
Eur. Phys. J. Special Topics 166, 111–116 (2009)
c© EDP Sciences, Springer-Verlag 2009
DOI: 10.1140/epjst/e2009-00889-7

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Capillary filling using lattice Boltzmann equations:
The case of multi-phase flows

F. Diotallevi1, L. Biferale2, S. Chibbaro3, A. Lamura4, G. Pontrelli1, M. Sbragaglia5,
S. Succi1, and F. Toschi1,a

1 Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137, 00161 Roma, Italy
2 Dept. of Physics and INFN, University of Tor Vergata, via della Ricerca Scientifica 1,
00133 Roma, Italy

3 Dept. of Mechanical Engineering, University of Tor Vergata, Viale Politecnico 8, Rome, Italy
4 Istituto per le Applicazioni del Calcolo CNR, via Amendola 122/d, 70126 Bari, Italy
5 Department of Applied Physics, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands

Abstract. We present a systematic study of capillary filling for multi-phase flows
by using mesoscopic lattice Boltzmann models describing a diffusive interface
moving at a given contact angle with respect to the walls. We compare the
numerical results at changing the density ratio between liquid and gas phases,
δρ/ρ and the ratio, δξ/H, between the typical size of the capillary, H, and
the interface width, δξ. It is shown that numerical results yield quantitative
agreement with the Washburn law when both ratios are large, i.e. as the
hydrodynamic limit of a infinitely thin interface is approached. We also show that
in the initial stage of the filling process, transient behaviour induced by inertial
effects and “vena contracta” mechanisms, may induce significant departure from
the Washburn law. Both effects are under control in our lattice Boltzmann
equation and in good agreement with the phenomenology of capillary filling.

1 Introduction

The physics of capillary filling is an old problem, originating with the pioneering works of
Washburn [1] and Lucas [2]. Recently, with the explosion of theoretical, experimental and
numerical works on microphysics and nanophysics, the problem attracted a renewed interest
[3–6]. Capillary filling is a typical “contact line” problem, where the subtle non-hydrodynamic
effects taking place at the contact point between liquid-gas and solid phase allows the interface
to move, pulled by capillary forces and contrasted by viscous forces. Usually, only the late
asymptotic stage is studied, leading to the well-known Washburn law, which predicts the
following relation for the position of the interface inside the capillary:

z̃2(t)− z̃2(0) = γH cos(θ)

3µ
t̃ (1)

where γ is the surface tension between liquid and gas, θ is the static contact angle, µ is the
liquid viscosity, H is the channel height and the factor 3 depends on the geometry of the
channel (here a two dimensional geometry given by two infinite parallel plates separated by
a distance H – see fig. 1). The above expression can be recasted in dimensionless variables
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t = t̃/tcap and z = z̃/H, being the capillary time tcap = Hµ/γ. This leads to the universal law:

z2(t)− z2(0) = cos(θ)
3

t. (2)

As already remarked in many works [5], the asymptotic behaviour (2) is obtained under the
assumption that (i) the inertial terms in the Navier-Stokes evolution are negligible, (ii) the
instantaneous bulk profile is given by the Poiseuille flow, (iii) the microscopic slip mechanism
which allow for the movement of the interface is not relevant for bulk quantities (as the overall
position of the interface inside the channel), (iv) inlet and outlet phenomena can be neglected
(limit of infinitely long channels); (v) the liquid is filling in a capillary, either empty or filled
with gas whose total mass is negligible with respect to the liquid one. In the following, we will
address all these effects and show to which extent they can described by using a mesoscopic
model for multiphase flows based on the discretized version of Boltzmann Equations in a
lattice. The model here used is a suitable adaptation of the Shan-Chen pseudo-potential LBE
[7] with hydrophobic/hydrophilic boundaries conditions, as developed in [8,9]. Other models
with different boundary conditions and/or non-ideal interactions have been also used in [10].

