula (12) is well known [7] in the case of coupled maps 
without asymmetric coupling and in the limit of large N. 

Also these results do not depend on the noise level in the numerical calculations. 
From our analysis, by means of Lyapunov exponents and tangent vectors, we have the 

following scenario. The system is driven by the defects, which practically are not influenced 
by the rest of the system: moreover chaos is concentrated on these defects, and the density 
of the defects is the relevant property to determine the features of the Lyapunov exponents. 
Something similar to a deconfining transition conceming the localization pmperties of chaos 
appears only for density of defects large enough to permit considerable overlaps between 
the coherent regions of two adjacent defects. 
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We conclude by noting that the main features of this scenario also hold for other classes 
of defects, e.g. 

ai = y~ = y2 but ai = = O  if i = k,.  

This means that as long as the chain is not broken ( l i e  in the case of Aranson et a!) our 
results are. quite robust and everything is independent of numerical precision. 

We acknowledge useful discussions with T Bohr and M H Jensen. 
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