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Abstract We review the Parisi-Frisch (Proc. Int. School of Physics “E. Fermi”, pp. 84–
87, North-Holland, Amsterdam, 1985) MultiFractal formalism for Navier-Stokes turbulence
with particular emphasis on the issue of statistical fluctuations of the dissipative scale. We
do it for both Eulerian and Lagrangian Turbulence. We also show new results concerning
the application of the formalism to the case of Shell Models for turbulence. The latter case
will allow us to discuss the issue of Reynolds number dependence and the role played by
vorticity and vortex filaments in real turbulent flows.

Keywords Eulerian and Lagrangian Turbulence · Multifractals

1 Introduction

Turbulent flows are characterized by strong fluctuations of energy transfer from small to
large scales [2]. The best known theoretical approach to describe the statistical properties of
turbulent flows is due to Kolmogorov in 1941 (K41). The K41 theory assumes that turbulent
fluctuations can be considered homogeneous and isotropic at very small scales. Moreover,
Kolmogorov assumed that the average (in time) rate of energy dissipation ε is Reynolds
independent for large enough Reynolds number, Re ≡ U0L0/ν, where U0 is some character-
istic velocity at large scale L0 and ν is the kinematic viscosity of the flow. For the sake of
simplicity we will set U0 = L0 = 1 from now on. Thus Re = ν−1. The equations of motions
governing hydrodynamical incompressible turbulence are the Navier-Stokes equations, with
density set to ρ = 1:

∂tu + (u∂r)u = ∂rp + νΔu, (1)

where ui is a three-dimensional field satisfying ∂iui = 0. Note that in terms of ui the average
rate of energy dissipation is given by ε ≡ ∑

ij ν(∂iuj )
2. Thus, ε becomes independent of Re

if at large Reynolds number ∂iuj ∼ Re1/2.
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The statistical properties of the vector field ui can be studied by using the n-order tensor,
given by the correlation functions 〈ui1(xa1) . . . uin (xan)〉, where the index i1, . . . , in stands for
the spatial directions and xai

are n-points in the physical space, and the symbol 〈. . .〉 means
ensemble average. If we assume, following Kolmogorov, that turbulence becomes isotropic
and homogeneous at scales small enough, then we can rewrite the correlation functions in
terms of only longitudinal velocity increments, δru = δu(r) · r̂ (where δu(r) = u(x + r) −
u(x)) and transverse increments, δrw = δu(rT ) (where rT · u = 0). For a discussion on the
complexities arising when also anisotropic fluctuations are relevant see [3].

One of the main predictions of the Kolmogorov theory is contained in his famous 4/5-
equation for homogeneous and isotropic turbulence:

〈(δru)3〉 = −4

5
εr + 6ν

d

dr
〈(δru)2〉. (2)

For large Re (i.e. small ν), and at fixed distance r , the 4/5 equation tells us two important in-
formation: the statistical properties of δru have a non zero skewness, and they have a scaling
behavior as a functions of r . Note that (2), taken in the limit of vanishing viscosity, is di-
mensionally consistent with having δru ∼ r1/3, which implies for the p-th order longitudinal
Structure Functions, S(p)(r) ≡ 〈(δru)p〉 ∼ rp/3.

It turns out experimentally that the K41 theory is only partially correct, i.e. (2) is very
well verified when the reference scale, r , is much smaller than the integral scale, L0, imply-
ing a recovery of homogeneity and isotropy for small enough scales. However, the structure
function data are not in agreement with the Kolmogorov theory for all orders p. For in-
stance, K41 theory predicts that the hyper-Flatness, S(p)(r)/(S(2)(r))2, should be constant
as a function of r , while it is not. Both experiments and numerics show that it grows when
going from large to small scales. This effect is usually referred to as “intermittency” and it
is clearly missing in the K41 scenario (for a collection of experimental and numerical data
on both Eulerian and Lagrangian data, see [4, 5]).

