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We present a study of Eulerian and Lagrangian statistics from a high-resolution
numerical simulation of isotropic and homogeneous turbulence using the FLASH
code, with an estimated Taylor microscale Reynolds number of around 600. Statistics
are evaluated over a data set with 18563 spatial grid points and with 2563 = 16.8
million particles, followed for about one large-scale eddy turnover time. We present
data for the Eulerian and Lagrangian structure functions up to the tenth order.
We analyze the local scaling properties in the inertial range. The Eulerian velocity
field results show good agreement with previous data and confirm the puzzling
differences previously found between the scaling of the transverse and the longitudinal
structure functions. On the other hand, accurate measurements of sixth-and-higher-
order Lagrangian structure functions allow us to highlight some discrepancies from
earlier experimental and numerical results. We interpret this result in terms of a
possible contamination from the viscous scale, which may have affected estimates of
the scaling properties in previous studies. We show that a simple bridge relation based
on a multifractal theory is able to connect scaling properties of both Eulerian and
Lagrangian observables, provided that the small differences between intermittency of
transverse and longitudinal Eulerian structure functions are properly considered.

1. Introduction
In the last few years, many interesting and remarkable results have been obtained

by investigating the statistical properties of Lagrangian particles advected by a
turbulent flow; see for instance the recent review by Toschi & Bodenschatz (2009).
For the purposes of this paper, we will consider Lagrangian tracers to be idealized
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point-like particles, whose instantaneous velocity coincides with the local Eulerian
velocity field, u(x, t): Ẋ(t) = u(X(t), t). The study of fully developed turbulence in a
Lagrangian framework clearly has many immediate applications, where the transport
and/or aggregation of material particles embedded in the flow field is important.
Furthermore, the study of fully developed turbulence in the Lagrangian framework
has opened important new directions in purely scientific investigations. In particular,
the small-scale intermittency of turbulent flows and the nature of the dissipation
range can be probed more effectively in the Lagrangian framework than in the
Eulerian framework, as has been shown recently in both experiments and in numerical
simulations (see for instance Yeung & Pope 1989; Ott & Mann 2000; La Porta et al.
2001; Mordant et al. 2001; Biferale et al. 2005; Luethi, Tsinober & Kinzelbach 2005;
Berg et al. 2006; Bourgoin et al. 2006; Mordant, Lévêque & Pinton 2006; Yeung, Pope
& Sawford 2006; Homann et al. 2007; Berg et al. 2009; Homann et al. 2009). (See also
Biferale et al. 2008 and Arneodo et al. 2008 for comparison between experimental and
numerical Lagrangian data.) Lagrangian and Eulerian measurements are intimately
connected via their corresponding statistical description of the same underlying flow;
another goal of this paper is to quantitatively determine the degree of correlation
between the two ensembles.

In this paper, we present new results concerning the statistical properties of
inertial-range Lagrangian and Eulerian velocity fields in a homogeneous and isotropic
fully developed turbulent flow. The flow itself is the outcome of a high-resolution
weakly compressible numerical simulation, which is both described and subsequently
validated in § 2 . Our motivation in this study is twofold. First, thanks to both the
relatively high spatial resolution of the Eulerian mesh and the large numbers of tracer
particles – some 16 million particles, which makes this ‘the largest Lagrangian data
set currently available for fully developed homogeneous and isotropic turbulence’ –
we are able to extract the statistics of the Lagrangian velocity field with high accuracy
and relatively small error bars. We assess, for the first time at this Reynolds number,
statistical fluctuations ‘scale-by-scale’ in the Lagrangian inertial range as intense as
those given by moments up to order 10. Secondly, as a side result of this validation
procedure, we also show that the weakly compressible nature of the code does not
affect the Eulerian and Lagrangian velocity field in the inertial range. We demonstrate
this result by direct quantitative comparison with (i) numerical results obtained with
pseudo-spectral code, (ii) experimental results of incompressible flows and (iii) an
exact relation valid for Navier–Stokes equations of incompressible flows.

Our second motivation deals with the statistical link between Lagrangian and
Eulerian measurements. We show that a simple model, based on the multifractal
theory, is able to translate between the two ensembles with good quantitative
agreement (see Borgas 1993; Boffetta, De Lillo & Musacchio 2002 for the first
theoretical developments and Chevillard et al. 2003; Biferale et al. 2004; Arneodo
et al. 2008 for further numerical and experimental verification).

