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Lattice kinetic equations incorporating the effects of external/internal force fields via
a shift of the local fields in the local equilibria are placed within the framework
of continuum kinetic theory. The mathematical treatment reveals that in order to
be consistent with the correct thermo-hydrodynamical description, temperature must
also be shifted, besides momentum. New perspectives for the formulation of thermo-
hydrodynamic lattice kinetic models of non-ideal fluids are then envisaged. It is also
shown that on the lattice, the definition of the macroscopic temperature requires the
inclusion of new terms directly related to discrete effects. The theoretical treatment is
tested against a controlled case with a non-ideal equation of state.

1. Introduction

Lattice implementations of discrete-velocity kinetic models have gained considerable
interest in the last decade as efficient tools for the theoretical and computational
investigations of the physics of complex flows (Shan & Chen 1993; Ladd 1994; Swift,
Osborn & Yeomans 1995; He & Luo 1997; Qi 2006; Gonnella, Lamura & Sofonea
2007; Li & Wagner 2007). An important class of discrete-velocity models for ideal
fluid flows, the lattice Boltzmann models (Benzi, Succi & Vergassola 1992; Chen &
Doolen 1998; Wolf Gladrow 2000), can be derived from the continuum Boltzmann
(BGK) equation (Bathnagar, Gross & Krook 1954), upon expansion in Hermite
velocity space of the single particle distribution function f(x,&,), describing the
probability to find a molecule at space—time location (x, ¢) and with velocity & (He &
Luo 1997; Martys, Shan & Chen 1998; Shan & He 1998; Shan, Yuan & Chen 2006).
As a result, the corresponding lattice dynamics acquire a more systematic justification
in terms of an underlying continuum Kkinetic theory.

The main goal of this paper is to extend such systematic link between continuum
and lattice formulation to the case of thermo-hydrodynamical fluctuations in
non-ideal fluids under the action of external (say gravity) and/or internal forces. In
particular, we shall show that if the effects of the force field are taken into account
via a uniform shift of the momentum in the equilibrium distribution, as proposed in
Shan & Chen (1993), the evolution for the total kinetic energy needs to be corrected as
well. A viable possibility is to introduce an ad hoc shift in the temperature field entering
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the local equilibrium. By doing so, the total kinetic energy recovers the correct
thermo-hydrodynamical evolution.
Let us consider the usual continuum, D-dimensional, Boltzmann BGK equation

of 1 0 . /e o —|&—ul?/20

$+§.Vf+g.vif=_;(f_f( ))7 f( )(Eap’gvu)zme §ul/ s (11)
where g represents an acceleration field and 7 a relaxation time towards the local
equilibrium £©. This local equilibrium will depend on the local density p, momentum
opu and temperature 6.

We will show that, as far as the macroscopic evolution of the hydrodynamical fields
is concerned, it is possible to renormalize the action of the force pg only in terms of
a suitable shift of the local Maxwellian equilibrium distribution appearing in (1.1):
fOE&;:p,0,u) = FO@&;p,0, n). The new — shifted — Boltzmann formulation is
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The first result of the paper is to show that in order to recover the correct thermo-
hydrodynamic behaviour, the shifted local velocity and temperature must take the
following form:

u=u+rtg, 6 =6 —1g*/D. (1.3)
The idea of shifting momentum has been pioneered for the case of a driving force
due to internal, self-consistent interactions, which depend on the system configuration,
typically the density field distribution. Such kind of extension has proven instrumental
to the succesful formulation of lattice kinetic theory of isothermal non-ideal fluids
(Shan & Chen 1993), in which one is concerned with the isothermal hydrodynamic
evolution of density and momentum alone.

