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On the measurement of vortex filament lifetime statistics in turbulence
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A numerical study of turbulence seeded with light particles is presented. We analyze the statistical
properties of coherent, small-scale structures by looking at the trapping events of light particles
inside vortex filaments. We study the properties of particles attracting set, measuring its fractal
dimension and the probability that the separation between two particles remains within the
dissipative scale, even for time lapses as long as the large-scale correlation time, 7;. We show how
to estimate the vortex lifetime by studying the moment of inertia of bunches of particles, showing
the presence of an exponential lifetime distribution, with events up to 7;. © 2010 American Institute

of Physics. [doi:10.1063/1.3431660]

Vorticity dynamics, in general, and vortex filaments, in
particular, have been the subject of many theoretical, phe-
nomenological and experimental studies.'™ According to
their inertia properties particles respond differently to fluc-
tuations of the advecting-Eulerian-velocity field producing
locally nonhomogeneous concentration, a phenomenon
dubbed as “preferential concentration.”>® Thanks to their ca-
pability of strongly concentrating in high vorticity regions,
very light particles (i.e., small bubbles in water) have been
used to visualize small scale vortex ﬁlaments,7’8 and to mea-
sure pressure statistics.” Similar phenomena, based on com-
plex response of microscopic hydrogen particles in quantum
fluids, have also been exploited recently to visualize quan-
tized vortices.'® In the present work, we study the statistical
correlation between light-particle dynamics and the one of
small scale vortex filaments. Previous numerical' and
experimental12 works have assessed in great detail the spatial
distribution and correlation of intense vortex filaments. Here
we want to focus on different properties: their temporal evo-
lution. Thanks to the correlation with the trajectories of light
particles, we measure the vortex filament lifetime distribu-
tion.

Data come from a direct numerical simulation (DNS) of
3D fully periodic Navier—Stokes equations plus particles. To-
gether with the Eulerian field, we integrated the Lagrangian
evolution of particles by mean of a model of dilute, passively
advected, suspensions of spherical particlesB’14

dx dv Du 1( ) (1)
—= —=B—+—(u-v).
dr a Pp Y

In the above equations, x(z) and v(r) denote the particle po-
sition and velocity, respectively, Tp=a2/ (3Bv) is the particle
response time, a is the particle radius, St= T,/ T, is the Stokes
number of the particle, 7, is the dissipative time, and
=3py/ (ps+2p,) is related to the contrast between the density
of the particle, p,, and that of the fluid, p,. Let us stress that
in the model particles are not defined in terms of their mate-
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rial physical properties (size and density) but in terms of
their dynamical properties (response time and density con-
trast) and that the formula given for 7, is a physical interpre-
tation connecting the two points of view. For instance S=0
(limit of very heavy particles) with finite Stokes is then only
valid assuming vanishing particle size. Moreover, light par-
ticles with large Stokes may not be compatible with the re-
quest to have a small radius. For instance, for St=0.5 and
B=3, the resulting effective size is a=67, where 7 is the
dissipative scale. For such parameters the use of point par-
ticles must be understood as a good model of transport of
some kind of virtual passive markers of high vorticity. The
incompressible fluid velocity u(x,) evolves according to the
Navier—Stokes equations

Dtuzatu+u.Vu=—Vp+VAu+f, (2)

where p denotes the pressure and f an external forcing keep-
ing constant the spectral content of the two smallest wave-
number shells. We report data coming from two sets of simu-
lations with N3=1283 and N3=5123 collocation points,
corresponding to Re, =65 and Rey =180, respectively (see
Table I for technical details on the code). We focus mainly on
very light particles, in the limit of p,—0 (8—3) and on
tracers evolving with the local Eulerian velocity field x(z)
=u[x(t),t]. Inertial particles are not distributed homoge-
neously in the volume, centrifugal forces tend to concentrate
light particles inside strong elliptical regions (with high
vorticity—see inset of Fig. 1) and heavy particles in hyper-
bolic regions, typical of intense shear. One thus expects dif-
ferent temporal correlations between particle trajectories and
the underlying topology of the carrier flow."” ' To quantify
this effect, we show in Fig. 1 the conditional probability
density of the halving times, 7,,,, of the vorticity magnitude
along particle trajectories. The vorticity halving time is de-
fined, given a time ¢, as the first time-lag after which the
vorticity becomes 1/2 larger or smaller than the initial value,
71(t)=min[ 7| (t+ 7)/ w(t)=1 % 1/2]. In order to focus only
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TABLE I. Eulerian and Lagrangian parameters. N: number of grid points per spatial direction; Re,: Taylor scale