2 LBE for capillary filling

The geometry we are going to investigate is depicted in fig. 1. The bottom and top surface is
coated only in the right half of the channel with a boundary condition imposing a given static
contact angle [8]; in the left half we impose periodic boundary conditions at top and bottom
surface in order to have a flat liquid-gas interface which should mimic an “infinite reservoir”.
Periodic boundary conditions are also imposed at the two lateral sides such as to ensure total
conservation of mass inside the system.

2.1 LBE algorithm for multi-phase flows

We start from the usual lattice Boltzmann equation with a single-time relaxation [11,12]:

fl(x+ cl∆t, t+∆t)− fl(x, t) = −∆t
τB

(
fl(x, t)− f (eq)l (ρ, ρu)

)
(3)

where fl(x, t) is the kinetic probability density function associated with a mesoscopic velocity

cl, τB is a mean collision time (with ∆t a time lapse), f
(eq)
l (ρ, ρu) the equilibrium distribu-

tion, corresponding to the Maxwellian distribution in the continuum limit. From the kinetic
distributions we can define macroscopic density and momentum fields as [11,12]:

ρ(x) =
∑
l

fl(x); ρu(x) =
∑
l

clfl(x). (4)

For technical details and numerical simulations we shall refer to the nine-speed, two-dimensional
2DQ9 model [11]. The equilibrium distribution in the lattice Boltzmann equations is obtained
via a low Mach number expansion of the equilibrium Maxwellian [11,12]. In order to study
non-ideal effects we need to supplement the previous description with an interparticle forcing.
This is done by adding a suitable F in (3). In the original model [7], the bulk interparticle
interaction is proportional to a free parameter (the ratio of potential to thermal energy), Gb,
entering the equation for the momentum balance:

Fi = −Gbc2s
∑
l

w(|cl|2)ψ(x, t)ψ(x+ cl∆t, t)cil (5)

being w(|cl|2) the static weights for the standard case of 2DQ9 [11] and ψ(x, t) = ψ(ρ(x, t))
the pseudo-potential function which describes the fluid-fluid interactions triggered by inhomo-
geneities of the density profile (see [7–9] for details).
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Fig. 1. Geometrical set-up of the numerical LBE. The 2 dimensional geometry, with length 2L and
width H, is divided in two parts. The left part has top and bottom periodic boundary conditions such
as to support a perfectly flat gas-liquid interface, mimicking a “infinite reservoir”. In the right half, of
length L, there is the true capillary: the top and bottom boundary conditions are those of a solid wall,
with a given contact angle θ [8]. Periodic boundary conditions are also imposed at the west and east
sides.

One may show [8,9] that the above pseudo-potential, leads to a non-ideal pressure tensor
given by (upon Taylor expanding the forcing term):

Pij =

(
c2sρ+ Gb

c2s
2
ψ2 + Gb c

4
s

4
|∇ψ|2 + Gb c

4
s

2
ψ∆ψ

)
δij − 1

2
Gbc4s∂iψ∂jψ +O(∂4), (6)

where cs is the sound speed. This approach allows the definition of a static contact angle θ, by
introducing at the walls a suitable value for the pseudo-potential ψ(ρw) [8], which can span the
range θ ∈ [0o : 180o]. Moreover, it also defines a specific value for the surface tension, γlg, via
the usual integration of the offset between normal and transverse components of the pressure
tensor along the liquid-gas interface allows for [7–9].
As to the boundary conditions on the Boltzmann populations, the standard bounce-back

rule is imposed. One can show that the bounce-back rule gives no-slip boundary conditions
up to second order in the Knudsen number in the hydrodynamical limit of single phase flows
[13]. In presence of strong density variation, close to the walls across the interface, the velocity
parallel to the wall may develop a small slip length (of the order of the interface thickness,
λs ∝ δξ) which in turn, allows for the interface to move. It is difficult to control exactly the
phenomenon, because even imposing an exact no-slip boundary conditions at the wall [14],
the model will develop non trivial dynamics at the first node away from the wall, where both
condensation/evaporation phenomena and/or spurious currents may conspire, leading to an
overall non-zero slip velocity. For the scope of controlling the capillary filling, one may reabsorb
all these effects within the usual Maxwell slip boundary conditions: us = λs∂nu. It is easy to
show that in presence of a slip velocity, the Poiseuille profile becomes:

u(y) = 6
ū

H2
y(H − y) + λH
1 + 6λs/H

, (7)

where the velocity of the front must be identified with the mean velocity, ū = 1/H
∫H
0
dyu(y) =