Here we extend it further to the important case of thermo-hydrodynamic
fluctuations. Indeed, the use of shifted equilibria has many immediate and important
methodological consequences: (i) it provides an elegant way to incorporate the force
effects, thereby dispensing with the need of taking derivatives of the distribution
function in velocity space; (ii) it allows a systematic derivation of lattice kinetic
equations for non-ideal fluids with (pseudo) potential energy interactions (Martys
et al. 1998; Guo, Zheng & Shi 2002; Shan et al. 2006); (iii) it highlights the need of
including a suitable redefinition of the hydrodynamical fields on the lattice, in order
to recover the correct continuum limit of the thermo-hydrodynamical equations for
density, momentum and total kinetic energy J#". Here and throughout, by continuum
thermo-hydrodynamic limit we refer to the following set of macroscopic equations
(repeated indices are summed upon):

a:p + 9;(pu;) =0,
0 (pur) + 9;(Pix) = pg» (1.4)
A+ 30iq; = pgini,

where P, and ¢; are momentum and energy fluxes (still unknown at this level of
description). More precisely, we shall show that the above equations can be obtained
exactly from the previous continuum Boltzmann equation with shifted equilibrium
(1.2). This would not be the case for the energy evolution, if the momentum is the
only shifted quantity in (1.2). Moreover, we will show that if the external forcing is
of conservative type, i.e. can be written as the gradient of a function depending only
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on the local density, the total energy, kinetic plus internal, is conserved when the
proper temperature shift is considered. The relevance of such a continuum kinetic
theory is mainly motivated by the final goal of formulating lattice versions of the
Boltzmann equations for non-ideal fluids, including thermo-hydrodynamic effects. In
fact, in lattice formulations, the need of representing velocity degrees of freedom
through a limited set of discrete speeds raises the problem of a correct and efficient
implementation of the continuum velocity-streaming operator g -V f. We shall show
that shifted equilibria in the continuum representation have a well-defined lattice
analogue, so that the lattice counterpart of the continuum description (1.2) can be
obtained through the usual lattice Boltzmann discretization,

filx + A, 1 + At)— fi(x, 1) = —%(ﬁ(x, 1) — 0%, p, @, 61y), (1.5)

where the subscript [ runs over the discrete set of velocity on the lattice ¢;, and the
superscript L indicates that the macroscopic fields are now defined in terms of the
lattice Boltzmann populations:

P =>"fs PP =>"af; DO =3 la —utP
1 1 l

In the expression (1.5), the Boltzmann equilibrium (see Nie, Shan & Chen 2008 for its

explicit expression) is computed with shifted momentum and temperature as follows:
Y =u g, 6 =B 1 Ap. (1.6)

After some algebra, it can be shown that the temperature shift A6 can be expressed
in closed form as a function of the lattice time step At:

(At —1)g°
D
Moreover, in order to recover the thermo-hydrodynamical equations

3" + 8 (pui™) =0,
0. (p"™) + 0 (P") = p"gu (18)
Ja ) + Ly, = pt g

A = + O(At)? +---. (1.7)

the hydrodynamical fields can be computed in terms of a closed expansion to all
orders in At and also in terms of a suitable lattice operator. For example, density is
left unchanged, p!) = p, while the first non-trivial correction to momentum is given
by the well-known pre- and post-collisional average (Buick & Greated 2000)

At

(H) — L) 5 2%
u u +2g

as well as by a new, non-trivial, correction to the temperature field
(Ar)’g?
4D

First, we notice that in the limit At — 0, the lattice formulation for both shifted fields
and hydrodynamical fields goes back to the continuum one, as it should. Second, the
continuum formulation in terms of shifted fields indicates a straightforward link with
the discrete variables via the Hermite—Gauss expansion (Shan et al. 2006). Third, and

gH) — L) 4
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maybe more important for applications, we emphasize that in order to achieve a self-
consistent thermo-hydrodynamical description in the lattice (1.8), both momentum —
as it was known — and temperature, acquire discrete corrections.

2. Shifted continuum equilibrium

In this section we deal with the macroscopic properties of a continuum model (1.2).
The main goal is to renormalize the effects of the forcing term g+ V¢ f in (1.1) via a
suitable local equilibrium with shifted fields:

w=u+ Au(g, 1); 0 =6+ Ab(g, 1). (2.1)

It is well known (Bathnagar et al. 1954; Wolf Gladrow 2000) that the usual defini-
tion of Boltzmann equation with explicit forcing given in (1.1) leads to the exact
macroscopic equations (1.4) with the averaged fields given by

1 1
p=/d$f; pu=/dssf; %”=2(,0D9+;0M2)=2/d$$2f- (2.2)

