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The relative dispersion of pairs of inertial point particles in incompressible,
homogeneous and isotropic three-dimensional turbulence is studied by means of
direct numerical simulations at two values of the Taylor-scale Reynolds number
Reλ ∼ 200 and Reλ ∼ 400, corresponding to resolutions of 5123 and 20483 grid
points, respectively. The evolution of both heavy and light particle pairs is analysed
by varying the particle Stokes number and the fluid-to-particle density ratio. For
particles much heavier than the fluid, the range of available Stokes numbers
is St ∈ [0.1 : 70], while for light particles the Stokes numbers span the range
St ∈ [0.1 : 3] and the density ratio is varied up to the limit of vanishing particle
density. For heavy particles, it is found that turbulent dispersion is schematically
governed by two temporal regimes. The first is dominated by the presence, at large
Stokes numbers, of small-scale caustics in the particle velocity statistics, and it lasts
until heavy particle velocities have relaxed towards the underlying flow velocities. At
such large scales, a second regime starts where heavy particles separate as tracers’
particles would do. As a consequence, at increasing inertia, a larger transient stage
is observed, and the Richardson diffusion of simple tracers is recovered only at large
times and large scales. These features also arise from a statistical closure of the
equation of motion for heavy particle separation that is proposed and is supported
by the numerical results. In the case of light particles with high density ratio, strong
small-scale clustering leads to a considerable fraction of pairs that do not separate
at all, although the mean separation increases with time. This effect strongly alters
the shape of the probability density function of light particle separations.

1. Introduction
Suspensions of dust, droplets, bubbles and other finite-size particles advected

by incompressible turbulent flows are commonly encountered in many natural
phenomena (see, e.g. Csanady 1980; Eaton & Fessler 1994; Falkovich, Fouxon &
Stepanov 2002; Post & Abraham 2002; Shaw 2003; Toschi & Bodenschatz 2009).
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Understanding their statistical properties is, thus, of primary importance. From a
theoretical point of view, the problem is more complicated than that in the case
of fluid tracers, i.e. point-like particles with the same density as the carrier fluid.
Indeed, when the suspended particles have a finite size and a density ratio different
from that of the fluid, they have inertia and do not follow exactly the flow. As a
consequence, correlations between particle positions and structures of the underlying
flow appear. It is, for instance, well known that heavy particles are expelled from
vortical structures, while light particles tend to concentrate in their cores. This results
in the formation of strong inhomogeneities in the particle spatial distribution, an
effect often referred to as preferential concentration (see Douady, Couder & Brachet
1991; Squires & Eaton 1991; Eaton & Fessler 1994). This phenomenon has gathered
much attention, as it is revealed by the amount of recently published theoretical
work (Balkovsky, Falkovich & Fouxon 2001; Zaichik, Simonin & Alipchenkov 2003;
Falkovich & Pumir 2004) and numerical studies (Reade & Collins 2000; Collins &
Keswani 2004; Chun et al. 2005; Bec et al. 2007a; Goto & Vassilicos 2008). Progresses
in the statistical characterization of small particle aggregates have been achieved by
studying particles evolving in stochastic flows by Sigurgeirsson & Stuart (2002),
Mehlig & Wilkinson (2004), Bec et al. (2005) and Olla (2002), and in two-dimensional
turbulent flows by Boffetta, De Lillo & Gamba (2004). Also, single trajectory statistics
have been addressed both numerically and experimentally for small, heavy particles
and light particles (see, e.g. Bec et al. 2006; Cencini et al. 2006; Gylfason et al. 2006;
Ayyalasomayajula, Warhaft & Collins 2008; Gerashchenko et al. 2008; Zaichik &
Alipchenkov 2008; Volk et al. 2008, 2009), and for large particles, where inertial
effects combine with finite size ones (see e.g. Qureshi et al. 2007, 2008; Xu &
Bodenschatz 2008). The reader is referred to Toschi & Bodenschatz (2009) for a
review.

In this paper we are concerned with small (point) particle pair dispersion, that is
with the statistics, as a function of time, of the separation distance R(t) = X1(t)− X2(t)
between two inertial particles, labelled by the subscripts 1 and 2. While there is a vast
literature on the fluid tracer dispersion in turbulent flows (recent reviews are Sawford
2001 and Salazar & Collins 2009), much less is known about inertial particles. For the
case of heavy suspensions, the problem has been previously investigated analytically
in random flows (Derevyanko et al. 2007; Bec et al. 2008; Derevich 2008; Fouxon &
Horvai 2008), by means of kinematic simulations (El Maihy & Nicolleau 2005), and
also in direct numerical simulations of thermally stratified turbulence (van Aartrijk
& Clercx 2009).

In homogeneous turbulence, it is sufficient to consider the statistics of the
instantaneous separation of the positions of the two particles. These are organized
in different families according to the values of their Stokes number St and density
mismatch with the fluid, β . The Stokes number is defined as St = τs/τη, where the
particle response time is τs = a2/(3νβ), a being the particle radius much smaller
than the Kolmogorv scale η, and where τη is the flow Kolmogorov time scale. The
adimensional constant β = 3ρf /(ρf + 2ρp) accounts for the contrast between particle
density ρp and fluid density ρf .

For our purposes, the motion of particle pairs, with given (St, β) values and with
initial separations inside a given spherical shell, R = |X1(t0)− X2(t0)| ∈ [R0, R0 +dR0],
is followed until particle separation reaches the large scale of the flow. With respect
to the case of simple tracers, the time evolution of the inertial particle pair separation
R(t) becomes a function not only of the initial distance R0 and the Reynolds number
of the flow but also of the inertia parameters (St, β).
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A key question that naturally arises is how to choose the initial spatial and velocity
distributions of inertial pairs. It is known that heavy (respectively light) particles
tend to concentrate preferentially in hyperbolic (respectively elliptic) regions of the
advecting flow; indeed, spatial correlation effects may extend up to the inertial range
of scales for not too large Stokes numbers, as shown by Bec et al. (2007a), Chen,
Goto & Vassilicos (2006) and Calzavarini et al. (2008a). Moreover, when inertia is
high enough, the particle pair velocity difference, δRV = |V 1(X1(t), t) − V 2(X2(t), t)|,
may not go smoothly to zero when the particle separations decrease, a phenomenon
connected to the formation of caustics (see Wilkinson & Mehlig 2005; Falkovich &
Pumir 2007). This implies for example that if inertia is such that particle response
time is larger than any turbulent flow time scale, nearby particles will move with
uncorrelated velocities (see e.g. Abrahamson 1975; Simonin, Février & Laviéville
2002; Bec, Cencini & Hillerbrand 2007b).

In our numerical simulations, particles of different inertia are injected into the flow
and evolve until they reach a stationary statistics for both spatial and velocity
distributions. Only after this transient time, pairs of particles with fixed initial
separation are selected and then followed in the spatial domain to study relative
dispersion.

In view of the above considerations, the main issue is to understand the role played
by the spatial inhomogeneities of the inertial particle concentration field and by the
presence of caustics on the pair separations, at changing the degree of inertia. We
remark that these two effects can be treated as independent only in the limit of very
small and very large inertia. In the former case, particles tend to behave like tracers
and move with the underlying fluid velocity: preferential concentration may affect
only their separation. In the opposite limit, particles distribute almost homogeneously
in the flow; however, due to their ballistic motion, they can reach nearby positions
with very different velocities (Falkovich et al. 2002). In any other case of intermediate
inertia, both of these effects are present and may play a role in the statistics of inertial
pair separation.

It is worth anticipating the two main results of the present study, which are as
follows.

(i) The separation between heavy particles can be described in terms of two time
regimes: the first regime is dominated by inertia effects, and considerable deviations
from the tracers arise in the inertial relative dispersion; in the second one, the
tracers’ behaviour is recovered since inertia is weak and appears only in subdominant
corrections that vanish as 1/t . The crossover between these two regimes defines new
characteristic spatial and temporal scales, connected to both the range of scale of
caustics, and the Stokes number, which influence the particle separation for not too
long time-lags and not too large scales.

(ii) The strong clustering properties that are typical of light particles may lead
to the fact that many pairs do not separate at all: their statistical weight is clear
in the separation probability density function (PDF), which develops a well-defined
power-law left tail.

It would also be interesting to investigate the dependence upon the Reynolds
number of the inertial particle pair separation. Small-scale clustering seems to be
poorly dependent on the degree of turbulence of the carrier flow (Collins & Keswani
2004; Bec et al. 2007a), while much less is known about the Reynolds number
dependence of the caustics statistics. Our numerical data do not allow to explore this
question in detail, so we will restrict ourselves to show data associated to the two
Reynolds numbers in all cases when differences are not significative.
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N Reλ η δx ε ν τη tdump δt TL

Run I 512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.0004 2.2
Run II 2048 400 0.0026 0.003 0.88 0.00035 0.02 0.00115 0.000115 2.2

Table 1. Eulerian parameters for the two runs analysed here: Run I and Run II in the text.
N is the number of grid points in each spatial direction; Reλ is the Taylor-scale Reynolds
number; η is the Kolmogorov dissipative scale; δx = L/N is the grid spacing, with L = 2π
denoting the physical size of the numerical domain; τη = (ν/ε)1/2 is the Kolmogorov dissipative
time scale; ε is the average rate of energy injection; ν is the kinematic viscosity; τdump is the
time interval between two successive dumps along particle trajectories; δt is the time step;
TL = L/U0 is the eddy turnover time at the integral scale L = π and U0 is the typical large-scale
velocity.

