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Summary. — Computational experiments are one of the most used and flexible
investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well
established computational method particularly promising for multi-phase flows at
micro and macro scales. Here we present preliminary results on performances of the
LBE method on the Cell Broadband Engine platform.

PACS 47.11.-j – Computational methods in fluid dynamics.
PACS 47.11.Qr – Lattice gas.
PACS 47.27.ek – Direct numerical simulations.

1. – Introduction

Numerical methods for multi-phase and multi-component fluid dynamics are a re-
search frontier in computational sciences. Amongst many possible approaches, the Lat-
tice Boltzmann Equation method (LBE) [1,2] presents several advantages. Here we just
recall easy coding (it is an explicit methods), the flexibility in handling complex bound-
ary conditions, the locality of communications (particularly important when porting the
code to massively parallel supercomputers) and the flexibility in implementing different
physical properties, such as the emerging of diffusive interfaces between different phases.
The LBE is a mesoscopic method which, while retaining key features of the Boltzmann
equation, solves fluid equations with the advantage of better efficiency with respect to
molecular techniques, e.g. Molecular Dynamics.

In this paper, we report results on the performance of a multi-phase LBE method
ported on the Cell Broadband Engine (CBE), http://www.research.ibm.com/cell/.

c© Società Italiana di Fisica 53



54 F. BELLETTI, L. BIFERALE, F. MANTOVANI, ETC.

The interest in this platform comes from its impressive top performance, already exploited
by the current top entry in the Top500 list (http://www.top500.org) that has a perfor-
mance in excess of 1 PFlops. Cheaper application-driven massively parallel systems also
plan to use the CBE. For instance, the QPACE project [3, 4] plans to develop a system
with O(2048) computing nodes—each based on a CBE processor and 4 Gbyte memory—
optimized for Lattice QCD (LQCD) simulations. A radically different approach to CBE-
enabled scientific computing is the BOINC project (http://boinc.berkeley.edu.),
that builds on the widespread diffusion of the CBE, which is the processor used by
the PlayStation 3 (PS3) gaming platform. BOINC develops PS3GRID, a client en-
abling collaborative computing based on a distributed Molecular Dynamics software
(http://www.ps3grid.net/). The performance and accuracy of a standard single-phase
LBE on the CBE processor have been studied in [5]. In this paper, we focus on multi-
phase versions of the LBE method and develop a different implementation approach.

2. – Details of the algorithm

The LBE equations that we consider are the ones proposed by Shan and Chen [6]
to describe the dynamics of multi-phase flows. We focus on this algorithm because, as
compared to the standard single-phase LBE [5], it allows to investigate a broader set of
physical applications; we also expect that the larger ratio between floating point opera-
tions and memory accesses should make it possible to obtain better sustained performance
on the CBE.

As usual, the LBE method evolves the distribution functions fi(x, t), corresponding
to the different (9 in 2D and 19 in 3D) populations of the LBE model that we consider.
Physical quantities (i.e., the density and velocity of the fluid at each point in space and
time) are computed from the distribution functions fi(x, t) taking into account the lattice
velocities ci of each population (see [1,2,6] for more details): ρ(x, t) =

∑19
i=0 fi(x, t) and

ρ · v =
∑19

i=0 cifi(x, t). In the Shan and Chen approach [6, 7], density is not constant
in space and time but rather it evolves describing the evolution of the liquid-vapour
mixtures. At each time step the populations are updated by means of a relaxation
towards the equilibrium distribution feq (this step is the floating point intensive part
of the algorithm), f ′

i(x, t) = fi(x, t) − 1
τ (fi − feq

i ) where the equilibrium distribution
feq

i (x, t) is a quadratic expression in v, see [1] for details. The updated values of the
populations are then streamed (this step only involves memory to memory copies and no
floating point computations) in the direction of their velocities: fi(x+ci, t+1) = f ′

i(x, t).