ż. Therefore, Washburn law (2) becomes:

z(t)2 − z20 =
cos(θ)

3

(
1 + 6

λs

H

)
t. (8)

2.2 Corrections to the Wahsburn law

As already remarked many years ago [15], the Wahsburn law (2) can be valid only if inertial
forces are negligible with respect to the viscous and capillary ones. This cannot be true at the
beginning of the filling process, where strong acceleration drives the interface inside the capil-
lary. However, putting reasonable numbers for a typical microdevices experiments with water
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(H � 1µm, γ � 0.072N/m, ρl � 10−3 kg/m3, µ � 10−3Ns/m2), one realizes that the transient
time, τdiff = Hγρl/µ

2, is usually very small, of the order of a few nanoseconds, and therefore
negligible for most experimental purposes. Another important effect which must be kept in
mind when trying to simulate capillary filling, is the unavoidable “resistance” of the gas occu-
pying the capillary during the liquid invasion. This is a particular “sensitive” question, because
reaching the typical 1 : 1000 density ratio between liquid and gas of experimental set up repre-
sents a challenge for most numerical methods, particularly for multiphase Lattice Boltzmann
which typically operates with density ratios of the order 1 : 10 or 1 : 100. In order to take in to
account both effects, inertia and gas dynamics, one may write down the balance between the
total momentum change inside the capillary and the force acting on the liquid+gas system:

d(żM(t))

dt
= Fcap + Fvis (9)

where M(t) = Mg +Ml is the total mass of liquid and gas inside the capillary at any given
time. The two forces in the right hand side correspond to the capillary force, Fcap = 2γcos(θ),
and to the viscous drag Fvis = −2(µg(L− z) +µlz)∂nu(0). Following the notation of fig. 1 and
the expression for the velocity profile (7) one obtains the final expression (see also [16] for a
similar derivation, without considering the slip velocity):

(ρg(L− z) + ρlz)z̈ + (ρl − ρg)(ż)2 = 2γcos(θ)
H

− 12ż

H2(1 + 6λs
H
)
[(µg(L− z) + µlz)]. (10)

In the above equation for the front dynamics, the terms in the LHS take into account the
fluid inertia. Being proportional either to the acceleration or to the squared velocity, they
become negligible for long times. Washburn law plus the slip correction (8) is therefore correctly
recovered asymptotically, for t → ∞, and in the limit when ρg/ρl → 0. The above equation
is exact, in the case where evaporation-condensation effects are negligible, i.e. when the gas
is pushed out of the capillary without any interaction with the liquid. This is not always the
case for most of the mesoscopic models available in the literature [7,14], based on a diffusive
interface dynamics [18]. As we will see, only when either the limit of thin interface δξ/H → 0 is
reached or when the gas phase is negligible, δρ/ρ→∞, the dynamics given by (10) is correctly
recovered. Otherwise, deviations are observed, which are induced by condensation/evaporation
effects, which may result in significant departure from the Poiseuille profile inside the gas phase.

2.3 Numerical results

In fig. 2 we show the behaviour of the front position, z(t), as a function of time for a given contact
angle (θ = 55o±3o), a given density ratio δρ/ρ = 11 and a given surface tension γ = 0.0569 (in
LBE units), at varying the channel width H, from H = 15∆x up to H = 121∆x. As one can see
the numerical results tends to be in good agreement with the solutions of (10), only for large
enough values of H, i.e. only when the interface becomes thin enough. For small to moderate
values of H, the overall asymptotic trend is only qualitatively reproduced by the Washburn law
(plus slip effects) (8) with deviations which may be of the order of 10% in the prefactor (see
inset of the same figure).
Similarly, increasing the surface tension and the δρ/ρ factor, leads to a early convergence