In the case of fluid tracers, the standard observables are the time evolution of
the mean-square separation and the separation PDF, for which well-established
predictions exist since the pioneering work of Richardson (1926). We contrast these
observables obtained for tracers with the results for heavy and light inertial particles.

The paper is organized as follows. In § 2, we briefly recall the basic equations
of motion and describe the numerical simulations. In § 3, we analyse the stationary
distribution of heavy particle velocity differences, conditioned on the particle initial
separation, highlighting both the presence of small-scale caustics and the effects of
particle inertia at scales corresponding to the inertial range of fluid turbulence. In § 4,
we study the behaviour of the mean separation distance of heavy pairs at changing
the Stokes number St; we also analyse the influence of the caustics in the initial
statistics on the subsequent pair separation evolution. A mean-field model, which is
able to capture the main numerical findings, is proposed in the same section. The
time evolution of the separation PDFs is discussed in § 5 and we present the data for
light particles in § 6. In § 7 we summarize the main findings.

2. Equation of motion and numerical details
We present results from direct numerical simulations of three-dimensional turbulent

flows seeded with inertial particles. The flow phase is described by the Navier–Stokes
equations for the velocity field u(x, t)

∂t u + u · ∇u = −∇p + ν∇2u + f , ∇ · u = 0. (2.1)

The statistically homogeneous and isotropic external forcing f injects energy in the
first low wavenumber shells, by keeping constant their spectral content (see Chen
et al. 1993). The kinematic viscosity ν is chosen such that the Kolmogorov length
scale η ≈ δx, where δx is the grid spacing; this choice ensures a good resolution of
the small-scale velocity dynamics. The numerical domain is cubic and 2π-periodic in
the three directions of space. We use a fully dealiased pseudospectral algorithm with
second-order Adam–Bashforth time-stepping (for details see Bec et al. 2006; Cencini
et al. 2006). We performed two series of DNSs: Run I with numerical resolution of
5123 grid points and the Reynolds number at the Taylor scale Reλ ≈ 200; Run II with
20483 resolution and Reλ ≈ 400. Details of the runs can be found in table 1.

The particle phase is constituted by millions of heavy and light particles— the latter
only for Run I— with different intrinsic characteristics. Particles are assumed to be
with size much smaller than the Kolmogorov scale of the flow— numerically, they
are treated as point particles—and with a negligible Reynolds number relative to the
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particle size. In this limit, the equations ruling their dynamics take the particularly
simple form:

Ẋ = V , V̇ = − 1

τs

[V − u(X, t)] + β Dt u(X, t), (2.2)

where the dots denote time derivatives. The particle position and velocity are X(t)
and V (t), respectively; u(X(t), t) is the Eulerian fluid velocity evaluated at the
particle position, and Dt u is the so-called added mass term, which measures the
fluid acceleration along particle trajectory.

The adimensional constant β accounts for the added mass effect resulting from the
density contrast of the particles with the fluid. The particle response time, appearing in
the Stokes drag, is τs . The flow Kolmogorov time scale, appearing in the definition of
the Stokes number St = τs/τη, is τη = (ν/ε)1/2, where ν is the flow kinematic viscosity
and ε is the average rate of energy injection.

Equation (2.2) has been derived under the assumption of very dilute suspensions,
where particle–particle interactions (collisions) and the feedback of the particles onto
the flow can be neglected (see, e.g. Maxey & Riley 1983 for a discussion of the
complete equation of motion of a small spherical particle in a non-uniform flow).

For Run I, we show results for the following set of (St, β) families: (i) very heavy
particles [β = 0]: St = 0.0, 0.6, 1.0, 3.3; (ii) light particles [β = 2, 3]: St = 0.3, 1.2, 4.1.
For each family, the typical number of particle pairs that are followed is around
5 × 104. For Run II, we show results only for heavy particles but with a larger
range of variation in the Stokes number: St = 0.0, 0.6, 1.0, 3.0, 10, 30, 70. The typical
number of particle pairs for each family is now ∼104.

Once injected particles have relaxed to their steady-state statistics, pairs have been
selected with the following initial separations: R0 � η and R0 ∈ [4 :6]η for both Run
I and Run II, and R0 ∈ [9:11]η for Run II only.

Besides the time evolution of particle pairs, we collected instantaneous snapshots
of the two phases (fluid and dispersed), with a much higher particle statistics:
around 106 per family for Run I and 108 per family for Run II. These are used
to measure the stationary — i.e. not along the trajectories— distribution of particle
velocity increments discussed in the next section.

3. Stationary distributions: velocity increments conditioned on particles
separation

Turbulent pair dispersion for tracers is classically based on the application of
similarity theory for Eulerian velocity statistics; depending on the value of space and
time scales, velocity increment statistics differently affect the way tracers separate.
This results in different regimes for relative dispersion (see e.g. Sawford 2001).

In the case of inertial particles, a similar reasoning holds, so to analyse the
way inertial pairs separate in time, the stationary statistics of particle velocity
differences have to be investigated first. A stationary distribution for the typical
velocity differences between two inertial particles is obtained by imposing periodic
boundary conditions inside the physical volume and then measuring velocities on
such a thermalized configuration.

We are interested in the scaling behaviour of velocity increments at varying the
degree of inertia and the distance between the particles (in the dissipative or inertial
range of the homogeneous and isotropic turbulent fluid flow). To fix the notation, we
denote by U0 the typical large-scale velocity of the fluid tracers and by L the integral
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Figure 1. (a, bottom) Behaviour of the scale-dependent Stokes number, St(R), as a function
of the scale R normalized with the Kolmogorov scale η, for two Stokes numbers St = 3, 70
(bottom and top, respectively). The horizontal thick line is for St(R) = 1. (a, top) The scaling
behaviour for the fluid tracer velocity increments vs. the scale as given by (3.2). Note that
the scales R∗ where St(R∗) = 1 fall in the inertial range of the Eulerian fluid velocity. (b) The
function γ (St), fitted from the data, defining the small-scales power-law behaviour of caustics
statistics at changing inertia. Note that for small values of the Stokes number St , γ (St) → 1,
i.e. particle velocity is differentiable; at high inertia, γ (St) → 0, indicating the existence of
discontinuities in the particle velocity increment statistics.

scale of the flow. Moreover, we define

δRVSt = |V 1(X1(t)) − V 2(X2(t))| (3.1)

as the velocity difference at scale R, conditioned on the presence of a pair of particles
with Stokes number St , separated with a distance R = |X1(t) − X2(t)|. Since we are
interested in the case of heavy particles only, the Stokes number is sufficient to identify
a given particle family. Moreover, since we are considering the stationary statistics,
we can drop the time dependence. For convenience, we introduce a specific notation
for the tracer stationary velocity statistics: δRu = δRV(St = 0), which is exactly equal to
the Eulerian velocity increment at scale R.

Recently, Bec et al. (2008) have shown that to describe inertial pair dispersion
in synthetic flows, it is useful to introduce the local or scale-dependent Stokes
number. This is defined as the ratio between the particle response time and the
typical eddy turnover time τR =R/δRu of the underlying fluid at a given scale R:
St(R) = τs/τR ∼ τs δRu/R. For real turbulent flows where different scaling ranges are
present, we can equivalently define a scale-dependent Stokes number St(R) that
recovers the usual definition of the Stokes number, St(R) 	 St = τs/τη when R 
 η,
and behaves as St(R) ∼ τsε

1/3R−2/3 when η 
 R 
 L. The typical behaviour of St(R)
is sketched in figure 1 for two different values of the Stokes number St = 3, 70 and
using a Batchelor-like parametrization of the fluid velocity (see Meneveau 1996):

δRu = U0

R

(η2 + R2)1/3
. (3.2)

For Stokes numbers, St , order unity or larger, there always exists a typical scale
where the local Stokes number, St(R), becomes order unity (El Maihy & Nicolleau
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2005):

R∗(St) = η St3/2. (3.3)

Such a scale, which is well in the inertial range if the Stokes number St is sufficiently
large, can be considered a rough estimate of the upper bound for the region of scales
where inertia plays an important role in the particle dynamics. We expect that two
main features might be important in characterizing the inertial particle stationary
velocity statistics δRVst , with respect to that of tracers δRu. The first concerns the
small-scale behaviour of the particle velocity statistics. At small scales R 
 η and for
large-enough Stokes numbers, the presence of caustics makes the particle velocity
increments not differentiable. This feature can be accounted for by saying that

δRVSt ∼ V
η
St

(
R

η

)γ (St)

, R 
 η, (3.4)

where V
η
St is a constant prefactor and the function γ (St) (introduced by Bec et al.

2005) gives the typical scaling of caustic-like velocity increments. Indeed, we do expect
that at changing the inertia of the particles, the statistical weight of caustics might
monotonically vary as follows. At small St , limSt→0 γ (St) = 1, i.e. the value for smooth,
differentiable Eulerian statistics of tracers. At large values St → ∞, it should approach
the discontinuous limit γ (St) → 0, valid for particles that do not feel underlying fluid
fluctuations at all. Figure 1(b) shows the typical shape of the function γ (St) obtained
by fitting the data at the two available Reynolds numbers (Bec et al. 2009): the
functional form fitting the data is γ (St) = [1 − 2/π arctan(g1 St)], where g1 is an
adimensional constant order unity.