The momentum and energy fluxes

py= [aeses a- | 4 e

on the left-hand side of the equations in (1.4) need to be closed, a task which is
usually accomplished via the Chapman-Enskog expansion (see below). In order to
derive (1.4) from (1.1) it is indeed sufficient to notice that the collision operator
—(1/7)(f — f©) preserves mass, momentum and total kinetic energy, as long as the
local equilibrium is expressed in term of the macroscopic fields, p, u, 8; i.e. whenever,
besides the definition (2.2), the local equilibrium carries the same mass, momentum
and energy of the actual distribution, namely

p= / dEf®;  pu= / Qe[ A = (o004 put) = 5 / dee2 0. (23)

When considering the effect of the forcing field embedded within the shifted
equilibrium (1.2), the only difference with the previous standard derivation comes
from the fact that now the averaged macroscopic fields, when evaluated on the shifted
equilibrium, do not coincide with the hydrodynamical fields defined in terms of the
local particle distribution (2.2); i.e. the collision operator, —(1/7)(f — f?), preserves
momentum and energy only globally and not locally. Still, it is easy to realize that
the extra momentum and energy brought by the shifted equilibrium is given by
pii—pu= [TV =), J(0D8+pi)= 3 (0D6+pu) = 5 [ (7O~ p)

(2.4)
and that if we chose the shifted fields as given by expressions (1.3) the exact
macroscopic equations (1.4), for density, momentum and kinetic energy evolution,
are recovered. To this purpose, it is sufficient to evaluate the first three lowest
momenta of (1.2) and use the relations (2.4) and (2.2). This is the first result of the
present work.

Let us stress once again that the shift in the temperature only responds to the
need of cancelling out extra terms on the right-hand side of the third equation in
(1.4), which would otherwise result from the momentum shift alone. One may wonder
if beside the formal correct unclosed equations (1.4) the two Boltzmann equation
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formulations (1.1) and (1.2) also share the same hydrodynamical behaviour, i.e. if
the unclosed momentum and heat fluxes have the same closure. By performing the
whole Chapman—Enskog expansion, it can be shown that this is indeed the case, at
least up to the second order in the expansion parameter, where dissipative terms in
momentum and heat appear. The result of these calculations are sketched in §4, while
all the technical details will be reported elsewhere.

3. Lattice implementation

In this section, we treat the lattice averaged equations and discuss the way that
the corresponding shifts in the momentum and temperature fields are affected by
the discretization of the algorithm. To this purpose, let us go back to the lattice
Boltzmann equation with shifted momentum and temperature given by expression
(1.5). First, we Taylor expand the left-hand side of (1.5) and obtain the lattice-series
expression

At At)? 1
Dy, fi + Dzrfl ( 6) Dlzfl 2_;(fl_fl(0))
with D;;, =0, + ¢ V. We can then rewrite (1.5) in a compact form
(P — 1) f; = At (3.1)
with €, =—(1/7)(f; — fl(o)) the collisional operator. A formal inversion of (3.1) yields
AtDy, At Dy e~ AP
Dl,zﬁ = m(gl = (gz + [“—ewm) —1 (51»

where the left-hand side is recognized as the generating function of Bernoulli
polynomials (Gradshtein & Ryzhik 2000). Let us also introduce the operator £ a;,
defined by the Taylor expansion in D;,At:

AtD; e 2P
D Zia = {(1_[’;—AZD,_,) - ]
AtD;, AtD;, (A[DH)3 (AlDlt)S 7
- _ L1 — ’ 2l — ’ AtD, .
2 ( 6 T 360 15120 T OUADL))

The relevant point is that the above operator can be rewritten in terms of a lattice
operator performing an inverse shift in space and time: S o, = (e72/P+ — 1). It is easy
to realize that its action on any field, say ¢, defined on the lattice gives back

Siad(x, 1) = @d(x — At t — At).