Reynolds number; 7: Kolmogorov dissipative scale; dx: grid spacing; 7,= Ve/v: Kolmogorov dissipative time
scale, e: energy dissipation; v: kinematic viscosity; and dr: temporal discretization. Total number of particle per
Stokes value is 7.5 X 10° for run A and 2.5 X 10° for run B. The viscosity is chosen to have a Kolmogorov length
scale n=dx. This conservative choice yields Reynolds numbers smaller than other DNS at comparable reso-
lution (see, for example, Refs. 15 and 16). It ensures a good resolution of the small-scale velocity dynamics. We
use a fully dealiased pseudospectral algorithm with second order Adams-Bashforth time-stepping (for details
see Ref. 17). Particle dynamics is evolved with a time step from 10 to 1000 times smaller than the Stokes time.
Velocity field at the particle position is obtained by trilinear interpolation. The numerical simulation was
validated with different temporal integration scheme, different particles interpolation and different large scale
forcing (Ref. 18). Some raw data are freely available from http:/cfd.cineca.it.

N Re, n dx e v T, dt
Run A 512 185 1X1072 1.2% 1072 0.94 2X1073 4.7%x1072 4%x107*
Run B 128 65 3.4X1072 4.8%1072 0.85 1Xx1072 1.1x 107! 1x1073

on intense turbulent events, we condition the probability den-
sity functions (PDFs) such that the vorticity magnitude at the
reference time ¢ is greater than a given threshold. For the
case in Fig. 1, we chose it to be 5Sw,,,,. As one can see from
Fig. 1, for a given Stokes, St~0.5, at changing the density
contrast, 3, one moves toward higher and higher probability
to observe long halving times, i.e., light particles tend to live
in regions of high and stable vorticity. In particular, particles
with =1.5 and B=3 have higher chances to get intense
halving time events at comparable total statistics, a signature
of the fact that light particles tend to remain trapped inside
vortex filaments more than neutral or heavy particles do. The
correlation between light particle position and vorticity dis-
tribution is also supported by the increased probability of
light particle to fall in the region with rotation-dominated
rather then dissipation-dominated flow topology as shown in
Ref. 22.

In order to investigate this point more quantitatively, we
extend here the stability analysis performed in Ref. 23 for the
dynamics of heavy particles advected by the velocity field of
a (steady) Burgers vortex,”* to the case of particles with a

p
X=v,,

)}:Uy,

Ox= 1672) st T \2n " am st ) T sl

A

\

Correspondingly, the condition for the center of the vortex to
be stable, in terms of the parameters, finally reads

St[1-2(B SHAP < 1674 — (B St)(1677A%-1). (5)

. 122
Moreover, since A ~Re)\1/ 2, 3 we expect A<<1, hence the ex-

pression (5) can be highly simplified to

O B
Y 27 4@ St 1672/ St St

R

generic density ratio 8. The axial, radial and angular compo-
nents of the model fluid velocity field associate to a Burgers
vortex are given (in nondimensional form) by
1 20
u.=2Az; u,=—Ar; ug=—[1-¢e""], (3)
2r
where A is the strain parameter and r is the radial distance
from the vortex center, adimensionalized by the so-called
vortex core size. As in Ref. 23, we will limit ourselves to

consider the two-dimensional dynamics in the (r, 6) plane,
where the velocity field reads (in Cartesian coordinates)

Y (=212)
=—Ax— l1-e s
e 27Tr2[ ]

4)
L[l _ e(—fz/z)].

u,=—Ay+
J Y 277

Linearizing the expressions (4) around the vortex center,
(x,y)=(0,0) and inserting them in Eq. (1), we get the fol-
lowing dynamical system for (x,y,v,,v,):

(B—1) +o(Re; %) > 0. (6)

This implies that heavy particles (8<1), are expelled from
the vortex core, while light particles (8>1) are attracted
inside it.

Stable vortex structures, chaotically advected by turbu-
lent flows, should therefore play the role of attractive sinks in
the dynamics. The larger their lifetime, the more nonhomo-
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FIG. 1. (Color online) Probability density functions (PDFs) of halving times
for various density ratios, S, at fixed St~0.5, conditioned on the initial
value of the vorticity magnitude. As B increases the PDFs show larger and
larger tails, suggesting that lighter particles are probing regions of high and
stable vorticity—the functional shape of the PDFs does not change signifi-
cantly for higher values of the threshold. Inset: mean squared vorticity mea-
sured on the particle position at changing B, normalized with the 8=1 case.
A clear indication of preferential concentration on high vorticity region is
detected for light particles with B> 1.