The second important feature concerns the particle velocity statistics at scales larger
than the scale R∗(St) previously defined, but smaller than the integral scale of the
fluid flow. For any fixed Stokes number and a large-enough Reynolds number, we
expect that inertia becomes weaker and weaker, by going to larger and larger scales
R � R∗(St). In such a case, particle velocity increments are expected to approach the
underlying fluid velocity increments:

δRVSt → V 0
St δRu ∼ V 0

St U0

(
R

L

)1/3

, R∗(St) 
 R 
 L, (3.5)

where for simplicity we have neglected possible intermittent correction to the
Kolmogorov’s 1941 (K41) scaling of the fluid velocity (see Frisch 1995 for details).
Clearly, the Reynolds number has to be sufficiently large to provide a well-developed
scaling region R∗(St) 
 R 
 L, before approaching the large scale L. We emphasize
that in (3.5), an adimensional normalization factor V 0

St has been introduced, which
takes into account possible filtering effects induced by inertia at large scales. The
normalization is such that V 0

(St =0) = 1, while that for any Stokes larger than zero

V 0
(St) � 1.
In figure 2, we test the validity of the previous picture by analysing the typical

velocity fluctuation, 〈|δRVSt |〉, at changing Stokes number and for data of Run II
at Reynolds number Reλ ∼ 400. At small scales, the presence of caustics in the
velocity statistics can be detected, with a non-smooth scaling behaviour below the
Kolmogorov scale η. At scales within the inertial range and when the Stokes number
is sufficiently large, the presence of caustics also affects particle velocity statistics up
to a characteristic scale that becomes larger and larger by increasing particle inertia.
Beyond this scale, particle velocity increments tend to approach the scaling behaviour
of the fluid tracers, but their amplitude is depleted by a factor 1/V 0

St , which increases
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Figure 2. (a) Particle velocity structure function of order p = 1 vs. the scale R/η, for various
Stokes numbers, St = 0, 0.6, 1, 10, 70, and for Reynolds number Reλ ∼ 400, Run II. The
statistics for fluid tracers (St= 0) correspond to the solid line. Statistical errors are of the
order of twice the size of symbols for scales smaller than η and become comparable with
the size of symbols in the inertial range of fluid velocity statistics. The differentiable scaling
behaviour ∝ R in the dissipative range and the Kolmogorov 1941 behaviour ∝ R1/3 in the
inertial range of scales are also shown. (b) Zoom-in of the inertial range, symbols are the same
as in (a). (Inset) Behaviour of the amplitude prefactor, V 0

St , as a function of the Stokes number
St , as measured from the velocity increments at the integral scale L, Run II.

with the Stokes number, as shown in the inset of figure 2(b). If we neglect the role of
intermittency, a similar behaviour is expected for higher-order fluctuations.

It is interesting to consider the scaling behaviour of particle velocity in terms of
the underlying velocity statistics, not only at very small or very large separations, but
also for any value of the scale R. This is not straightforward, since we have to take
into account not only the fluid Eulerian statistics at the dissipative and inertial range
of scales, but also the modifications due to the inertia. This is responsible, as we have
seen, for the appearance of a new relevant scale and for filtering effects in the velocity
amplitude.

To fully characterize particle velocity increments, we note that the Stokes scale,
R∗(St) defines a typical Stokes velocity: this is the fluid velocity increment at the
Stokes scale, δu∗(St) ∼ δR∗u (see figure 1a). Previous reasonings can be summarized in
the following interpolation formula for the heavy particle velocity increment:

δRVSt = V 0
St (δRu)γ (St(R))

[
(δRu)2 + c1 (δu∗(St))2

][1−γ (St(R))]/2
. (3.6)

The above expression is a Batchelor-like parametrization but in the velocity space,
with a transient velocity given by the Stokes velocity, δu∗(St); the adimensional
constant c1 is the only free parameter—order unity, in our data—once the large-scale
normalization function V 0

St , the caustic exponent γ (x) and the reference fluid velocity
increment δRu are given.

In figure 3, we show the result of the fit in terms of the expression (3.6),
where the caustics scaling exponent has been chosen, as mentioned above, equal
to γ (x) = [1 − 2/π arctan(g1 x)]; this functional form with g1 = 1.2 provides a good fit
to the numerical results.

The qualitative trend is very well captured by the interpolation function proposed.
Note that in expression (3.6), the argument of γ (St) is not the simple Stokes number
at the Kolmogorov scale, but the scale-dependent one St(R): γ (St) → γ (St(R)). This
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Figure 3. Scaling behaviour of the particle velocity structure function of order one vs. the
normalized scale R/η. Solid lines indicate the fit of the data of figure 2, Run II, using the
interpolation formula (3.6). Here, the large-scale prefactors V 0

St are those measured in Run II
of the simulation and shown in the inset of figure 2(b). (Inset) Enlargement of the crossover
range, where δRu ∼ δRV .

further ingredient is needed to take into account the fact that in the presence of a
rough underlying fluid velocity, as it happens in the inertial range of scales, no simple
power-law behaviour is expected for the scaling of particle velocity statistics. This
was remarked by Bec et al. (2008), in the study of heavy particle turbulent dispersion
in random flows.

Equation (3.6) clearly matches the two limiting behaviours for very small and
very large separations. In the former case, inertia dominates the small-scale velocity
statistics with respect to the underlying smooth fluid velocity and caustics lead to a
pure power-law behaviour

δRV ∼ V 0
St (δRu)γ (St) ∼ U0V

0
St

(
R

L

)γ (St)

, R 
 η, (3.7)

where the local Stokes number has attained its dissipative limit St(R) → St .
In the latter case, at very large scales R � R∗(St), inertia is subleading, and the

typical velocity difference between particles is close to the fluid velocity increment

δRVSt ∼ V 0
St δRu, η 
 R∗(St) 
 R. (3.8)

At intermediate scale, for large Stokes, St � 1, inertia brings in a non-trivial
dependency via the scale Stokes number, St(R), and we expect a pseudo-power-
law scaling:

δRVSt ∼ (δRu)γ (St(R)) ∼ Rγ (St(R))/3, η 
 R 
 R∗(St). (3.9)

Summarizing, we propose that by changing the Stokes and Reynolds numbers,
different regimes governing the particle velocity statistics can be distinguished. The
relevance of such regimes of the particle velocity statistics for the associate relative
dispersion dynamics can be easily explained with the help of the sketch shown
in figure 4. In the parameter space of inertia and scale separation (St, R), we can
distinguish three regions depending on whether inertia is strong or weak, and whether
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Figure 4. Sketch of the different regimes for heavy pairs expected in the parameter space of
inertia St and scale separation R. The curve St(R∗) = 1 separates the region of low inertia
St(R) � 1, region (C), from two regions (A) and (B), where inertia is important St(R) � 1.
In latter case, we can distinguish the dispersion regime when inertia is important and particle
velocity difference is larger than the corresponding fluid one at the same scale: this is region
(A). Besides, there is an intermediate regime in which inertia still affects relative dispersion,
but particle velocity difference is smaller than the corresponding fluid one: this happens in
region (B). The borderline between regions (A) and (B) is given by the curve δRVSt = δRu. The
relative dispersion of heavy pairs of Stokes St with initial separation R can be described as
starting from the corresponding position in this plane and then evolving upwards along the
vertical arrow.

particle velocity difference is large or not with respect to the fluid velocity difference
at comparable scale. In agreement with what commented before, we pose that the
curve St(R∗) = 1 distinguishes the region of weak (St(R) � 1) and strong inertia
(St(R) � 1).

According to figure 4, in regime (A) inertia is important since the scale R∗(St) � η

and, moreover, the typical particle velocity increments are larger than the fluid
increments. In region (B), inertia is still important but particle velocity increments are
depleted with respect to the fluid increments. This typically happens for large Stokes
numbers, and in our DNS it is visible only for very large separations R(t) of the
highest Stokes St = 70. Finally, regime (C) is characterized by a weak inertia, which
appears only in the filtering factor for the velocity large-scale amplitude and possibly
in subleading corrections to the tracers’ relative dispersion.

Even for the largest value of the Reynolds and Stokes numbers achieved in our
DNS, it is very difficult to disentangle quantitatively the above-mentioned regimes
because of the closeness of the three relevant scales, η, R∗(St) and L. Still, the quality
of the fit shown in figure 3 using the global functional dependence given by (3.6)
makes us confident that the main physical features are correctly captured. Before
closing this section, we note that there is no reason to assume that the functional
form entering in the pseudo-power-law scaling in the inertial range, γ (St(R)), in (3.9)
is equal the one characterizing the scaling in the viscous range, γ (St), in (3.7). Hints
for this observation come from results obtained by Bec et al. (2008) for random flows,
where a very high statistical accuracy can be achieved; there, depending on if the
underlying fluid velocity is spatially smooth or rough, a slightly different functional
form has been found.

The previous analysis gives us a clear quantitative picture of the scale and velocity
ranges where caustics play a role in the particle dynamics. For example, for moderate
Stokes numbers, we have important departure from the tracers statistics only for
very small scales, i.e. caustics gives a singular contributions to the particle velocity
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increments inside the viscous range; then, at larger scales, the particle velocity scaling
becomes indistinguishable from the tracer velocities. Clearly, for such Stokes number,
no important corrections for particle separation evolution are expected with respect
to the usual Richardson dispersion observed for tracers. This is because particle
pairs tend to separate, and very soon all pairs will attain separations where their
velocities are very close to the underlying fluid. On the other hand, for very heavy
particles, those with Stokes time falling inside the inertial range of fluid velocity
statistics, the contribution from the caustics will also be felt at relatively large
scales, up to R ∼ R∗(St). Pair separations attain such scales when the initially large
relative velocity difference has relaxed and become smaller than the corresponding
fluid one—crossing from regions (A) to (B). Note that at R ∼ R∗(St), we have that
δR∗VSt 	 V 0

St δR∗u, i.e. there is a non-trivial effect from inertia. Moreover, for large
Stokes, at scales R > R∗(St), particle velocity increments are smaller than the fluid
counterparts, indicating an important depletion induced by the Stokes drag on the
particle evolution.