The action of the operator £, o, can be recast as follows:

At 1 1 19 3
yl,Af = _7 <1 + ESIA,Af 12SI At + 360Sl At T 8OSZ At + O(Sl At))

This shows that it is possible to rewrite the final dynamics, exactly to all orders in
At, by retaining only shift operators on the lattice:

Dy, (fl + %gl,At(fl - fz(o))) = _%(fl — fl(o)). (3.2)

We can then average this equation in velocity space and look at the equations for the
first three-order momenta, so as to recover the hydrodynamic evolution for density,
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momentum and total energy (1.8). Simple calculations show that the left-hand side
set of macroscopic equations (1.8) is obtained by means of the following definitions
of macroscopic hydrodynamic (H) fields (scalars, vectors and second-order tensors):

. 1 .
pui™ ="l fi + T(Zc}%,m [fi — f,“”}),
1 1
o 1 o
Pl.(jH) = Zc}c{f; + T(Zc}cljff/,m [fi — fz(o)o,
] ]
D 1 1 1/1
) = (2,00(H) + 2p(u(H))2> = 3 Zcfﬁ + - <2 ;clszz,m [fl - fz(o)])

1 . 1/1 .
" =3 zl:szﬁfz + - (2 lecfc,fz,m [fi - fz“”}).

In order to capture the correct right-hand side of (1.8) as well, we must choose the
fields entering the shifted equilibrium, f©, in (1.5), #'®) = u® + Au, 69 =61 4+ AQ,
in the following form:

Au=r1g,
2t H L 08’

Let us notice that the above expression for the temperature shift is implicit; i.e. it
is given in terms of the hydrodynamical velocity uf-H ) which depends itself on the
equilibrium. One may get a closed expression only via a Taylor expansion in At.
For example, to first order in the expansion of #; A,, we have simply £ o, = —At/2,
corresponding to the following temperature shift:

gL — (L) 4 T(At — T)gz'

Consequently, the hydrodynamical velocity and temperature become
u) = g 4 %g’

(H) _ n(L) (Ar)’g?
0V =0 + iD
where the hydrodynamic velocity is nothing but the pre- and post-collisional average,
while the non-trivial correction in At to the temperature fields is a new result, as
anticipated in the introduction. These kinds of discrete corrections have been known
for the transport coefficients and the amplitude of fluctuations. The correction to
the velocity was first described in Ginzbourg & Adler (1994) and noted empirically
in Ladd (1994) at about the same time. The new result is that in thermal lattice
Boltzmann models, a similar correction applies to the temperature as well.

Let us anticipate here that the usual Chapman—Enskog analysis of the model (3.2),
limited to the second order in the perturbative expansion, leads to the expected
expression for the viscous stress and for the heat flux, which are respectively given by
n(a,»u(jH)—I—ajugH))—(n/cv)(akuim)&-j and k9;6"), with viscosity and thermal conductivity,
n=0p(t — At/2), k=c,0")p (t — At/2). In the previous expression we have also
used the ideal gas values for specific heats, ¢, = D/2 and ¢, = D/2 + 1. Details of the
whole calculation will be reported elsewhere.
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4. Numerical tests

We now proceed to the implementation of a test case of the above procedure,
where the need for the temperature shift appears in full. The most important instance
in which total energy conservation is crucial is the case of a gas (fluid) departing
from ideal conditions, as a result of an internal, self-consistent, potential. In this
case, the thermo-hydrodynamical equations must conserve the total energy, given
by the sum of the total kinetic energy plus the potential energy. Typical relaxation
experiments will then show a non-trivial exchange between the kinetic and potential
energy components, until a dynamical or static equilibrium is finally attained.

We specialize the discussion to a simple, and yet non-trivial, case in which the
interparticle force is purely repulsive:

; ; 1
F =pg(x,t)=%p(x,1) Z wip(x + At t)e = —VPb(””), Pb(’”’)(p) = _Efﬁpz
I
4.1

with w; a suitable set of weights which enforce the right symmetries on the lattice
(Shan & Chen 1993). Repulsion is imposed by choosing a negative coupling constant
% < 0. This case allows full control of the non-ideal part of the equation of state.
Indeed, the bulk pressure provides the usual ideal-gas contribution Pb"” = p6 plus the
non-ideal one, given by the Taylor expansion of the forcing term in (4.1), Pb(“”) = P,J(id)—i—
P,fi"t). The system also has internal potential energy Ey = —(1/2)%p?, where we have
neglected possible contributions coming from strong density gradients. The transport
equation for this intermolecular potential energy (Snider 1995; He & Doolen 2001)
reads

QEy + d(uf"Ey) = —(3;u") P, (4.2)

as can be readily derived from the density evolution in (1.4). By summing to the total
kinetic energy evolution, we obtain the total energy balance

; 1
() = =0y (0 P) — g (B, e
whose divergence-like structure on the right-hand side ensures total energy
conservation.