What is the physical explanation of intermittency? Is intermittency a finite Reynolds ef-
fect, i.e. does it disappear asymptotically for large Re? Are scaling properties of the turbulent
field spoiled by intermittency? These questions are the fundamental issues discussed by the
scientific community in the last 50 years. Unfortunately, there are no exact results about
intermittency in Navier-Stokes turbulence. So, we must rely both on experimental and nu-
merical data, or on phenomenological and dynamical modeling of turbulence. In particular,
a key problem is to control the effects of viscosity, i.e. how to connect experimental and
numerical data—naturally limited in Reynolds numbers—to any theoretical or phenomeno-
logical understanding proposed for the asymptotic infinite Reynolds number case. In this
paper we will deal with such an issue, focusing on the MultiFractal (MF) phenomenolog-
ical description of “infinite Reynolds” turbulence and on its extension to the case of finite
Reynolds.

The paper is organized as follows. First, we review some of the results so far obtained
by employing the MultiFractal theory of turbulence, introduced 25 years ago by Parisi and
Frisch [1, 2] (see [6] for a recent review). Then, we discuss subtleties connected on how
to introduce in a self-consistent way the effects of viscosity in the MF description, i.e. how
to control finite Reynolds effects for both Eulerian and Lagrangian turbulence. Finally, we
present new data obtained on a class of dynamical systems for the turbulent energy cascade,
the so-called Shell Models [2, 7, 8]. This will allow us to address and test the MF formalism
at changing Reynolds numbers. We conclude with some perspectives for further work.
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2 Review of the Multifractal Approach of Turbulence

The multifractal approach to turbulence is based on the assumption that the statistical prop-
erties of turbulent flows do exhibit scaling properties even if there is intermittency. Let us
discuss scaling in a rather more abstract way by using the symmetries underlying Euler
and Navier-Stokes equations. The Euler equations have the “standard” symmetries of the
Newton laws for inviscid fluid, i.e. isotropy, parity and time reversal. Moreover, the Euler
equations display another important set of symmetries of global scale invariance, i.e. invari-
ance under the transformations [9]:

r → λr; u → λhu; t → λ1−ht. (3)

The value of h is arbitrary and it is not fixed by any physical and/or mathematical constraint.
The Navier-Stokes equations have no time reversal (due to viscosity) and satisfy a new scale
invariance property, namely:

r → λr; u → λhu; t → λ1−ht; ν → λ1+hν. (4)

Note that the new scaling property implies ε → λ3h−1ε. We can now rephrase the K41 theory
in the following way: using (2) the energy dissipation rate should be constant and equal to
S(3)(r)/r which implies h = 1/3. In other words, the scaling transformation r → λr (λ � 1)
is equivalent to a change in the viscous effect and, therefore, to a change of ε. If we assume
that ε is homogeneous in space and time, it follows that h cannot be arbitrary and should
be fixed to h = 1/3. Let us note that the scale invariance for the Navier-Stokes equations is
now restricted to a particular value of h, i.e. there is less “scale” symmetry in the system
as naively predicted by the equation of motions. However, one can take a different point of
view, namely one can assume that h is still arbitrary, i.e. the scale symmetry holds, although
ε is constant only on average. The problem is to understand what is meant by “average”.
This is the conceptual step performed in the Parisi-Frisch paper [1]. The idea is to assume
that in the limit of infinite Reynolds numbers, and for any fixed scale, r , the scale invariance
holds with some probability Pr(h). It is then assumed that δru and Ph(r) are scaling function
of r , i.e.

δru ∼ rh; Ph(r) ∼ rF(h). (5)

Then, all the correlation functions should be computed by averaging over the probability
Ph(r):

S(p)(r) ∝
∫

dhrF(h)+ph. (6)

The breaking of time reversal still leads to ε ∼ const which implies the constrain S(3)(r)/r ∼
const. Using the definition:

ζ(p) ≡ min
h

[F(h) + ph],

we can perform the integral by the saddle point method and obtain S(p)(r) ∼ rζ(p) with the
constraint ζ(3) = 1.

Historically, F(h) has been written as 3 − D(h) by assuming that D(h) is the fractal
dimension of the set at scale r where δru ∼ rh and, for this reason, the above picture has been
named the “multifractal” approach to turbulence. We note that there is no reason to introduce
any fractal dimension, i.e. there is no a priori geometrical interpretation in defining Ph(r).
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The crucial physical point, which is discussed in this paper, is the role of the viscosity
in the multifractal approach. The scaling invariance of the Navier-Stokes equations tells us
that by a scale transformation r → λr nothing changes if the viscosity becomes smaller by
a factor λ1+h. In the real world, the viscosity is fixed and therefore it increases as λ−(1+h).
Eventually, the viscosity becomes so large as to kill any turbulent fluctuations. We can as-
sume that viscosity is relevant if the turbulent characteristic time scale r/δru is of the same
order of the viscous time scale r2/ν, which defines a fluctuating, i.e. h-dependent, dissipa-
tion scale η(h):

ηδηu

ν
∼ 1 → η(h) ∼ ν1/(1+h). (7)

The idea of a fluctuating dissipation scaling has been introduced by Paladin and Vulpiani
[10] and it should be considered as a consequence of the scale invariance (4). Let us discuss
in more details this point.