It is clear from the above discussion that new physics should appear for the value
of inertia and scales separation of region (B). This regime—which we cannot access
with the present data — is the one where a new law of pair separation should appear
as recently suggested by Fouxon & Horvai (2008). A discussion of the dispersion
regimes of inertial particle pairs follows in the next section in terms of the time
behaviour of the mean-square separation distance.

4. Dispersion regimes and corrections due to inertia
In this section, we analyse the effects of inertia on the mean-square separation of

heavy particle pairs with a given initial separation distance, R0 at time t = t0, as a
function of the Stokes number:

〈(R(t))2 | R0, t0〉St = 〈|X1(t) − X2(t)|2〉St , (4.1)

where in the left-hand side the average is performed over all pairs of particles such
that |X1(t0) − X2(t0)| =R0. The study of the relative dispersion of small, neutrally
buoyant tracer particles has recently been the subject of renewed interest. This has
been motivated by the fact that very accurate data—highly resolved in time and
space—have become available experimentally (Ott & Mann 2000; Bourgoin et al.
2006) and numerically (Yeung & Borgas 2004; Biferale et al. 2005, 2006). These
studies have confirmed and assessed the extent of validity of what was predicted
by Richardson (1926) and Batchelor (1952), i.e. the existence of different dispersive
regimes for tracer pairs in turbulent flows, depending on the value of their initial
distance and on the time scale considered.

When released in a statistically homogeneous and isotropic turbulent flow, with an
initial separation R0 in the inertial range of scales for fluid velocity, i.e. η 	 R0 
 L,
tracer pairs initially separate according so the so-called Batchelor regime

〈(R(t) − R0(t0))
2〉St=0 = C̃(εR0)

2/3 t2, τη 
 (t − t0) 
 tB,

or equivalently,

〈(R(t))2|R0, t0〉St=0 	 R2
0 + C̃(εR0)

2/3 t2, τη 
 (t − t0) 
 tB, (4.2)

where C̃ is supposed to be a universal constant. This ballistic regime appears because
tracers initially separate as if the underlying velocity field was frozen, and it lasts
for a time scale that is a function of the initial separation itself, tB = (R2

0/ε)
1/3
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(see Batchelor 1952; Sawford 2001; Bourgoin et al. 2006). After such a transient
initial time, the relative separation dynamics forgets the initial conditions and tracers
separate explosively with a power-law behaviour given by the Richardson law:

〈(R(t))2|R0, t0〉(St=0) = g ε t3, tB 
 (t − t0) 
 TL, (4.3)

where g is known as the Richardson constant, and TL is the eddy turnover time at
the integral scale L. As set out by Monin & Yaglom (2007), the tracer separation
PDF—which will be discussed later—has a similar scaling behaviour in these ranges.

Note that a Taylor expansion at short times of the relative dispersion 〈(R(t) −
R0(t0))

2〉St =0 would also lead to the appearance of a cubic in time term, but with
negative sign, i.e. ∝ −t3. This, however, has nothing to do with the Richardson
superdiffusive regime, which pertains to an asymptotic non-differentiable regime in
the particle separation that is reached at long time. Richardson regime is obtained by
a simple dimensional argument which makes use of the Kolmogorov similarity law
for the Eulerian velocity increments in a turbulent flow.

A remarkable aspect of the Richardson separation law in the inertial range is its
universality. Note the absence of initial separation dependence, an effect also dubbed
intrinsic stochasticity (Weinan & Vanden Eijnden 2000), which is just the signature of
the non-Lipschitz nature of the velocity field driving the separation between tracers,
when their mutual distance is in the inertial range of fluid velocity statistics. The
experimental and numerical validation of the previous prediction (4.3) has proved to
be particularly difficult in laboratory or numerical flows (see e.g. the discussion of
Sawford, Yeung & Hackl 2008), the main reason being the strong effects due to viscous
and large scales in the tracers’ dynamics. Measurements in flows at larger Reynolds
numbers and with pairs having smaller initial separations would be required. To
overcome these limitations within the present available setups, a series of techniques
have been developed, including the study of doubling time statistics, i.e. the probability
distribution function of the time needed for a pair to double its separation (Boffetta
& Sokolov 2002). Thanks to these methods, a fairly good agreement on the value of
the Richardson constant has been achieved in numerical data (see e.g. Biferale et al.
2005). Here, we want to study how the tracer behaviour is modified by the presence
of small-scale caustics in particular and by inertia effects in general, for the case of
heavy particle pairs. Standard direct measurements of the moments of separation as
a function of time will be considered, while application of doubling time statistics is
left for future studies.

In figure 5, we show the behaviour of the mean-square separation at varying the
Stokes number, and for two values of the initial distance. We start with data at the
lowest resolution, i.e. Run I at Reλ 	 200, and for moderate Stokes numbers, St ∼ O(1).
Initial distances are chosen equal to R0 � η (a, c) and R0 ∈ [4:6] η (b, d).

If the initial distance is small enough (a, c), the presence of caustics in the particle
velocity field at initial time gives a very remarkable departure from the tracer
behaviour. At increasing the Stokes number, such departure is more and more
evident, and it lasts for a time lag that becomes longer and longer. For the highest
value of the Stokes number shown in figure 5(a, c), (St = 3.3), a sensible difference
from the tracer behaviour is observed over almost two decades: t ∈ [0.1 : 10] τη. A
way to better visualize the departure from the tracer statistics consists in plotting the
mean-square separation for heavy pairs of different Stokes numbers, normalized to
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Figure 5. (a, b) The mean-square separation vs. time, for heavy particles at changing St and
the initial distance R0. Time is normalized by the Kolmogorov time scale τη . (a, c) Results
for St = 0, 0.6, 1 and 3.3; initial distance R0 ∈ [0 : 1]η, Run I. Error bars due to statistical
fluctuations are of the order of the symbol size. Note that the two largest Stokes numbers show
a time lag interval where separation proceeds faster than tracers. (b, d) Mean-square separation
vs. time for pairs with initial separation R0 ∈ [4 : 6]η. Stokes numbers are the same as in (a, c).
Note that now only the dispersion of particle pairs with St = 3.3 exhibits a small departure
from the underlying fluid. For the smaller Stokes, typical length scale of caustic-like velocity
increment is smaller than the initial separation R0, and particle pairs, therefore, separate as
fluid tracers do. (c, d) The ratio Q(t), between the heavy particle separation and the tracer
data, vs. time and for St = 0.6, 1, 3.3, for the two selected initial separations. Symbols are the
same as for (a, b).

the tracer one,

Q(t) =
〈(R(t))2〉St

〈(R(t))2〉(St=0)

. (4.4)

This quantity is shown in figure 5(c, d). For heavy pairs starting at R0 	 η and with
St =3.3, the relative difference is as large as 10 at its maximum for t ∼ τη. However,
such effect becomes progressively less important if we start the separation experiment
from larger initial distances as shown in figure 5(b, d). This is because, at these
same Stokes numbers, the deviation of particle velocity difference with respect to the
underlying fluid, due to caustics, has already decreased. This is equivalent to state that,
for these Stokes numbers, the typical length scale of caustic-like velocity increment
is smaller than the initial separation R0, and particle pairs therefore separate as
fluid tracers do. At larger time lags, whatever the value of the initial separation, the
Richardson dispersion regime is recovered.
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Figure 6. Mean-square separations vs. time for pairs with St = 10, 30, 70, at Reλ = 400. Two
initial distances R0 ∈ [0 :1]η (a) and R0 ∈ [4 :6]η (b) Error bars due to statistical fluctuations
are of the order of the symbols size. Tracers (solid lines) are also shown for comparison. Note
the ballistic behaviour for the heavy particle separation observed in the caustics dominated time
interval. For very large time lags, a Richardson-like behaviour starts to develop but with a less

intense overall speed of separation, because of the depletion effects of the V
(0)
St prefactor in the

particle velocity increments for large Stokes numbers. The slopes of the Batchelor, 〈R2(t)〉 ∝ t2,
and Richardson, 〈R2(t)〉 ∝ t3, dispersion regimes has also been drawn for reference.

We now consider what happens for larger Stokes numbers. In figure 6, we show
the results for the mean-square separation at St = 10, 30 and 70 and for the large
Reynolds number, Reλ 	 400. Both initial distances, R0 ∈ [0 : 1]η and R0 ∈ [4 : 6]η,
are displayed. As one can see, for the large value equal to St =70, the tracer-like
behaviour is never recovered, and even the separation of pairs starting with the largest
distance R0 is affected. The transient regime dominated by the caustics invades the
whole inertial range. Since particle pairs need a very long time to decrease their initial
velocity difference to the value of the fluid increment at the corresponding scale, they
separate with a quasi-ballistic behaviour: 〈R2(t)〉St ∝ t2.