Let us stress that the reconstruction of a total divergence is only possible thanks
to the superposition of the contribution (B.ju(jH ))P,f””), stemming from the evolution of

the potential energy, plus the contribution u'l? ’(aj P,fi”t)), coming from the right-hand
side of the total kinetic energy in (1.8). Here, we fully appreciate the importance of the
temperature shift, in order to recover the correct total energy dynamics. Using fully
periodic boundary conditions, the shifted lattice Boltzmann formulation is therefore
expected to provide conservation of the total energy from the hydrodynamical point
of view.

To ensure a sufficiently accurate recovery of the thermal transport phenomenon,
we employ a two-dimensional 37-speed lattice Boltzmann model, corresponding to
a ninth-order accurate Gauss—Hermite quadrature. In conjunction, a fourth-order
Hermite expansion of the Maxwellian is used as an equilibrium distribution (Shan
et al. 2006; Nie et al. 2008). A simulation is performed on a L, x L, =10 x 100
grid, with a small perturbation of a single sinusoidal wave in the temperature field
6" (x,y,t=0)=1.0 + esin(2ny/L,) (¢ =0.01). The initial density field is constant.
The difference of the total energy [((Ev + #™))(t)dxdy with respect to its initial
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FIGURE 1. Variations of total energy for a non-ideal system with an initial sinusoidal wave
in the temperature field 6 (x,y,t=0)=1.0 + esin(2ny/L,) with e=0.01 and smooth
hydrodynamical velocity fields. The lattice Boltzmann parameters in (4.1) and (1.5) are such
that t/At=0.6, ¥ =—3.0. Two simulations are carried out. The first simulation is only with
shifted momentum (A). The second one is with shifted momentum and temperature (O),
enlarged in the inset.

value is monitored in figure 1. This figure clearly shows that the lattice Boltzmann
formulation without shifted temperature is not able to sustain satisfactory energy
conservation. On the other hand, upon shifting the temperature field, the correct
energy balance is recovered. The energy conservation is still not exact within machine
precision (see inset of figure 1), due to the fact that our expression for the total energy
is given in terms of a continuum description of the non-ideal forcing term (4.1). In
order to further improve the accuracy of energy conservation, a discrete version of
the internal potential energy, Ey, thermodynamically consistent on the lattice needs
to be developed.

In figure 2 we show another test: the density and temperature profile of our model
for the case of an ideal gas between two parallel walls under the action of a constant
gravity force. The numerical results, with and without thermal shift in the equilibrium,
are compared with the exact analytical hydrodynamical solution p(y)=pee " (T =1
and po =const.). Figure 2 shows that only the case in which the equilibriums is shifted
recovers the correct hydrodynamical manifold.

5. Conclusions and perspectives
Before concluding, let us discuss further the physical meaning of the shifted
Boltzmann equation (1.2). It is easy to realize that it can also be rewritten as

W +E-VI(xE 1) = —% (Flx )T % T O . 0, w))

Upon Taylor expanding the terms on the right-hand side corresponding to the shift
in the momentum, —e~%¢"¥ £ up to the second order in 7, we obtain

0 1 T

zTJ; +EVf=— (f=f)—g-Vef¥+ 788 VeVe fO. (5.1)
It is simple to check that, as for the isothermal dynamics of density and momentum,
the shifted equilibrium Boltzmann equation (1.2) is equivalent to (5.1). A stabilizing
diffusion term in velocity space stands therefore out.



Lattice Boltzmann method with self-consistent equilibria 307

" Tattice Boltzmann densify o
ttice Boltzmann-temperature o
poe®

— . — . ®) 2.0
_Tattice Boltzmann densify o '

2.07\ lattice Boltzmann-temperature o - 1.8
181 Poe s ] 16}
14}
1.2t
1.0¢
0.8t
0.6
04} .

