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Abstract. In this note we report a series of recently published results (by R. Benzi, M.H. Jensen, 
G. Paladin, G. Parisi, A. Vulpiani and myself), on a Shell Model for the three dimensional cascade 
of energy in Fully Developed Turbulence. We present numerical and analitycal computations of the 
intermittent corrections to the K41 scaling of the velocity increments in the inertial range. 
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1. I n t r o d u c t i o n  

According to Kolmogorov theory [1] in turbulent flows there is a cascade of energy 
toward dissipative scales. 

The presence of a range of length scales where inertial forces are dominant and 
where viscous effects as well as the external forcing can be neglected suggests the 
existence of (universal) scaling laws. 

Assuming a constant rate of non-linear transfer of energy one obtains the clas- 
sical Kolmogorov results for moments of the velocity difference in the inertial 
range: < 5u(g) p >oc g~p with, ~p = p/3 Nevertheless there are many experimental 
and numerical evidences [2, 3] that strong fluctuations of the energy transfer and 
dissipation are present, leading to the existence of a whole spectrum of possible 
singularities and to a non-linear ffp. 

Only phenomenological arguments have been proposed in order to explain 
intermittency in the high Reynolds number limit of Navier-Stokes quations, while 
a direct derivation from their dynamic structure is still far from being achieved. 

For this reason, it is useful to analyze particular models of the energy cascade 
process, instead of the complete Navier-Stokes equations, using an approach to the 
intermittency problem firstly proposed in [4] and developed by Grappin et al. [5]. 
We thus hope to reproduce the main characteristics of the small scale statistics of 
turbulence by a chaotic dynamical systems with a limited number of degrees of 
freedom. 

In this model [6, 7] the Fourier space is divided in N shells. Each shell kn 
(n = 1,2, ...N) consists of the wavenumbers k such that / (o2 n < k <_ K02,~+t. 
The velocity difference over a length scale ~ kg 1 is given by u,~. The energy 
is E = Z lUnl2/2 and  its power spectrum is E(kn) = lunlZ/(2kn). The Navier 



94 L. BIFERALE 

4 . . . .  j . . . .  I . . . .  I . . . .  I . . . .  I 

3 

0 

2 

o . . . .  I . . . .  I . . . .  I . . . .  I . . . .  IF 
2,5 5 7.5 10 1'2.5 

P 

Fig. 1. Circles are the values of  ~(p)  obtained f rom a numerical  integrat ion of  equat ion (1) [7]. 
The  solid l ine is computed  f rom our closure ansatz by insert ing in equat ion (6) the values of  111, II2 
coincident  wi th  the correspondent  numerical  results [7]. 

Stokes equations are thus approximated by a dynamical system with 2N differential 
equations: 

( +vk ) un =  (anUn+lUn+2 + b  n-lUn+i + f6n,4 (1) 
dr 

where u is the viscosity, f is a forcing (here on the fourth mode). The coefficients 
a,~, bn and cn are fixed by demanding energy and phase space conservation [7]. 
The unstable fixed point of eqs. (1) when u = f = 0 is given by the Kolmogorov 

scaling u~ cx k~ 1/3, The approximation of considering only first and second 
nearest neighbours for the interactions between shells follows from the locality of 
the cascade in the k-space.  

>From a direct numerical integration of (1) [7] the energy spectrum is observed 
to scale as k -% in the inertial range, with an exponent ~ = 1 + if2 not exactly equal 
to the value 5/3 expected by applying dimensional arguments. In fig. 1 one sees 
that the exponents 4, are not linear in p. This data show intermittent corrections to 
the K41 theory in quantitative and qualitative agreement with exponents extracted 
from real turbulent flows [3] The intermittency of the energy dissipation exhibited 
by the model is consistent with the multifractal approach [8, 9]. Our hope now 
consist in finding out some simple ansatz on the probability distribution function 
for the shell variables in the inertial range consistent with the closure equation of 
motion and able to reproduce the numerical results for the scaling laws [10]. 

2. The Closure Ansatz 

In order to understand which is the real nature of intermittency in this model we 
will concentrate on the stationary probability P[u], where we denote by [u] the 
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set of all u's. The knowledge of P[u], in the region of large j and in the zero 
viscosity limit (i.e. fully developed turbulence), is enough to obtain all the relevant 
information. 

For the P[u] one can make, in the fully turbulent regime, the following Ansatz: 
P[u] o( exp(-  ~ j  Hi), where Hj is given by H(uj, uj-1, uj+l, uj-2, uj+2 ..... ). It 
is easy to verify that the above expression is compatible with the closure equations. 
In other words we assume that the Hamiltonian, H = ~ j  Hi, corresponding to 
the stationary distribution is invariant under scale transformations (i.e translations 
with respect to j).  