The above scenario can be interpreted in terms of caustic range of scales. At any
value of the inertia, there exist a spatial length, of the order of the scale R∗(St),
which identifies the typical spatial size of caustics, i.e. the range of scales where
particle velocity increments are uncorrelated from the underlying fluid velocity field.
If the initial pair separation R0 is taken inside this region (figure 5a, c), particle
pair separation starts much faster than for fluid tracers because of the much
more intense velocity differences felt by the pairs inside the caustics. When particle
pairs reach a separation larger than R∗(t), they start to be synchronized with the
underlying fluid velocity, recovering the typical Richardson dispersion. However, if
the initial separation is larger than the caustics’ typical scale, the evolution of inertial
particle pairs is almost indistinguishable from the tracers. Finally, whether or not a
Richardson-like behaviour is recovered for very large inertia may also depend on the
Reynolds number. In the limit of larger and larger Reynolds, at fixed Stokes number,
one may expect a final recovery of the fluid tracers behaviour even for very heavy
particle pairs.

4.1. Mean-field approach to heavy particle dispersion

The turbulent relative dispersion of fluid tracers can be easily modelled by applying
K41 scaling theory for isotropic and homogeneous flows to the fluid velocity
increments governing particle separation dynamics (see, e.g. Ouellette et al. 2006).
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Indeed, if R(t) is the tracer separation vector at a given time, its evolution is
completely specified by

Ṙ(t) = u(X1, t) − u(X2, t) = δRu(R, t), (4.5)

together with the initial condition R(t0) = R0. Hence, we can directly write an equation
for the root-mean-square (r.m.s.) separation r(t) ≡ 〈|R(t)|2 | R0, t0〉1/2

ṙ =
1

r
〈R(t) · δRu(R(t), t) | R0, t0〉 , with r(t0) = R0. (4.6)

Here, for the sake of simplicity, we have omitted the subscript 〈·〉St to distinguish the
tracers case from the heavy particles one.

The exact form of the correlations among tracers relative separation and the
underlying fluid velocities is clearly out of control, and phenomenological closures
have to be formulated to solve equations such as the previous one. A zero-order
approximation is to factorize correlations and assume the following mean-field closure
for the right-hand side of (4.6):

〈R(t) · δRu(R(t), t) | R0, t0〉 ≈ 〈R2 | R0, t0〉1/2 〈R̂ · δRu〉 = C r S
1/2
2// (r), (4.7)

where S2//(r) is the second-order Eulerian longitudinal structure function of the
underlying homogeneous and isotropic turbulent flow, and C is an order-unity positive
dimensionless constant. The above closure is qualitatively well reproduced by the DNS
data (not shown). According to K41 phenomenology, this structure function behaves
in the inertial range as S2‖(r) ∝ (ε r)2/3. The closure finally leads to

ṙ = C ε1/3r1/3, so that r(t) =
[
R

2/3
0 + (2C/3) ε1/3(t − t0)

]3/2

. (4.8)

Such an approximation gives a complete qualitative picture of the time evolution
of the mean-square separation between tracers. In particular, it encompasses the two
important regimes of relative dispersion. On the one hand, when (t − t0) 
 tB =
(R2

0/ε)
1/3, a Taylor expansion of the solution (4.8), valid at short times only, gives the

Batchelor regime r(t) 	 R0 + C (εR0)
1/3 (t − t0). On the other hand, for large times,

(t − t0) � tB , it reproduces Richardson’s law r(t) 	 (2C/3)3/2 (ε t3)1/2.
In the case of inertial particles, the number of degrees of freedom to describe the

dynamics has obviously been increased. The separation between two heavy particles
obeys

R̈(t) = − 1

τs

[
Ṙ(t) − δRu(R, t)

]
. (4.9)

In order to derive mean-field equations, one has to track simultaneously the
average distance and velocity difference between particles. Following the same
pattern as for tracers, we introduce the particle velocity structure function v(t) ≡
〈|δRV (t)|2 | R0, t0〉1/2, where δRV (t) = Ṙ(t) is the velocity difference between the pair
particles. One can proceed, as previously, to write from (4.9) exact equations for r(t)
and v(t):

r̈ =
1

r
(v2 − ṙ2) − 1

τs

[
ṙ − 1

r
〈R · δRu〉

]
, (4.10)

v̇ = − 1

τs

[
v − 1

v
〈δRV · δRu〉

]
, (4.11)
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where, for the sake of a lighter notation, the indication of conditional ensemble
averages was dropped. It is worth noting that the r.m.s. velocity difference v(t)
evolves with a dynamics that resembles closely that of heavy particles. However,
v(t) does not coincide with the time derivative of the mean distance r(t). It is thus
useful to rewrite the above equations introducing a sort of transverse particle velocity
component w defined as

ṙ = v − w. (4.12)

We can also write an exact equation for the evolution of w

ẇ = − 1

τs

w − (2v − w)
w

r
− 1

τs

[
1

r
〈R · δRu〉 − 1

v
〈δRV · δRu〉

]
. (4.13)

Of course, the exact equations (4.11)–(4.13) are not closed without supplying
the correlation between the particle evolution and the underlying fluid. As in the
case of tracers, the first unclosed term appearing in the right-hand side of (4.13)
is approximated by (4.7). Next, the term involving the correlation between fluid
and particle velocity differences is again obtained by splitting correlations and is
approximated by

〈δRV · δRu〉 ≈ 〈|δRV |2〉1/2 〈|δRu|2〉1/2 = C1 v S
1/2
2 (r), (4.14)

where S2(r) denotes the full second-order structure function of the fluid velocity field,
and C1 is a non-negative order-unity dimensionless constant. When r is in the inertial
range, K41 phenomenology implies that S2(r) ∝ (εr)2/3. Finally, these approximations
lead to a closed set of equations for the time evolution of the average separation and
velocities r , v and w

ṙ = v − w, (4.15)

v̇ =
1

τs

[C ε1/3r1/3 − v], (4.16)

ẇ = − 1

τs

w − (2v − w)
w

r
+

1

τs

B ε1/3r1/3, (4.17)

where the positive dimensionless constants B and C reflect the lack of control on
the prefactors of the scaling laws in the closures (4.7) and (4.14). This system of
equations is supplemented by the initial conditions r(t0) = R0, v(t0) = 〈|δR0

V |2〉1/2 and
w(t0) = v(t0) − 〈R0 · δR0

V 〉/R0, which clearly depend on the dispersion experiment
under consideration. It is worth noting that this system of equations reduces to the
mean-field equation (4.8) for tracers in the limit of vanishing inertia τs → 0.

Similar to the case of tracers, the crude approximations of the evolution of the r.m.s.
distance between heavy particles (4.15)–(4.17) are able to capture the main features
of the separation time behaviour. In figure 7, we show the result of the numerical
integration of the set of equations (4.15)–(4.17), together with DNS data from Run II,
for two different large values of the Stokes number, namely St = 10 and St = 70. Note
that for the numerical integration of the mean-field closure, the following appropriate
choice was adopted for the dimensionless constants: B = 0 and C =2. In particular,
the former is motivated by the fact that in the limit of very small Stokes numbers,
the two terms in the square brackets of (4.13) display the same scaling behaviour
and differ only by a constant factor smaller than one (not shown). For intermediate
and large Stokes, deviations occur particularly in the dissipative range of scales.
However, this does not affect much the quality of the approximation. The coefficient
C is to be chosen positive and O(1), since already in the tracers limit there is a
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Figure 7. Mean-square separation vs. time for Run II and Stokes numbers St = 10 (a) and
St = 70 (b). Data are shown for the available choices of the initial separations : R0 � η,
R0 ∈ [4 : 6] η and R0 ∈ [9 : 11] η (from bottom to top). Symbols refer to DNS data, while
solid lines are mean-field solutions to (4.15–4.17), with the dimensional prefactors set as B = 0
and C 	 2. Note that time is made adimensional with the Stokes time τs . Vertical dashed lines
mark t/τs = 1.

non-zero correlation between the separation and the fluid velocity increment, due to
the conditioning with respect to the initial separation in the statistics.

For fixed initial separation and at increasing the intensity of the caustic-like velocity
increments in the initial condition (i.e. at increasing inertia), the transient deviation
from the Richardson behaviour becomes more and more evident at intermediate times
(of the order of the Stokes time τs , not shown). Clearly, the simple approach proposed
can be valid only in a limited region of the phase space, where the initial conditions
are, at least, at the edge of the inertial range so that K41 scaling is correct for the
fluid velocity second-order increments. Moreover, the matching scale where particle
velocity increments become of the order of the fluid increments has to fall in the
inertial range too; if this is not the case, then pairs enter the regime where inertia is
important but particle relative velocity is small at scales of the dissipative range, and
the mean-field closure proposed above becomes inadequate. A detailed quantitative
comparison of the realm of applicability of the mean-field approach—including effects
of viscous scales and small-scale caustics—will be the object of future work.