A possible interpretation of the scale invariance would suggest that the velocity differ-
ence δru depends on h in the following manner:

δru ∼ g(r/ηk41)f (r/ηk41))
h, (8)

where ηk41 is the Kolmogorov—not fluctuating—dissipative scale estimated as ηk41 ≡
(ν3/ε)1/4. The appropriate asymptotic behaviors for the functions g(x) and f (x) must be:
g(x) ∼ const and f (x) ∼ x for x 	 1, while g(x) ∼ x and f (x) ∼ const for x � 1. Thus
f (x) and g(x) can be interpreted as cutoff functions on the inertial-range scaling behav-
ior introduced by the dissipation. Let us remark that we can also expect a cutoff function
entering into the definition of the probability distribution Ph(r), i.e. we should expect that

Ph(r) ∼ [f (r/ηk41)]F(h). (9)

It is interesting to remark that in the range of scales where

g(x) ∼ const, (10)

we have, using (9) that S(p)(r) ∼ [f (r/η)]ζ(p). Recalling that ζ(3) = 1, the previous expres-
sion can be rewritten as S(p)(r) ∼ (S(3)(r))ζ(p). It turn out that the range of scales where
the equality (10) holds is much more extended then the usual inertial range, i.e. from ex-
perimental and numerical data one can safely deduce that the relation (10) is valid down
to scales x 
 10; i.e. where viscosity is already important. As a result, both function f (x)

and g(x) are not constant anymore at those scales, but the viscous corrections on both func-
tions are almost the same. This empirical fact is known as ESS (Extended Self Similarity), it
has been extensively used in literature [11, 12] to estimate the scaling exponents ζ(p) with
good accuracy. Equation (10) cannot hold also for very small scales, x � 1, where viscosity
starts to have a dominant role. In order to take into account also of these effects, we need to
consider relation (7) and its consequences. The generalization can be done following [13]

δru ∼ g(r/η(h))(fh(r/η(h))h; Ph(r) ∼ [f (r/η(h))]F(h). (11)

In Sect. 3.2, we will discuss some explicit form of the function f (x) and g(x). Equations
(11) tells us how to introduce in a self-consistent way the effect of finite viscosity, i.e. break-
ing of scale invariance within the scale invariant MF approach. We will refer to the whole
picture as the multifractal conjecture. More precisely, we must expect that for all quantities
that are invariant with respect to the Navier-Stokes symmetries, the scaling properties can be
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obtained by using the same universal function F(h), including the effect of finite viscosity.
Thus, all the Reynolds number effects on the statistical properties of turbulence should be
predicted using the function F(h), the scaling invariance and (7). From this point of view,
the multifractal conjecture should be able to predict how different quantities (for instance
moments of the velocity gradients) depend on Re. The explicit functional form for the in-
terpolating functions f (x) and g(x) may be safely considered not particularly relevant, as
soon as the asymptotic scaling limits are preserved (see also [14, 15] for some preliminary
attempts to determine them using constraints from the Navier-Stokes equations).

Let us make some remarks on the above picture, mostly in a historical perspective. From
the theoretical point of view, the major challenge is to compute the function F(h). In some
particular, linear cases, this computation can be done [16], although no one knows how to
perform such calculations for the Navier-Stokes equations. There has been a lot of effort to
clarify, using both experiments and numerical simulations, whether the statistical properties
of turbulence exhibit scaling behavior. So far, there is a wide consensus that this is the case.
Knowing the exponents ζ(p) one can easily compute the function F(h) by some reason-
able “fitting” procedure. Thus, we can verify whether the multifractal conjecture is satisfied
or not, i.e. whether there exists or not some quantity (invariant with respect the group of
Navier-Stokes symmetry) which cannot be predicted knowing the function F(h). For non-
invariant quantities, the multifractal conjecture tells us nothing. Also, there have been some
approaches in the past claiming that for large enough Re, the statistical properties of tur-
bulence are asymptotic to the K41 theory. Experiments and numerical simulations do not
support such claims [4, 5, 17].