We consider a slight different form of the model equations (1). Let us take the 

variables uj in the polar representation uj ~- k-jl/3pjexp(-Oj). The equations of 
the moduli pj become: 

2/3 . 

dt -k- tek2)pj = kj  (Pj+lPj+zszn(Oj -k- Oj+l + 0j+2) 

1 
2PJ-lPj+lsin(Oj + Oj+l + Oj-1)  

1 
2 p j - 2 P j - l s i n ( O j  -t- Oj_ 1 + 0j_2)  ) (2) 

In the following we will use the variables Aj = Oj-2 + Oj-1 + Oj in order to 
simplify the notation. In the inertial range we will set u = 0. In this case the 
Kolmogorov solution correspond to pj  = Const. 

It is easy to realize that the trasfer of energy is mainly gouverned by the sign of 
sin (A j+l), we argue that in order to have a cascade of energy from large scales to 
small scales it should be negative, at least in the average. 

It is possible to prove that the phases Oj must have a flat distribution between 
[0, 2~-] while the same is not necessarly true for the sum of three of them [ 10]. Thus 
even in the Kolmogorov picture we must introduce some phase coerency between 
different scales in order to satisfy the requirement of a forward cascade of energy. 
Next we shall consider the time average < ... > for the moment of order p of pj .  
In the inertial range (u = 0), we obtain: 

0 = < ~jjd/dtpj > = <  4Pj+lPj+2Sj+ 2 > 
1 1 

---2 < ~j jPj+IDj-IS j+I  > ---~ < ~jjPj--lPj--2Sj :> (3) 

where we have introduced the variables Sj = sin(Aj). Our aim is to solve 
equations (3) for all p by using a multiplicative process. 

Our starting point is the hypothesis that Pj+I = aj+l  pj where aj is a random 
variable to be specified. By substituting the above equation into (3) we obtain: 

a _~2 ~p+2 p + 2 c  1 -- -- a ' "aP+la p+2° 
< J+2C~j+l~J ¢~J-l°j+2 > 2 < j~-~ j J - l O j + l  > 

1 _ _ aPaP+l~ 
2 < j J -~°J  > =  0. (4) 
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In order to solve these equations we have to specify the correlation among the aj 
and the Sj. We first assume that aj are uncorrelated variables (among themselves). 
This is a quite strong assumption which should be considered to be a first order 
approximation to the real solution. Next we assume that 

a j = C  (1 - fl Sj). (5) 

As a consequence of these two assumptions the Sj are uncorrelated variables. 
The assumption (5) gives the Kolmogorov scaling law for C = 1 and fl : 0. 
Introducing the moments:Hp = <  (1 - /7 Sj) p >, where < ... > should be 
considered the average on the stochastic process/3 Sj and by using this definition 
in (4), we obtain: 

2C6H2+2H2 < (1 --  f lS)S  > -C3Hp+IHp+2 < (1 - - / 7 S ) S  > 

- l i p +  1 < (1 - flS)PS > =  0. (6) 

Given the probability distribution of S we can consider (6) as a set of equations 
Fp(fl) = 0. It turns out that beside the exact results ((3) : l, it is possible to 
close all the equations starting from the first two moments II1 and II2. In fig. 
(1) we have superimposed the ((p) curve obtained from eq. (6) via the relation 
((p) = p/3 - lo92(CPIIp), and using as external input the values of 1-I1 and II2 
obtained numerically [7]. As we can see the numerical agreement is quite good. 
This tells us that our assumption on the multiplicative process could be considered 
to be a good first approximation. 

We next go back to equation (6) and try to specify more about the probability 
distribution of S. Our starting point is to assume Aj  to be uniformly distributed in 
the interval [-Tr, 0], in this way we are describing a forward cascade of energy. 
Under this hypothesis we can compute the functions Fp(/3). It turns out that the 
values of fl at which the equations Fp(/7) are solved fall in to a narrow interval 
for any p. This suggest us the possibility to improve the result by allowing /3 
to fluctuate. We still consider Aj  to be uniformly distributed. On the other hand 
we consider/3 not a constant rather a stochastic variable independent of S with 
probability distribution: 

P(/3) = q6(/3 -/30) + (1 - q)6(/3). (7) 

Using eq. (7) into (6), we obtain a set of equations Fp(/30, q) = 0. We have 
found that for q = .95 these equations (for p = 0, ..., 4) are nearly simultaneously 
satisfied. In conclusion we can say that for the closure equation obtained from 
d d-7 < PP~ > =  0, the assumptions made about the multiplicative process seem to 

satisfy all the functional constraints imposed by the equation of motion. 
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