PO T)

o2l .
0 20 40 60 80 100 120 140 160 180
y y

FIGURE 2. The static hydrodynamic behaviour of an ideal gas between two parallel walls
at the same temperature (7 =1) and under the action of a constant gravity force g. The
hydrodynamic equations predict a constant temperature with an exponentially decreasing
density. Two formulations have been compared: (a) with shifted momentum and temperature
and (b) with shifted momentum only. The hydrodynamic limit is correctly approached only in
the first case. The whole density is conserved and equal in both simulations. Simulations are
performed on an L, X L, =10 x 165 grid points. Diffuse boundary conditions for the lattice
Boltzmann populations are introduced at the walls (Ansumali & Karlin 2002), and gravity is
acting along the negative y-direction.

It is also noted that, as a first order of approximation, this kind of diffusion term
can be thought as deriving from standard BGK dynamics, with the equilibrium
distribution f©(x, &, ¢) replaced by a smoothed version, resulting from coarse-
graining in velocity space, filtering fluctuations up to §v’' < gz. Considering the Taylor
expansion of the temperature shift operator, —e ™ (&’ /20)Ve'V: O we obtain, up to t2,
an extra term proportional to

g A fO. (52)

Such contribution can be interpreted as deriving from a stochastic component in the
acceleration field. To illustrate the point, let us start again from the continuum BGK
equation (1.1), and let us consider the streaming term in velocity space (d&/dt) - V; f
in which the molecular velocity & obeys the following Langevin equation:

d§;

dt = i,
where 7; is a standard delta-correlated Gaussian noise with zero average and the
normalization (n;) =0, (n;n;) =(1/2)o8;;. We expect the stochastic term to provide a
mechanism for producing thermal fluctuations in the fluid. The key ingredient is a
correct evaluation of the term ((d&;/dr)Vg, f), where & is now a stochastic variable
and (...) stands for an average over possible realizations of the stochastic term. We
can apply Novikov’s (1964) theorem and approximate §; ~ (d§;/df)t =n;7. This yields

dg; dg;
(Ever) = (e ) 0¥, 1) = el 969, 1)

which is of the same form of (5.2) for a suitable choice of o. Let us emphasize that the
shifted equilibrium formulation (1.2) is equivalent to the standard BGK formulation
(1.1), as far as the macroscopic equations (1.4) and their Chapman—Enskog expansion
up to second order are concerned. The diffusive extra terms stemming from the Taylor
expansion indicate that although maintaining the same hydrodynamics, the shifted
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equilibrium formulation should nonetheless feature better stability with concern to
the global evolution of the probability density, f(x, &, ).

Summarizing, we have investigated lattice kinetic equations, incorporating the
effects of external/self-consistent force fields via a shift of the local fields in the local
equilibria. The mathematical treatment reveals that besides momentum, temperature
also receives a self-consistent shift from the force field. The contribution of the
temperature shift can also be traced back to a stochastic component in the acceleration
field, thus pointing to potentially new directions for the formulation of lattice
Boltzmann models for non-ideal fluids with thermo-hydrodynamic transport effects
(Rowlinson & Widom 1982; Brennen 2005). Work along these lines is in progress,
which will hopefully permit to attack a broad class of complex flow problems with
thermal effects, such as thermally driven phase transitions, crystal growth, melting
and many other non-equilibrium thermo-hydrodynamic transport problems.

Finally, it has been shown that in order to recover the correct thermo-hydro-
dynamical equations (Boghosian 2008) on the lattice, the macroscopic temperature
must acquire new terms, directly related to the lattice spacing. These terms naturally
vanish in the continuum limit, thus preserving the consistency of the discrete theory.
Many items remain open to future investigation. For instance, it would be interesting
to extend the present treatment to more general collision operators, including multi-
time relaxation models, which would permit to model fluids at non-unitary Prandtl
numbers (Ahlers, Grossmann & Lohse 2009). The establishment of an H-theorem for
continuum and discrete kinetic equations with self-consistently shifted equilibria also
appears an interesting topic for future research (Succi, Karlin & Chen 2002)
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