3 Predictions Concerning the Fluctuating Dissipative Scale

3.1 Eulerian Framework

The multifractal conjecture allows us to develop a number of different predictions. Let us
assume that we know the function F(h) or, equivalently, the scaling exponents ζ(p). It is
then possible to predict the scaling behavior of the following non trivial quantities. Some
of these predictions are based on the basic idea that the dissipation scale of turbulence is a
fluctuating quantity satisfying (7). It is then possible to compute the probability distribution
of the velocity gradients by using the estimate [10, 18, 19]:

∂ru ∼ δηu

η
. (12)

Since δη(h)u ∼ (η(h))h and η(h) ∼ ν1/(1+h), we have:

〈(∂ru)q〉 ∼
∫

dhν(q(h−1)+F(h)))/(1+h) ∼ Reχ(q), (13)

which predicts the scaling properties of the gradient as function of Re ∼ 1/ν, and where the
last expression is obtained by the saddle point method when the Reynolds number Re ∼ ν−1

tends to infinity. Here

χ(q) ≡ min
h

[(2q(h − 1) + F(h))/(1 + h)].
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Note that the prediction is highly non trivial and it is connects χ(p) with the exponents ζ(p)

via a non-linear relation valid for any function F(h) (see [2]):

χ(q) = p − ζ(p)

2
; with q = ζ(p) + p

2
. (14)

The above relation implies the existence of dissipative anomaly, i.e. χ(2) = 1, for any spec-
trum such that ζ(3) = 1:

lim
Re→∞ ε ∼ Re−1〈(∂ru)2〉 → const. (15)

Such non-trivial multifractal spectrum for velocity gradients may be used to define a mul-
tifractal spectrum of dissipative scales, each-one defining the different cross-over from the
inertial range to the dissipative range for different moments. To implement this, we may fol-
low two slightly different methods. First, let us define the n-th order dissipative scale as the
intersection between the extrapolation for large scales of the differential smooth behavior of
S(n)(r) with the extrapolation for small scales of the inertial behavior:

S(n)(r) ∼ rn〈(∂ru)n〉 if r � ηk41, (16)

S(n)(r) ∼ rζ(n) if r 	 ηk41. (17)

The intersection between the two power-law behavior can be considered a good estimate for
the typical dissipative scale, η(n), of the n-th order structure functions:

(η(n))
n〈(∂ru)n〉 = (η(n))

ζ(n). (18)

Using expression (14) for the scaling of gradients, we get:

η(n) ∼ Re−χ(n)/(n−ζ(n)). (19)

Notice that according to this definition we have for the dissipative cut-off of the second order
structure function:

η(2) ∼ Re−χ(2)/(2−ζ(2)). (20)

Another, slightly different, way to define the moment-dependent viscous cut-off is the one
followed in [20, 21], where a balancing inside the equations of motion between inertial and
dissipative terms is used to obtain η(n). Following [20, 21], it is easy to derive the dimen-
sional balancing between the inertial terms and the dissipative contribution in the evolution
of the n-th order generic structure functions, from (1):

S(n+1)(r)/r ∼ νS(n)(r)/r2. (21)

If the n-th order dissipative scale is now obtained by asking it to be the scale where the
previous matching holds, we easily obtain, another expression for the cut-offs [20]:

η′
(n) ∼ Re−1/(ζ(n+1)−ζ(n)+1). (22)

Let us notice that the two expressions (19) and (22) are exactly equivalent for the cut-off
entering in the dissipative anomaly η(2) ≡ η′

(2) = Re−1/(2−ζ(2)), for any choice of F(h), while
they are slightly different for high-order moments. The discrepancies are however very
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Fig. 1 Value of the exponents
entering in the expressions of the
moment dependent viscous cutoff
either from (19), ×; or from (22),
+. Notice that the value for n = 2
is the same, as it comes from the
request ζ(3) = 1

small, as can be directly checked by plugging some possible shape of the ζ(p) exponents
that fit the experimental data (for example the log-Poisson expression derived in [22], as
shown in Fig. 1). Recently, ad-hoc advanced computations have been performed by chang-
ing the numerical resolution, in order to test the existence of such non-trivial fluctuations
at dissipative scales [23]. The numerical data have also been successfully compared with
the MF prediction (7) in [24]. Note that it is quite difficult to get good laboratory data for
velocity fluctuations at scales much smaller than ηk41 due to the intrusive nature of the exper-
imental probes. Nevertheless, in recent years very interesting and promising experimental
techniques have been developed to track particles in turbulent flows, accessing temporal
fluctuations instead of spatial fluctuations [25–30]. The quality of predictions based on the
multifractal conjecture is even more striking by performing the statistical analysis of the
velocity field in the Lagrangian framework.