4.2. Cross-over between relaxation to the fluid velocity and Richardson behaviour

Despite its simplicity, the mean-field approach described above is able to correctly
reproduce the pair dispersion of heavy particles with initial data in the inertial
range. We might wonder if one can draw an even simpler qualitative picture of pair
dispersion. For this, we consider the behaviour of particle pairs with moderately large
Stokes numbers, for which inertia plays an important role for the initial transient,
and the Richardson behaviour is slowly recovered well inside the inertial range of
scales. For simplicity, we assume that the scale where the fluid and particle velocity
becomes of the same order, δRV ∼ δRu, and the scale R∗(St), where inertia ceases to be
important, are very close. As it is clear from the sketch of figure 4, this may not always
be the case because of the effect of the normalization factor V 0

St for large Stokes; in
the figure, it corresponds to Stokes numbers with a narrow transient region (B).
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The general picture then goes as follows. Initially, particles separate almost
ballistically during a time which is of the order of (or larger than) the time needed
by their initial, caustics-dominated, velocities to relax to the fluid velocity. After that
time, particles behave as tracers and reconcile with a standard Richardson dispersion.
This is a first-order approximation since (i) the fluid flow actually correlates to the
particle dynamics already at very small times, and (ii) inertia effects are present up
to large times as discussed above. Nevertheless, such an approximation should give
the two correct qualitative asymptotic behaviours, at small and large time scales.
Since we consider moderately large values of the Stokes number, the initial typical
particle velocity can be assumed to be much larger than the fluid velocity, i.e.
|δRV | � |δRu|. Under these hypotheses, there is an initial time interval during which
the difference between particle velocities obeys δR V̇ ≈ −(δRV )/τs (see (4.11)), and thus
δRV (t) 	 (δRV (t0)) e−(t−t0)/τs . As a consequence, the mean-square separation between
particles evolves initially as

〈|R2(t)| | R0, t0〉 = R2
0 + 2τs〈R(t0) · δRV (t0)〉(1 − e−(t−t0)/τs )

+ τ 2
s 〈(δRV (t0))

2〉(1 − e−(t−t0)/τs )2. (4.18)

This should be approximately valid up to a time scale, in the inertial range, where
|δRV | ∼ |δRu| ∼ (εR)1/3; it is easy to show that such a time scale is proportional to
the particle response time τs . For larger times, inertia effects become subdominant
and heavy pair dispersion suddenly gets synchronized to a Richardson-like regime.
Nevertheless, this Richardson regime has started only after the previous relaxation
has ended, that is at a distance much larger than the original separation R0 of
the particle pair. The combination of this initial exponential relaxation of heavy
particles with moderately large inertia, plus the later standard Richardson diffusion,
are the two main features due to inertia in the inertial pair dispersion. This is indeed
confirmed by figure (8), where we compare DNS data for mean-square separation,
with the two phenomenological regimes just described, for which we have assumed
that 〈R ·δRV (t0)〉 	 0. As we can see, the main qualitative trends of the small and large
time behaviours are very well captured. Let us conclude this section by mentioning
that further refinements of the mean-field approach here proposed would require the
inclusions of viscous behaviour in the closures (4.16–4.17) when the initial particle
separation is taken well inside the viscous range. We also note that an attempt of
modelling heavy particles relative dispersion in a similar direction was performed by
El Maihy & Nicolleau (2005).

4.3. Subleading terms in the Richardson regime

As seen in the above subsections, the most noticeable effect of inertia on the mean pair
dispersion is a long transient regime that takes place before reaching a Richardson
explosive separation (4.3), and that this regime is due to the relaxation of particle
velocities to those of the fluid. As we now argue, at larger times—corresponding
to regime (C)—there is still an effect of particle inertia that can be measured in
terms of subleading corrections to the Richardson law. To estimate these corrections,
let us assume that in the mean-field equation (4.16), the term stemming from the
fluid velocity Cε1/3r1/3 is much larger than the inertia term τsv̇. This is true when
St(r) 
 1, i.e. at times t when r(t) � R∗(St). In this asymptotic, one can infer that the
transverse velocity component w is much smaller than the total velocity v, so that
ṙ 	 v (see (4.12)). In the spirit of the weak inertia expansion derived by Maxey (1987),
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〈(δRV (t0))

2〉, both temporal behaviours are reproduced.

we next write a Taylor expansion of (4.16) to obtain

ṙ ≈ v ≈ Cε1/3r1/3 − τs〈|(d/dt) δr u|2〉1/2 ≈ Cε1/3r1/3 − τs〈|δr a|2〉1/2, (4.19)

where δr a = δr (∂t u + u · ∇u) denotes the increment of the fluid acceleration over the
separation r . Next, we assume scaling invariance of the turbulent acceleration field,
that is, according to dimensional arguments of K41 theory, |δr a| ∼ ε2/3r−1/3. Equation
(4.19) can then be rewritten as

ṙ = Cε1/3r1/3
(
1 − Aτs ε1/3r−2/3

)
= Cε1/3r1/3 (1 − ASt(r)) , (4.20)

where A is an order-unity constant. The initial condition is given by r(t0) = r0, where
the initial separation has to be chosen such that St(r0) 
 1. We can next integrate
the approximate dynamics perturbatively in terms of the small parameter St(r0) by
expanding the separation as r(t) = ρ0(t) + ρ1(t) + ρ2(t) + · · ·. The leading order is
ρ0(t) = [r2/3

0 + (2C/3) ε1/3t]3/2 and corresponds to the relative dispersion of a pair of

tracers. The first-order correction is ρ1(t) = − τs ε1/3A ln(ρ0(t)/r0) ρ
1/3
0 (t).

At times much larger than the Batchelor time associated with the initial separation
r0, i.e. for t � (r2

0/ε)
1/3, the leading term follows the Richardson explosive law

ρ0(t) 	 (2C/3)3/2(ε t3)1/2. This finally implies that in the asymptotics t � (r2
0/ε)

1/3 � τs ,
one can write

r2(t) ∝ g ε t3
[
1 − D (t/τs)

−1 ln (t/τs)
]
, (4.21)

where g is the Richardson constant introduced in § 4 and D is an order-unity factor,
which a priori does not depend either on the particle Stokes number or on the initial
particles separation.

This behaviour is confirmed numerically. Figure 9 shows the long-time dependence
of the ratio Q(t) between the mean-square separation of heavy particles and that
of tracers as defined by (4.4). It is clear that data almost collapse on a line ∝
1/t , confirming the behaviour (4.21) predicted above. The small-inertia expansion
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chosen different from unity as effects of inertia are still present at the largest scale of the flow.

à la Maxey should be valid when the particle response time is much shorter than
the turnover time associated with the distance between the particles. Because of
the moderate values of the Reynolds number and the resulting lack of time scale
separation, there are strong limitations on the values of the Stokes number for which
a 1/t behaviour can be observed. Note, finally, that only results from Run I are
displayed in figure 9. The reason is that large time statistics of tracer dispersion
in Run II is not as well statistically converged, leading to more noisy data. The
qualitative picture is, however, very similar, in the same range of Stokes numbers.

To conclude, let us stress that, in the derivation of (4.20) from (4.19), we have
assumed the K41 scaling to hold for the acceleration field, and thus for the pressure
gradient. However, it is well known that the scaling properties of pressure field are
still unclear: they might depend on the turbulent flow Reynolds number and/or on
the type of flow (see, e.g. Gotoh & Fukayama 2001; Xu et al. 2007). As stated by Bec
et al. (2007a), rather than being dominated by K41 scaling, numerically estimated
pressure increments of Run I (Reλ 	 200) seem to be ruled by sweeping, so that
|δr a| ∼ U0 ε1/3r−2/3. One can easily check that this difference in scaling leads to a
behaviour similar to (4.21), except that this time logarithmic corrections are absent
and that the non-dimensional constant D depends on the Reynolds number of the
flow. To distinguish between these two possible behaviours, there is need of data with
heavy particle pairs having similarly small initial distance, but recorded over a longer
time integration and possibly at higher Reynolds numbers flow.

5. Probability density function of inertial particle separation
We now discuss the shape of the PDF for both light and heavy inertial particles.

We focus on the time and scale behaviour of the non-stationary PDF

PSt,β(R, t |R0, t0), (5.1)
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defined as the probability to find a pair of inertial particles (St, β), with separation R

at time t , given their initial separation R0 at time t0. The case of tracers (St = 0, β = 1)
has been widely studied in the past, either experimentally, numerically or theoretically
for two- and three-dimensional turbulent flows (see Richardson 1926; Batchelor 1952;
Jullien, Paret & Tabeling 1999; Boffetta & Sokolov 2002; Biferale et al. 2005; Bourgoin
et al. 2006; Salazar & Collins 2009). Following the celebrated ideas of Richardson,
phenomenological modelling in terms of a diffusion equation for the PDF of pair
separation leads to the well-known non-Gaussian distribution

PSt=0,β=1(R, t) ∝ R2(
ε1/3t

)9/2
exp

[
−AR2/3

ε1/3 t

]
, (5.2)

which is valid for times within the inertial range τη 
 t 
 TL and is obtained assuming
a small enough initial separation and statistical homogeneity and isotropy of the three-
dimensional turbulent flow. Here, A is a normalization constant. This prediction is
based on the simple assumption that, for inertial range distances, tracers undergo
a diffusion dynamics with an effective, self-similar, turbulent diffusivity given by
K(R, t) ∝ R δRu ∼ ε1/3 R4/3. Moreover, it relies on the phenomenological assumption
that tracers separate in a short-time correlated velocity field. Indeed, it is only if
the latter is true, that the diffusion equation for the pair separation becomes exact
(see Falkovich, Gawȩdzki & Vergassola 2001). It is worth recalling that Batchelor
proposed a different shape for the eddy diffusivity kernel K ′(t) ∝ t2, which leads to
a Gaussian distribution for the separation PDF (Batchelor 1952). This is, however,
observed neither in the case of tracers (see e.g. Biferale et al. 2005) nor in the case of
heavy particles (see figure 11).

As mentioned earlier, the scenario just drawn for tracers may be strongly
contaminated by particle inertia. The main modifications are expected to be due to the
presence of small-scale caustics for small-to-large Stokes numbers and to preferential
concentration. Caustics make the small-scale velocity field not differentiable and not
self-similar, as if inertial particles were separating in a rough velocity field whose
exponent depends on distance. Preferential concentration leads to inhomogeneous
spatial distribution of particles and manifests itself as a sort of effective compressibility
in the particle velocity field.