towards the asymptotic Washburn law and to the solution of (10) even for small channel width
H. This is shown in fig. 3 where, at fixed H = 31∆x, we increase δρ/ρ and the Washburn law
is approached better and better. We also show in the inset of the same figure, the structure
of the velocity field close to the moving interface for the case with the highest density ratio.
The vortical recirculation structures, tend to push the gas closer to the contact line, leading
to evaporation/condensation for the low density ratio cases. It would be important to test the
same properties on experimental data.
From both figures 2 and 3 one may notice that for short filling time, t < τdiff , strong

deviations from the Washburn law are detected, even considering the extra effects induced by
the inertial terms of (10). This slowing down at the early stage of the filling is indeed mainly
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Fig. 2. Evolution of the front in adimensional variables. Position of the front, z(t), versus t for
H/(∆x) = 15, 61, 121 and L/(∆x) = 1200, 1500, 2000 respectively, and with z̃(0) = 10∆x. The solid
curve is the theoretical solution obtained by integration of eq. (10) with λs = 2. The data have been
obtained with Gb = 5 which corresponds to ρg = 0.157 and ρl = 1.92 (in LBE units). Let us notice
that the solutions of eq. (10) does not show any sensitive variations on H for those times and dis-
tances here explored. In the inset we show the position of the front for (H/∆x) = 15, 61, 121 (same
symbols) normalized with the adimensional asymptotic solution of eq. (10) given by expression (8):

zasym(t) ∼
√
cos(θ)
3
(1 + 6λs

H
)t, notice that the departure from the predicted asymptotic Washburn

law is never larger than 10% even for small channel width, and becomes almost negligible already for
H = 121∆x.
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Fig. 3. Same plot of fig. 2 but for fixed H = 31∆x at changing the density ratio. We have for Gb = 5,
δρ/ρ = 11 and for Gb = 6, δρ/ρ = 34. Notice that the second case is already enough to have a very
good agreement with the solution of (10) (adimensionalized as explained in the text) also at this small
channel width (solid line Gb = 6, dashed line Gb = 5). In the inset we show the velocity field structure
close to the interface. Notice the highly non trivial recirculation structures close to the meniscus.

induced by a sort of vena contracta term [17], reflecting the non-trivial matching between the
reservoir and the capillary dynamics at the inlet. This term, has been argued to be describable
by an additive apparent-mass correction, cρlHz̈, to the LHS of (10).
In Fig. 4 we show an enlargement of fig. 2 for small filling time superposed with the results of

a numerical integration of eq. (10) with a phenomenological value c = 30 for the vena contracta
factor. As one can see, the agreement between the numerics and the evolution of (10) is now
excellent also at short times.

3 Conclusions

The present study shows that Lattice Boltzmann models with pseudo-potential energy
interactions are capable of reproducing the basic features of capillary filling, as described
within the Washburn approximation. Two conditions for quantitative agreement have been
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Fig. 4. Enlargement of the early stage evolution during the filling process for H = 121∆x (in LBE
units), with the vena contracta term choosing an optimal value for c = 30. The front position and time
are make dimensionless normalizing with tcap and with H.

identified: i) a sufficiently high density contrast between the dense/light phase, ρl/ρg > 10 and
a sufficiently thin interface, δξ/H < 0.1. Both conditions can be met within the current LB
methodology, although it would clearly be desirable to extend the LB scheme in such a way to
achieve density contrasts in the order of 1 : 1000 (the current state-of-the-art is approximately
1 : 50) and interface widths of the order of the lattice spacing ∆x (current values are about
5− 10∆x).
The present results set the stage for future computational studies aimed at identifying opti-

mal interface functionalization strategies, based on physical, chemical and geometrical coating
processes. Work along these lines is currently underway.

Valuable discussions with E. Paganini, D. Palmieri and D. Pisignano are kindly acknowledged. Work
performed under the EC contract NMP3-CT-2006-031980 (INFLUS).
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