3.2 Lagrangian Framework

Given the importance of particle dynamics in turbulent flows, numerous numerical and ex-
perimental studies have flourished in the last few years [26, 31–36] (see also [30] for a recent
review). Neutrally buoyant particles, advected by a turbulent velocity field u(x, t), follow the
same path as fluid molecules and evolve according to the dynamics Ẋ(t) = v(t) ≡ u(X(t), t),
where the Lagrangian velocity v equals the Eulerian one u computed at the particle posi-
tion X. Such particles constitute a clear-cut indicator of the underlying turbulent fluctuations.
Recently, it has been shown, by comparing the different numerical studies and different ex-
perimental results [5, 37], that Lagrangian turbulence is universal, intermittent, and well de-
scribed by a suitable generalization of the Eulerian Multifractal formalism to the Lagrangian
domain [38–40].

Lagrangian Structure Functions (LSF) are defined as:

S (p)

L,i (τ ) ≡ 〈[vi(t + τ) − vi(t)]p〉 = 〈(δτ vi)
p〉, (23)

where i = x, y, z runs over the three velocity components, and the average is defined over
the ensemble of particle trajectories evolving in the flow. From now on, we will assume
isotropy and therefore drop the dependency from the spatial direction i. The presence of
long spatial and temporal correlations suggests, in analogy with critical phenomena, the
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existence of scaling laws for time scales larger than the dissipative Kolmogorov time and
smaller than the typical large-scale time, τη � τ � TL:

S (p)

L (τ ) ∼ τ z(p). (24)

Straightforward dimensional arguments à la Kolmogorov predict z(p) = p/2, indepen-
dently of the flow properties. However, it is known that LSF experience show strong varia-
tions when changing the time lags τ , as highlighted by the increasingly non-Gaussian tails
characterizing the probability density functions of δτ v for smaller and smaller τ ’s [26]. This
leads to a breakdown of the dimensional argument; correspondingly, there is a growth of
the Lagrangian flatness when going to smaller and smaller time lags. In [5, 37] it has been
shown that the scaling exponent κ(4) = z(4)/z(2), entering in the evolution of the fourth-
order flatness:

S (4)
L (τ )

(S (2)
L (τ ))2

∼ (S (2)
L (τ ))κ(4)−2 (25)

does not depend on the experimental or numerical large-scale set-up. In other words, the
high frequency fluctuations are universal.

It is possible to obtain a link between Eulerian and Lagrangian MF formalism via the
dimensional relation [38, 39]:

τ ∼ r/δru. (26)

Indeed, if we substitute (26) into (5) and into (6) we obtain a Lagrangian prediction for LSF
once the Eulerian one is known via its F(h) spectrum [39], namely

S (p)

L (τ ) ∼
∫

dhτ (ph+F(h))/(1+h) ∼ τ z(p), (27)

where

z(p) = min
h

[(ph + F(h))/(1 + h)].
This result is obtained by the saddle point method for inertial-range time intervals: τη �
τ � TL. Let us notice that the above relation (27) can be read as a prediction for the La-
grangian domain, once the Eulerian statistics is known. This is because we are using the
same MF functions F(h) for both domains. The suggested road map should be the follow-
ing: (i) first measure the Eulerian scaling exponents ζ(p); (ii) then via an inverse Legendre
transform extract the F(h)-spectrum; (iii) finally, apply the relation (27) and calculate the
Lagrangian scaling. Such procedure is working well, at least within the statistical limitation
and the Reynolds number limitations allowed by numerical and experimental state-of-the-art
techniques [5] (see also [41] for a recent theoretical attempt).