There exists a series of stochastic toy models for Lagrangian motion of particles in
incompressible/compressible velocity fields, where the statistics of pair separation can
be addressed analytically. Among these, the so-called Kraichnan ensemble models,
where tracer particles move in a compressible, short-time correlated, homogeneous
and isotropic velocity field, with Gaussian spatial correlations (see the review by
Falkovich et al. 2001 for a description of this model). It is useful in the following to
recall two main results obtained for relative dispersion in a Kraichnan compressible
flow. The compressibility degree ℘ of a velocity field u is defined as the ratio
℘ ≡ C2/S2, where C2 ∝ 〈(∇ · u)2〉 and S2 ∝ 〈(∇u)2〉, and varies between ℘ = 0 for
incompressible flows and ℘ =1 for potential flows. We denote by ℘ the compressibility
degree and by 0 � ξ � 2 the scaling exponent of the two-point velocity correlation
function Dij (r) at the scale r , in d-dimensions: Dij (r) = 〈[ui(r)−ui(0)][uj (r)−uj (0)]〉 ∼
G1r

ξ [(d −1+ξ −℘ξ )δij +ξ (℘ d −1)rirj /r2]. For tracer particles moving in such rough
flows (0 � ξ < 2), it is possible to show that the pair separation PDF follows a
Richardson-like behaviour:

Pξ,μ(R, t) ∝ RD2−1

t (d−μ)/(2−ξ )
exp

[
−A

R2−ξ

t

]
, 0 � ξ < 2. (5.3)
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Here, the exponent in the time dependence is μ = ℘ξ (d + ξ )/(1+℘ξ ), and D2 = d − μ

is the correlation-dimension, characterizing the fractal spatial distribution of particles.
A different distribution emerges when the d-dimensional Kraichan flow is
differentiable, i.e. for ξ = 2; in such a case, a log-normal PDF is expected for the
tracers dispersion:

Pξ,μ(R, t |R0, t0) ∝ 1

R
exp

[
− (log(R/R0) − λ(t − t0))

2

2(t − t0)

]
, (5.4)

with = 2G1(d − 1)(1 + 2℘) and λ=G1(d − 1)(d − 4℘). It is worth noting that in the
latter case, since the flow is differentiable, the large-time PDF depends on the initial
data.

The problem of inertial particle separation in a real turbulent flow presents not
only some similarities with the previous toy cases but also important differences.

First, the effective degree of compressibility—due to preferential concentration of
inertial particles—is properly defined only in the dissipative range of scales of the
fluid flow. For r 
 η, it is equal to the correlation dimension D2 defined as p(r) ∼ rD2 ,
where p(r) is the probability to find two particles at distance smaller than r , with
r 
 η. As numerically shown by Bec et al. (2007a) and Calzavarini et al. (2008b) for
three-dimensional turbulent flows, the correlation dimension D2 depends only on the
degree of inertia (St, β), while it does not seem to depend on the Reynolds number
of the flow. For r � η, the effective degree of compressibility is, however, no longer
constant, but varies with the scale.

Second, in a real turbulent flow, the advecting velocity field exhibits spatial
and temporal correlations that are much more complex than those in a Gaussian
short-correlated field. Such correlations lead to non-trivial overlaps between particle
dynamics and the carrying flow topology. As a result, it is not possible to simply
translate the analytical findings obtained in the compressible Kraichnan ensemble
to the case of inertial particles; we may expect, however, that in some limits the
compressible Kraichnan results should also give the leading behaviour for the case
of inertial particles in real turbulent flows studied here.

Within this framework, we first note that the separation PDF valid in the rough
case, (5.3), has an asymptotic stretched-exponential decay that is independent on the
compressibility degree. This suggests that inertial particle PDF PSt,β(R, t |R0, t0) must
recover the Richardson tracer behaviour of (5.2) in the limit of large scales and large
times. Coherent with the discussion in previous sections, for large times and for scales
larger than R∗(St), we expect that the heavy pairs PDF (in the limit β ∼ 0) recovers
a tracer like distribution:

PSt,0(R, t) ∼ exp

[
−A

R2/3

ε1/3t

]
, R � R∗(St). (5.5)

For pairs of light particles, there is no straightforward formulation of such a
prediction; as we shall see in the following, preferential concentration effects have a
strong fingerprint on the separation PDF even at large times and large scales.

In the opposite limit of very small separations, i.e. R 
 η, one can correctly assume
that the effective degree of compressibility is constant. Therefore, either the small-scale
limit for rough flows (5.3) or the small-scale limit for smooth flows (5.4) should be
applied, depending on the scaling properties of the particle velocity increment entailed
in the value of the exponent γ (St), defined from (3.4) and related to the caustics. In
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Figure 10. Separation PDF, PSt (R, t |R0, t0), for heavy pairs with different Stokes numbers at
changing time. Initial distance is taken R0 ∈ [3:4] η for St = 0 (a), St =0.6 (b) and St = 3.3 (c)
of Run I, and equal to R0 ∈ [4:6] η for St = 70 (d ) of Run II. The related initial distributions
are pictorially depicted with a grey area. Times shown are: (t − t0)/τη = 1, 6, 18, 36 for Run I
and (t − t0)/τη = 1, 6, 18, 36, 86 for Run II.

the former case, it is to be expected to have

PSt,β(R, t |R0, t0) ∼ RD2−1G(t), if γ (St) �= 1, (5.6)

while in the latter,

PSt,β(R, t |R0, t0) ∼ RD2/2−1F (t), if γ (St) = 1. (5.7)

Here, F and G are two different decaying functions of time t , whose expressions can
be easily derived from (5.3)–(5.4). Note that for the smooth case, i.e. the small-scale
limit of the log-normal distribution (5.4), we get for the spatial dependency a factor
D2/2 instead of the factor D2 obtained in the rough case. This will matter in the
case of light particle separation, where, due to strong preferential concentration, the
probability of finding pairs at a very small distances is large enough to allow for a
detailed test of the predictions (5.6) and (5.7). The case of light particles are discussed
in § 6, while we now turn to a discussion of the above scenario in the case of heavy
particle pairs.

5.1. Probability density function of heavy particle relative separation

We start by analysing the qualitative evolution of PSt (R, t) at changing time, for
different Stokes numbers and in the limit β = 0 (which is thus omitted from the
notation). The four panels of figure 10 show the evolution of the PDF at different
times for pairs with St =0 (tracers), and for heavy particles with St = 1, 3.3 and 70.
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Figure 11. Comparison of PDFs at fixed times with data of figure (10). (a) Early stage of
the separation process, t − t0 = τη . Inertia does not affect small Stokes, St =0.6, while its
effect is detectable for St = 3 and St = 70. (b) PDF comparison at a later time, t − t0 = 36τη .
Now, the PDF shows some deviations from the tracer behaviour only for St =70. In (b)
the solid line gives the Richardson shape (5.2). Initial separation and Reynolds numbers
are the same as for figure 10. Inset, PDF evolution for St = 70 at three times, (t − t0)/τη =
36, 82, 130.

Initially, at t = t0, all selected pairs are separated by the same distance (R0 ∈ [3:6] η);
this initial distribution is represented in each figure by a grey area. As time elapses,
particles separate and their distance reaches different scales, depending on their
inertia. Qualitatively, the PDF evolution is very similar for all moderate Stokes
numbers: indeed, the PDFs at different moderate Stokes numbers become more and
more similar with time. However, in the case of St = 70—for which the associate
Stokes time τs falls well inside the inertial range—the PDF shows a long exponential
tail for intermediate separation, which tends to persist at all observed times. To
better appreciate such differences, in figure 11 we show the comparison between the
different PDFs corresponding to various Stokes numbers for two different times: at
the beginning of the separation process, (t − t0) = τη, and at a later time, (t − t0) = 36τη.
As one can see, it is only at early times that the PDFs for moderate-to-large Stokes,
St = 3, 70 differ in a sensible way from the tracers. In particular, one can clearly
see that many pairs have separations much larger and much smaller than those
observed for tracers or for heavy pairs with small Stokes numbers. The right tails,
describing pairs that are very far apart, are just the signature of the scrambling effect
of caustics. Such strong events are not captured by second-order moments of the
separation statistics that we discussed before, while they clearly affect higher-order
moments. The left tails, associated with pairs much closer than tracers, are possibly
because of particles that separate at a slower rate than tracers because of preferential
concentration induced by inertia.

Later in the evolution, for (t − t0) = 36τη, only the separation PDF for St =70 still
shows important departure from the tracer case; for all the other Stokes numbers,
pairs have had enough time to forget their initial distribution and have practically
relaxed on the typical Richardson-like distribution, ruling out the possibility to have
a Batchelor-like Gaussian distribution for large pair separations. In the inset, we
also show the persistence in the exponential behaviour for the PDF at St =70, by
superposing the shapes measured at three times during the particles separation.

With the present data, the small-scale asymptotic behaviour (5.7) cannot be
validated for heavy particles. This is because of the limited statistics: very
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soon after the initial time t0, there are almost no pairs left with separations
R 
 η.