3. – LBE on the Cell processor

The CBE is a heterogeneous multi-core processor that includes a PowerPC Process-
ing Element (PPE) and up to eight so-called Synergistic Processing Elements (SPEs).
The PPE runs the operating system, while the SPEs are intended as compute-intensive
processing elements. The SPEs can only access a small (256 kbytes) private memory,
known as the local store (LS). Data is exchanged between main memory and LS via
asynchronous direct memory accesses (DMA).

3.1. Implementation details. – We implemented in single precision the 2D and 3D
version of the algorithms which have 9 and 19 populations, respectively (D2Q9 and
D3Q19 in standard LBE notation). We tested the algorithm on an IBM QS22 blade
system running at 3.2 GHz.
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Fig. 1. – Data distribution on the SPEs. The domain is decomposed and assigned to different
SPEs. Frames around computing volumes are loaded, in order to access neighbouring sites. Each
SPE updates several columns of the lattice. Only a fraction of a column is stored in the LS;
however, data is used in pipeline style so each lattice site is loaded onto the local store only once.

The algorithm for D3Q19 was implemented as follows (see also fig. 1). Each SPE
loads from main memory to LS a sub-plane of the lattice (its size being limited by the
LS size) loading also a frame around the volume boundaries extending for two lattice
sites; in this way each SPE is able to perform both displace and collisions without
further accesses to main memory. The whole lattice volume is divided in the several
columns, and the sub-planes of each column are updated sequentially from the top to
the bottom. At each update step, each SPE stores in its LS six different sub-planes: the
sub-plane under update, four sub-planes making up the upper and lower boundaries, and
one sub-plane used to implement data transfers from the LS to the main memory, in a
double-buffering mode. Computing and data transfers are performed concurrently. The
overhead of loading the frames is mitigated by a non negligible reuse of data in the LS,
as each sub-plane is loaded only once but is used to update five adjacent sub-planes.

3.2. Performances. – We now derive theoretical upper bounds on the expected per-
formances and use these estimates to discuss our measured results. In our case, the
performance obtainable from the CBE is limited by memory bandwidth. In order to
update one grid site, we need to load (and store) in main memory I = 4 · 2 · Q bytes (4
refers to the use of single-precision word size, 2 keeps into account load and store while
Q is the number of LBE populations). For a D3Q19 LBE, updating each site implies
R ∼ 500 (about 100 for the D2Q9), so the peak obtainable (bandwidth limited) floating
point performance is R · BW/I � 75 Gflops, where BW = 25.6 GB/s is the memory
bandwidth.

We summarize our performance results in table I. We measure some 20% of the
expected peak performance. Analyses of our runs show that we lose about 50% of our
running time synchronizing the SPEs. We are confident that we can improve substantially
this step, so we expect to be able to reach � 40% of peak performance. As shown in
table I the performance of the 2D version is higher because memory access patterns are
easier to implement. Furthermore, reasonably large 2D lattices (linear size up to ∼ 1024
points) fully fit within the LS, so the above bounds do not apply; in this case extremely
performing codes are possible. As remarked above, our codes are in single precision. The
CBE perforance in double precision is one half that of single precision, so we reasonably
expect that all our figures should be reduced by a factor two for a double-precision code.
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Table I. – Estimated and measured performances for LBE codes in 3D and 2D on the CBE (in
single precision). See the text for details.

Code Performance (Gflops)

Processor peak 204.8
BW limited peak � 75

D3Q19 measured value 16.3
D3Q19 Improved synchronization � 30

D2Q9 arbitrary lattice size (measured) 27.0
D2Q9 small lattice size (measured) 105.0

4. – Conclusions

We ported a multi-phase Lattice Boltzmann method on the CBE processor. The goal
of this exercise was to investigate the performances to be expected on massively parallel
CBE based supercomputers, e.g. the QPACE machine [3]. Given the performances that
we measured on the CBE and based on our previous experience in porting LBE methods
on massively parallel systems like the APE series of machines [8], some estimates are
readily made; using the full-size planned QPACE machine (2048 nodes) we may consider
3D lattices of linear size larger than 4096 running at approximately 60 Tflops (remember
that inter-node communications are not a bottleneck for LBE on machines organized as
a 3D grid of processors). This performance would imply a lattice update time in the
order of 0.5 s.
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