Even more interesting, in [5], the same argument, leading to the spatial dissipative fluc-
tuating scale (7), has been extended into the Lagrangian domain to obtain an expression for
the fluctuating dissipative time scale [42]:

τη(h) ∼ ν(1−h)/(1+h). (28)

Following the same ideas discussed in Sect. 2 about the viscous modification to the MF
formalism, we may now introduce two functions, f̃ ( τ

τ(h)
) and g̃( τ

τ(h)
), which take into ac-

count the viscous corrections to the Lagrangian inertial scale (27). It is customary to use for
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the two cross-over functions a Batchelor-Meneveau functional form [5, 13, 40]. The global
description for velocity increments becomes then:

δτ v(h, τη(h)) ∼ τ/TL

[( τ
TL

)β + (
τη(h)

TL
)β ] 1−2h

β(1−h)

, (29)

in which β is a free parameter which controls the crossover from dissipative to inertial
time lags. It is easy to realize that the above expression reproduces the asymptotic regimes,
δτ v ∼ τ for τ � τη and δτ v ∼ τh/(1−h) in the inertial range. As in the Eulerian case,
each exponent h must be weighted with its probability, which is also modeled to include
dissipative-range physics, mimicking what has already been discussed in the introduction
for the Eulerian case:

Ph(τ, τη(h)) = Z −1(τ )

[(
τ

TL

)β

+
(

τη(h)

TL

)β
] F(h)

β(1−h)

. (30)

Here Z is a normalizing factor. We notice that again everything is expressed in terms of
the same MF function F(h). Only a new free parameter, β , enters to describe the whole
Lagrangian behavior, at all time scales, once the Eulerian MF spectrum, F(h), is known.
Putting everything together, we obtain for the LSF the following MF prediction:

〈(δτ v)p〉 ∼
∫

dhPh(τ, τη)[δτ v(h)]p. (31)

The previous formula for the Lagrangian domain predicts a highly non trivial shape for the
local scaling exponents entering in the Flatness behavior:

κ(4, τ ) ≡ d log(S (4)
L (τ )

d log(S (2)
L (τ ))

. (32)

As shown in Fig. 2, where we plot it for a series of different Reynolds numbers and for
a given choice of the multifractal spectrum F(h) (see caption for details). The functional
dependence shown in Fig. 2 was tested in [5] only for κ(4) and for a limited set of Reynolds
numbers, due to the unavoidable limitations in experiments and numerical simulations. We
want now to test it further, by boosting the Reynolds number by orders of magnitudes. To
achieve this, we switch to a dynamical surrogate of the Navier-Stokes equations.

3.3 Shell Models

Let us now discuss in more details the behavior of the local scaling exponents for the La-
grangian structure functions (32). A decrease of the local scaling exponent simply means
that intermittency is growing in the dissipation range. A detailed analysis of the flow con-
figurations, which can be performed in high-resolution numerical simulations, show that the
tip in the scaling exponents is strongly related to the presence of coherent three-dimensional
vortices [34, 43]. This is an important observation which needs to be investigated carefully.
The physical question we are discussing, concerns the possibility that coherent structures,
i.e. vortices, are responsible for intermittency in three-dimensional turbulence, not just in
the dissipative region but for the whole inertial range. After all, if the largest intermittent
fluctuations of velocity gradients are due to vortices, it is somehow reasonable to think of
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Fig. 2 Fourth-order local scaling exponents, κ(4, τ ) ≡ d log(S (4)
L (τ )

d log(S (2)
L (τ ))

, from the MF formalism (27) for three

different Reynolds numbers, Re = 2 × 104,9 × 104,7 × 105 (from top to bottom) The two horizontal lines
correspond respectively to the non intermittent, K41 case, κ(4) = 2, and to the infinite Reynolds number
limits, κ(4) = 1.72. The F(h) spectrum used to derive this values has a log-Poisson shape as proposed
in [22]. The value of the free parameter is β = 4. Notice that the inertial range extension, identified as the
region where the local exponent is constant, becomes larger and larger when increasing the Reynolds number.
Notice also the strong increase in the intermittency, measured by the deviation from the K41 value, κ = 2, for
time scales across the viscous domain

the effect of coherent structure as a key feature for explaining intermittency. If this is true,
the multifractal conjecture may be misleading, i.e. scale invariance is not a fundamental
properties of three-dimensional turbulence. Nevertheless, in [5] it has been shown that the
multifractal conjecture does predict the tip in the local scaling exponents for the structure
functions.