5.2. Probability density function of heavy particle relative velocities

At moderate to large Stokes numbers, the separation process of heavy particle pairs
is largely influenced by the presence of large velocity differences at small scales,
that is by the presence of caustics in the particles velocity field. In § 3, we have
studied stationary statistics (only first-order moment) of velocity differences between
heavy particles at changing the distance between particles and their inertia. However,
it is also informative to look at the non-stationary, time-dependent distribution of
velocity differences and, more particularly, to its distribution measured along heavy
pairs separation. The relative velocity δRV (t) = Ẋ1(t) − Ẋ2(t) can be decomposed
into the projection along the separation vector, and two transversal components,
here equivalent since the system is statistically isotropic. For tracer particles, the
statistics of relative velocity and the alignment properties of δRV (t) and R(t) have
been discussed extensively (see e.g. Yeung & Borgas 2004). Here, we focus on
the PDF of the relative longitudinal velocity only, which we denote by WSt (v, t),
where v(t) = [Ẋ1(t) − Ẋ2(t)] · R̂(t). For pairs of tracers (St = 0), the initial longitudinal
velocity distribution is nothing else than the PDF of Eulerian longitudinal velocity
increments measured at the distance R0. For pairs of inertial particles, this initial
PDF clearly coincides with the stationary distribution of velocity differences between
particles that are at a distance R = |X1(t0)−X2(t0)| ∈ [R0 :R0+dR0]. Such a distribution
has the signature of two mechanisms: (i) at small Stokes numbers, only preferential
concentration matters and particles probe only a subset of all possible fluid velocity
fluctuations; (ii) at large Stokes numbers, particles are homogeneously distributed in
the fluid, but they have velocity statistics which may be strongly different from the
underlying fluid velocity.

For what concerns heavy pairs, the first effect has not an important signature on
small-scale quantities. However, the second effect clearly becomes visible for moderate-
to-high inertia as shown in figure 12. Here, we report the longitudinal velocity
distributions for pairs with initial distance R0 ∈ [4 : 6] η and with St = 0, 1, 3.3 and
70; the Reynolds number of the underlying flow is Reλ ∼ 400. Each panel contains
the PDFs measured at different times spanning all turbulent time scales. At t = t0, the
importance of caustics is manifest for the two largest Stokes numbers, leading to fat
tails towards both small and large velocity differences. Interestingly enough, the left
tail of WSt (v, t), which describes approaching events of particle relative motion, is
immediately dumped already at (t − t0) ∼ τη; at the same time, however, the right tail
continues to be quite fat for the two largest Stokes numbers under consideration. At
later stages of the separation process, the tendency of large Stokes pairs to wash out
approaching events becomes even stronger. Indeed, at time (t − t0) = 38 τη, the small
velocity increments (left) tail has almost disappeared for pairs with St =70. It is worth
noting that at those times (i.e. also at those typical scales), heavy particle velocity
differences have already started to be smaller than the tracer velocity increments: the
larger is the Stokes number, the less pronounced are the PDF tails.

Summarizing, because of the different effects of inertia, we observe a very complex
evolution for the longitudinal relative velocity fluctuations along the trajectories
of heavy particle pairs. This is certainly a key issue to be considered for stochastic
modelling; here, as in a standard kinetic problem, both particle positions and velocities
need to be modelled to quantitatively control the relative dispersion process.
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Figure 12. Time evolution of the probability density function of heavy particle longitudinal
relative velocity, WSt (v, t), during the separation process. Data refer to four different cases:
tracers pairs St = 0 and heavy pairs St = 1, 3, 70, starting with initial distance R0 ∈ [4 : 6]η.
PDFs are measured at times (t − t0) = [0, 1, 38, 61]τη , for Run II. Note the presence of intense
velocity fluctuations for moderate-to-strong inertia, St = 3, 70, observable at the early stage of
the separation process. These are the legacy of the caustics distribution.

6. Relative dispersion for light particles
So far we have considered the relative motion of very heavy particle pairs, for

which the density contrast β with the underlying fluid is zero. In this section, we
present results on light particles dynamics as described by (2.2), for different possible
choices of the parameters (St, β).

We discuss how the strong effect of preferential concentration—typically observed
in the case of light particles in turbulent flows—might influence the intermediate
and long-time behaviour of pairs separation. In three-dimensional turbulent flows,
as we consider here, light particles associated with different values of (St, β) have
been observed to always possess a positive largest Lyapunov exponent (Calzavarini
et al. 2008b); this implies that light pairs always separate in three-dimensional real
turbulent flows. We recall, however, that this is not generally true; for instance, in
smooth two-dimensional random flows, there are values of (St, β) for which the largest
Lyapunov exponent can become negative and particles form pointwise clusters (see
Bec 2003).

Light particles with moderate inertia and high density ratio (order-unity St and
β = 3) initially tend to separate much slower than heavy particles with the similar
Stokes number; this is evident from the much smaller values of the Lyapunov
exponents measured for light particles, with respect to those measured for heavy
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Note that the strong small-scale clustering does not affect the long-time behaviour, except
through a very small asymptotic slow down. (Inset) Ratio between the mean-square separation
for light pairs and that of tracers.

particles with equivalent Stokes numbers but β =0. Moreover, finite-time Lyapunov
exponents show large fluctuations, indicating that there are pairs that tend to not
separate even at long times. Results of this issue will be reported elsewhere. Clearly,
pairs of light particles that do not separate will not influence the mean-square
distances; hence, we do not expect, and indeed do not measure, any large differences
for the long-time behaviour of 〈|R(t)|2〉St,β for light particles, with respect to the heavy
case (see figure 13).

It is natural to ask if the light particles’ strong preferential concentration might
affect high-order moments of the relative separation of two initially close particles and,
particularly, the left tail of the separation PDF. Figure 14 shows the time evolution
of the separation PDF, PSt,β(R, t |R0, t0). Data refer to a case with very intense
preferential concentration effects and minor influence of caustics (St = 1.2, β = 3) and
a case with milder inhomogeneities in the spatial distribution (St = 0.3, β = 2). The
initial separation PDF was chosen in both cases by selecting particle pairs with
initial distance R0 ∈ [4 : 6] η. A remarkable observation is a strong tendency to fill
small separations. In other words, there are many pairs that reduce their mutual
distance even for very long times. The development of the left tail for the strong
clustering case (St = 1.2, β =3), figure 14(b), is consistent with the estimate given by
the long-time, small-scale asymptotic expansion of the log-normal distribution (5.7),
P(R, t) ∼ RD2/2−1 for smooth flows, as shown by the straight line in the plot. This
confirms that the small-scale dynamics of the highly clustered light particles evolves as
that of tracers moving in a smooth, compressible flow (characterized by the same D2).
We also remark that if there is high spatial preferential concentration, caustics cannot
be important. This may have important consequences for the estimation of collision
kernel of light particles. The approaching events, shown by the left tail in figure 14,
are clearly due to the preferential concentration inside vortex-like structures, typical
of light particles. Figure 14(a) shows a different case, where preferential concentration
is less important, leading to a correlation dimension D2 = 2. Of course, also in this
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Figure 14. Time evolution of the separation PDFs of light particles. (a) St = 0.3, β = 2,
corresponding to a case where preferential concentration is not very effective (D2 = 2). As
time elapses, one observes a self-similar filling towards smaller separations, in agreement
with (5.7) (dashed line). (b) St = 1.2, β = 3, associated with light particles with strong clustering
properties (correlation dimension D2 = 0.8). The self-similar filling of small scales is consistent
with the prediction (5.7) with the exponent D2/2 − 1 as depicted by the dashed straight
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Figure 15. PDFs of relative longitudinal velocity, WSt,β (v, t), for light pairs with
St =1.2, β =3, and for tracers (St = 0, β = 1). PDFs are measured along the separation process
at two different times: (a) initial time, t = t0, (b) t − t0 = 38τη .

latter case, there are events with approaching pairs, but these become less and less
probable with time.

The importance of preferential concentration can also be appreciated by looking
at the PDFs of longitudinal velocity differences between light particles during the
separation. We show such distributions for one of the pairs (families) considered above
and compare them with those of the tracers (see figure 15). The important difference
between the two cases stems from the highly peaked nature of the relative velocity
PDF for the strong clustered light particle case. The presence of many pairs with
almost vanishing velocity differences, see figure 15(b), is the signature of a coherent
bunch of pairs moving in a strongly clustered set.



Turbulent pair dispersion of inertial particles 525

7. Conclusions
We have studied the relative dispersion of inertial particles in homogeneous and

isotropic turbulence from two DNSs at resolutions 5123 and 20483, corresponding
to Reλ ∼ 200 and Reλ ∼ 400, respectively. We have analysed both heavy and light
particle statistics at changing the Stokes numbers. We have studied the evolution of
mean separations and the whole PDFs’ shape, both for particle distance and velocity
increments at changing time and for different typical initial distances. The main
results that we have discussed can be summarized as follows. Separations of very
heavy particles, with Stokes times falling in the inertial range of the underlying fluid,
are strongly affected by the presence of caustics in the initial velocity distribution
up to times, when the pair distance reaches scales large enough for the separation
dynamics to be again dominated by the underlying flow velocity. As a consequence,
a strong transient departure from the Richardson diffusion, with a faster ballistic
regime, is observed. A statistical closure of the equation of motions for heavy particle
separation is also developed. This model is able to reproduce the main numerical
findings.

For light particles, at high density ratio, we observe strong small-scale clustering
properties, leading to a considerable fraction of pairs that do not separate at all—
although the maximum Lyapunov exponent remains positive. In such a case, the non-
stationary spatial concentration at small scales tends to be higher than the analogous
case but with a stationary distribution of particles. Such numerical findings open
the way to experimental verifications and gives input to the community involved in
modelling inertial particle diffusion in applied configurations.
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