geneous bubble distribution will develop. To quantify better
the clustering properties of light particles, we focus on the
statistics of the largest Lyapunov exponent, characterizing
the separation rate of pairs of particles. It is known that clus-
tering and inertia may affect the whole distribution of
Lyapunov exponents. One would expect that inertia reduces
the tendency for particle pairs to separate. Indeed, a weak
tendency toward a reduction of the Lyapunov exponent at
increasing the Stokes number has been reported for heavy
palrticles;25 similar results have also been obtained in random
flows.?® Even more informative is the study of the full prob-
ability distribution of the largest finite-time Lyapunov expo-
nent (FTLE), v,(T) defined as

%(T) = Zogl RT.DIR(O.0)],

where R(T,t) is the separation of two particles at time r+7T
starting from a separation R(0,) at time z. For large times,
the distribution of FTLE is expected to follow a large-
deviation form: py(y;)cexp[-TS(y;)], where the Cramér
function, S(7;) is a non-negative convex function vanishing
at the value of the largest Lyapunov exponent, i.e., for y;
=M\;. In Fig. 2, we report the Cramér function at 7=1907,, for
the case of light particles 8=3,St~ 1.2 compared with the
one obtained for tracers. Two remarkable effects are visible.
First, the minimum for the case of light particles is achieved
for a value much smaller than the one for the tracers, pre-
cisely y;7,~0.04 for bubbles and y,7,~0.14 for tracers.
Second, light particles show a remarkably high probability to
have pairs that do not separate at all, even for long time
lapses, i.e., there are many events in the left tail of the
Cramér function which have a negative FTLE. The global
average properties, however, remain chaotic (the value of 7,
at which the Cramér function attains its minimum is still
positive), i.e., with probability one all couples separate at
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FIG. 2. (Color online) Cramér entropy for light particles and tracers. The
minimum (which identifies the maximum Lyapunov exponent, \;) for light
particles is attained for lower values. The entropy for light particles shows
larger tails, thus suggesting a higher degree of intermittency. For the case of
light particles, there is a non-negligible fraction of negative events, showing
the existence of particle pairs that do not separate at all (absent in the tracers
case).

long times. Strong clustering is also confirmed by measure-
ments of the Kaplan—Yorke dimension, whose value, for the
family of light particles shown in Fig. 2, has been found to
be DKY=1.3tO.3;27 thus indicating that the attractor is a
quasi-one-dimensional manifold, as it would be expected for
filamentary structures. The value for the fractal dimension of
intense vorticity regions is consistent with results obtained
with a completely different Eulerian method."" The observa-
tion that such strong clustering at small scales is correlated
with the topology of flow structures at the same scales sug-
gests the possibility to use light particles to study statistical
properties of vortex filaments in turbulence.

The identification of small scale vortex filaments is an
extremely daunting task. An analysis of the Eulerian fields
would require the detection of isosurfaces of vorticity (larger
than some prescribed threshold): a problematic method, if
not for the larger and most intense structures.'! Furthermore
to analyze the temporal evolution of vortex filaments one
needs to track three-dimensional (3D) structures in space and
in time, by repeating the same analysis at each Eulerian time
step. Our original proposal here is to use multiparticle corre-
lations to extraordinary enhance the signal-to-noise ratio as-
sociated to the identification of vortex filaments. In Fig. 3,
we show the trajectories of several light particles which are
attracted into a vortex filament and that then separate again
once the vortex filament disappears. Only the favorable pres-
sure gradient, which tends to concentrate bubbles in the vor-
tex core, permits such a strong clustering. Our goal is to
identify an observable which is very sensitive to the presence
of small scale vortex filaments and capable to define a birth
and death time for each structure. We take a snapshot of light
particles distributions at a time roughly in the middle of our
numerical simulation. We divide our simulation volume into
small cubes, of linear size about four times the Kolmogorov
length, 7, and we look for those volumes with larger particle
counts. The particles residing in a volume will form what we
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FIG. 3. (Color online) Evolution of a bunch of light particle trajectories
entering in a small scale vortex filament and then separating again. Inset:
behavior of the moment of inertia of the particle cloud. At entering (exiting)
from the vortex filament an abrupt notice the log scale decrease (increase) of
the signal allows to sharply define the lifetime of the vortex filament. For the
sake of clearness we plot only four particle trajectories out of hundreds.

call a bunch. We then consider the full trajectory of the par-
ticles within each bunch. We identify M bunches with the ith
bunch formed by N, particles, then we define its center of
mass as xim(t)=(1/N,-)Ejy="]xj(t) and its moment of inertia as

N;
M0 =3 [, (1) 2y (T
Nijei

The physical interpretation is clear, the smaller the moment
of inertia of the bunch, the closer the particles. The important
observation here is that this quantity is very sensitive to vor-
tex filaments and displays an extraordinarily high signal/
noise ratio (see inset of Fig. 3). To understand this point one
has to consider the fact that we find easily hundreds of par-
ticles at distances smaller than 0.17, while for a uniform
distribution one would expect to find 1.4 X 10~ particles in a
7° volume. Therefore, the probability to find a finite number
of particles (even if just a few, say 3 or 4) inside a small
volume, 7]3, is so small that when this happens it is almost
surely associated to the presence of confining forces keeping
the particles close by (the probability can be quickly esti-
mated by means of a Poissonian distribution).