So far, we have discussed the statistical properties of homogeneous and isotropic turbu-
lence by checking the multifractal predictions against numerical and experimental data. In
the last twenty years, it has been shown that there exists a class of simplified models, named
shell model, which shows multifractal intermittency (anomalous scaling) similar qualita-
tively and quantitatively to what it is observed in Navier-Stokes turbulence. Among many
different shell models, we shall consider the shell model proposed in [44] (see also [8] for
a review). Shell models of turbulence, can be seen as a truncated description of the Navier-
Stokes dynamics, preserving some of the structure and conservation laws of the original
equations but destroying all spatial structures. They are described by the following set of
ODEs:

(
d

dt
+ νk2

n

)

un = i(kn+1u
∗
n+1un+2 − δknu

∗
n−1un+1

+ (1 − δ)kn−1un−1un−2) + fn. (33)

Here the uns are the velocity modes restricted to ‘wavevectors’ kn = k02n with k0 deter-
mined by the inverse outer scale of turbulence. The model contains one free parameter, δ,
and it conserves two quadratic invariants (when the force and the dissipation term are ab-
sent) for all values of δ. The first is the total energy

∑
n |un|2 and the second is a sort of

generalized helicity
∑

n(−1)nkα
n |un|2, where α = log2(1 − δ) [8]. Here we consider values
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of the parameters such that 0 < δ < 1. The scaling exponents characterize the shell model
structure functions, defined as

S(2)(kn) ≡ 〈unu
∗
n〉 ∼ k−ζ(2)

n , (34)

S(3)(kn) ≡ Im〈un−1unu
∗
n+1〉 ∼ k−ζ(3)

n , (35)

Sp(kn) ∼ k−ζ(p)
n .

The values of the scaling exponents have been determined accurately by direct numerical
simulations. Besides ζ(3) which is exactly unity, because a relation similar to (2) holds,
all the other exponents ζ(p) are anomalous, differing from p/3. For δ = 0.4, the value of
the ζ(p) are close to the scaling exponents of the Navier-Stokes equations. In applying the
multifractal conjecture to the shell model, we shall assume un ∼ k−h

n with probability k−F(h)
n ,

while the fluctuating dissipative scale kd(h) is defined by the relation ud/(kdν) ∼ 1, where
ud = k−h

d . In the dissipation range, the behavior of the shell model is roughly consistent
with un ∼ kn exp(−kn/kd).1 By matching between the inertial range (i.e. un ∼ k−h

n ) and the
dissipation range, we then obtain:

un ∼ k−h
n (1 + A(kn/kd(h))1+h) exp(−kn/kd(h)) (36)

where A is a Reynolds independent quantity. Consequently, the probability distribution
Ph(kn) should be modified in order to take into account the dissipation effects, namely:

Ph(kn) ∼ [kn(1 + A(kn/kd(h)))−1]−F(h). (37)

Knowing F(h), which as usual can be estimated from the knowledge of ζ(p), we can com-
pute the kn dependency of S(p)(kn) both in the inertial and in the dissipative range and
compare our findings with numerical simulations of (33).

In Fig. 3 we plot the local scaling exponents

κ(4, kn) ≡ d log(S4(kn))

d log(S2(kn))
,

computed from the numerical simulations of the shell model (upper left panel) and pre-
dicted by the multifractal conjecture (upper right panel). Different symbols refer to different
Reynolds numbers. The first striking result is that the numerical simulations of the model
clearly show a well defined tip in the dissipative region (i.e. large value of n in the figure),
similar to what it is observed in experiments and in the numerical simulations. The tip is in-
creasing towards small scales as the Reynolds number increases and it deepens. The straight
line in the figure is a qualitative fit on the behavior of the tip as a function of Re. Clearly,
the increase of intermittency in the dissipative region is scaling as log(Re). Notice that this
scaling behaviour was not visible in the experimental and numerical data shown in [5, 37]
because of the limited range of Reynolds spanned in those cases. In the right panel, we show
κ(4, kn) as predicted by using the multifractal conjecture with A = 0.8. As one can observe,
the qualitative and quantitative predictions are in remarkable agreement with the numerical
simulations.

1Balancing of the nonlinear and viscous terms in the far dissipation range actually gives to leading order
un ∼ kn exp(−kα

n ) with α 
 0.69 solution of 2−α + 4−α = 1.
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Fig. 3 Top: local scaling exponents for fourth order structure functions, κ(4, kn), in the Shell Model, versus
log2(kn). Left numerical results at four Reynolds numbers in the range Re ∈ [102 : 104]. Right, the MF
prediction using relations (36–37); the straight line is a fit for the behavior of the bottleneck (maximum
of intermittency), the slope of the line is −0.028. Bottom: the same for the sixth order scaling exponents
κ(6, kn). The straight line has the slope −0.056

The quality of the result does not change by increasing the order of the structure func-
tions. In Fig. 3 we also show behavior of κ(6, kn) (i.e. the local scaling exponents of the
sixth order structure functions) and compare the numerical simulations with the multifrac-
tal prediction. Again, the results confirms what we found for the lower order. Notice again,
the widening of the inertial range when increasing the Reynolds number and the power-law
behavior of the wavenumber where we observe the highest intermittency, i.e. the minimum
in the local scaling exponents.

From the above analysis we can draw some interesting conclusions. First of all, the in-
crease of intermittency in the dissipative range is not due to coherent vortices (there are
no vortices in the shell model). Moreover, the increase of intermittency is predicted by the
multifractal conjecture because of the fluctuations of the dissipative scale. Translating back
these results to the real Navier-Stokes equation, we are tempted to conclude that coherent
structures exist but their dynamics is nor relevant to explain intermittency in turbulent flows.
They are the tail more than the dog (see Chap. 8.9 of [2]). Actually, one can take the opposite
point of view: the matching between inertial range (scale invariance) intermittency and the
dissipation range produces an increase in fluctuations and, consequently, an increase of vor-
ticity. This effect is dominant at low Reynolds number, as it is clearly observed in the shell
model: i.e. at low Reynolds numbers no scaling behavior is observed and intermittency is
strongly dominated by the fluctuations in the dissipation range. Let us also point out that our
observations is in qualitative agreement to the known phenomenology of boundary layer tur-
bulence. Near the wall, the local Reynolds number is relatively low and strong intermittency
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is observed together with a rich dynamic behavior of coherent structures (hairpin vortices).
The full dynamics is dominated by strong intermittent fluctuations and it is tempting to relate
our previous discussion to this specific well known turbulent flows.

What is remarkable in the above discussion, is that the change in the intermittency level,
is explained by the same MF spectrum F(h), at all scales and at all Reynolds numbers. In
other words, the study of low Reynolds turbulence, and of the transition from viscous to
inertial range [45, 46], may teach us a lot with respect to the high Reynolds limits [47].

4 Conclusions and Perspectives

Let us summarize our main points. First, we have reviewed the ideas about how to introduce,
in a self-consistent way, dissipative effects in the Multifractal description of turbulence, both
Eulerian and Lagrangian. The MF formalism, predicts an enhancement of intermittency in
the so-called intermediate viscous range [48], as measured by the local scaling exponents
(see Fig. 2). We have commented on the fact that such a trend is in very good agreement
with real Lagrangian Turbulence data [5], at least concerning low order moments and mod-
erate Reynolds numbers, i.e. up to the numerical and experimental state-of-the-art. Second,
in order to test the formalism also for high Reynolds numbers, we switched to a class of
Shell Models of turbulence. Here, thanks to the much simpler structures of the model, the
Reynolds dependence of the MF prediction can be also tested. We have specialized our
discussion on the enhancement of intermittency measured around dissipative scales. The
existence of the very same phenomenon observed in real Navier-Stokes equations, lead us
to conclude that the viscous intermittency is not due to vortex filaments. Many problems
remain opened. For example, the Batchelor-Meneveau structure presented in (29) is not
compatible with the requirement that velocity fluctuations follow a simple multiplicative
local—in scales—process from large to small scales. This is due to the fact that the fluctuat-
ing temporal scale τη(h) appears in the definition of the velocity increments and it depends
on them (in (28)–(29) the local scaling exponent h is the same). In other words, the func-
tional relation (29) introduces non-local correlation between inertial and dissipative scales.
A local-in-scale multiplicative process which takes into account the fluctuating cutoff can
be introduced somewhat empirically by building a multiplicative cascade and stopping it
according to the criteria (7). It would be interesting to see if such a procedure reproduces
the Navier-Stokes data and the Shell Model data as nicely as (29).
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