Another remarkable feature that makes the moment of
inertia an extremely sensitive and hence useful quantity to
identify vortex filaments is the rapidity with which light par-
ticles in the neighborhood of a forming vortex filament are
attracted into it. In the inset of Fig. 3, one can indeed see that
particles initially separated move closer, remain very close to
each other for some time, and then separate again. The col-
lapsing dynamics is quite robust, as shown also by the fol-
lowing experiment. In order to better understand the dynamic
of light particles close to a vortex filament, we investigate
what happens around a Burgers vortex. We integrate numeri-
cally Eq. (1) using the velocity field given by Eq. (4). Given
the trajectory of particles, we compute the time evolution of
the moment of inertia of a cloud (bunch) of light particles. In
Fig. 4, we show the time evolution for M(r) versus ¢ for a
cloud of particles falling into a Burgers vortex, together with

Phys. Fluids 22, 065101 (2010)

100 g T T
Burgers vortex
10
o
£
s
1
0.1

FIG. 4. Moment of inertia of bunches of light particles from the Navier—
Stokes DNS (empty circles), compared with the value computed with the
velocity field from the Burgers vortex (solid line). The three insets show the
cloud of particles evolving around the Burgers vortex and falling inside it at
three different instants of time, indicated with arrows along the time evolu-
tion of M(z). Initial particle distribution is taken uniform in a square cen-
tered on the vortex core. Notice the formation of the typical spiral structure
induced by the collapse.

the ones computed from bunches of trajectories evolved in
the real DNS of Navier—Stokes equations; we find the same
behavior in the trapping process for the two cases, within
some fluctuations among the DNS signals, being, perhaps,
attributable to a residual motion in the vertical coordinate
(absent in the synthetic vortex case).

Going back to the light particle dynamics in the DNS, by
analyzing the statistics of all bunches, we can make a histo-
gram of vortex filament lifetimes, allowing—for the first
time—to quantitatively assess the statistical properties of
these extreme events. In Fig. 5, we show the PDF of vortex
filament lifetimes for Re, =180 and 65 which happens to be

100

P() (a.u.)

100

FIG. 5. (Color online) PDFs of vortex filaments lifetimes at two different
Reynolds number, R, =65,180: in both cases the PDF is fairly fitted by an
exponential (with a decay factor, for the highest Ry, of around 257,). In the
far tail there are events whose lifetime is of the order of the integral time.
Error bars reflect the effect of changing the threshold used to determine the
vortex filament lifetime.
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an exponential with a decay rate which can be estimated of
the order of 257, and 177,, respectively. As already noticed
in Ref. 7, we do observe events as long as the integral time
T;, estimated to be in the order of 507',,, for the largest Rey-
nolds. The extreme sharpness (rapidity) with which the mo-
ment of inertia drops and then raises again allows to define
the lifetime of the vortex filament in a robust way. Due to
this important fact, the estimate of the lifetime is not much
sensitive to the chosen threshold (in Fig. 3 the threshold has
been set equal to 1, changing the value of the threshold is
accounted into the error bars of Fig. 5).

One of the most intriguing features of fluid dynamics
turbulence is the presence of long living coherent structures
at small scales. The quantification of the statistical properties
of these Eulerian structures has always proved to be one of
the most difficult statistical analysis in turbulence due to the
extremely low signal to noise ratio and to the need of fol-
lowing the evolution of structures for as long as a large scale
eddy turnover time. Here, we have showed that vortex fila-
ments act as strong sink in the dynamics of light particles,
making the dynamics of particle pairs, or particle bunches,
strongly confined on quasi-one-dimensional structures.
Moreover, a comparison between the evolution into a Bur-
gers vortex and light particles evolving in a fully resolved
DNS showed remarkable agreement.

We quantified the probability distribution function of
particle pair separation, by studying the Cramér function and
the vortex lifetimes; both measurements show events up to
the integral time scale, 7;. A very important open issue
would be to quantify the Reynolds number dependency of
such effects. Unfortunately, it is not possible, at the moment,
to reach much higher Reynolds numbers in numerics. A pos-
sible way out could be to perform careful experiments ca-
pable to track clouds of bubbles in turbulence for a relatively
long period of time, at high Reynolds numbers.
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