Our main tool in analyzing our Lagrangian data is the numerical computation of
velocity increments over a time lag τ – the so-called Lagrangian structure functions
(LSFs):

S(p)
i (τ ) = 〈[vi(t + τ ) − vi(t)]

p〉 = 〈(δτ vi)
p〉, (1.1)

where i = x, y, z are the three velocity components along a particle trajectory,
vi(t) = ui(x(t), t) and the average is defined over the ensemble of particle trajectories.
In a stationary and homogeneous flow, all moments of the velocity increments
depend solely on the time lag τ . When the flow is also isotropic, all components
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must be symmetric; we will therefore drop the dependency on the spatial index here.
In the inertial range, for time lags smaller than the integral time and larger than
the Kolmogorov time, τη � τ � TL, nonlinear energy transfer governs the dynamics.
From a dimensional viewpoint, only the scale τ and the energy transfer ε should enter
into the structure functions (SFs). The only admissible choice in isotropic statistics
is therefore S(p)(τ ) ∼ (ετ )p/2. However, this choice does not take into account the
fluctuating nature of dissipation due to intermittency. Many empirical studies (see
Toschi & Bodenschatz 2009 for a recent review) have indeed shown that the tail of
the probability density functions (p.d.f.) of δτv becomes increasingly non-Gaussian at
decreasing τ/TL, leading to intermittency and anomalous scaling exponents, meaning
a breakdown of the dimensional law, i.e.

S(p)(τ ) ∼ τ ξ (p)

, (1.2)

with ξ (p) �= p/2.
As we will review and test in detail later in this paper, the Lagrangian measurements

can be linked to the Eulerian structure functions (ESFs). In isotropic statistics we may
have two different Eulerian increments, longitudinal and transverse (see Frisch 1995
for a textbook introduction to scaling in homogeneous and isotropic turbulence):

S
(p)
L (r) ≡ 〈[u(x + r) − u(x)] · r̂]p〉, r̂ = r/|r |,

S
(p)
T (r) ≡ 〈|u(x + rT ) − u(x)|p〉, rT · u = 0.

}
(1.3)

It is well established (Frisch 1995; Arneodo et al. 1996) that Eulerian statistics also
exhibit anomalous scaling, for η � r � L:

S
(p)
L (r) ∼ rζ

(p)
L ,

S
(p)
T (r) ∼ rζ

(p)
T .

}
(1.4)

From a theoretical point of view, in isotropic turbulence one would expect that
longitudinal and transverse fluctuations have the same scaling, ζ

(p)
L = ζ

(p)
T (see Biferale

& Procaccia 2005 for a review on anisotropic turbulence). This is not what was
observed in some experimental and numerical analyses (Boratav & Pelz 1997; Chen,
Sreenivasan & Nelkin 1997; Dhruva, Tsuji & Sreenivasan 1997; van de Water &
Herweijer 1999; Zhou & Antonia 2000; Shen & Warhaft 2002). This discrepancy
can be due to either finite Reynolds numbers (He et al. 1998; Hill 2001) or
some remnant small-scale anisotropy (Biferale & Procaccia 2005). Still, even large
Reynolds numbers direct numerical simulation (DNS) with isotropic forcing show
some persistent differences between ζ

(p)
L and ζ

(p)
T , as shown in Gotoh, Fukayama &

Nakano (2002) and Ishihara, Gotoh & Kaneda (2009). The same discrepancy between
the longitudinal and transverse velocity SFs is quantitatively confirmed in the analysis
reported here. Whether this effect will persist at higher Reynolds number remains
an important open question for further experimental and numerical investigations.
In addition, the analysis of our data is also directly relevant to a broad class of
numerical simulation methods common in astrophysics and in atmospheric physics,
which model the Euler equations of hydrodynamics but inevitably implicitly introduce
numerical dissipation near the grid scale. These simulation methods are sometimes
referred to as implicit LES simulations (ILES) to properly distinguish them from
DNS simulations of the Navier–Stokes equations. This fact leads to interesting issues
in our discussion. In particular, because the FLASH code does not dissipate energy
in the same manner as a DNS simulation of the Navier–Stokes equations (see § 2 for
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details) implies that the observed inertial range discrepancy between longitudinal and
transverse scaling, which is common to simulations using both approaches, is very
unlikely to be caused by viscous effects.

With regard to the issue of Lagrangian intermittency, a ‘bridge relation’ between
Lagrangian and Eulerian inertial range exponents has been recently proposed on the
basis of a common multifractal description (Borgas 1993; Boffetta et al. 2002). This
bridge relation has proved to be very efficient in predicting the p.d.f. of Lagrangian
accelerations (Biferale et al. 2004). Previous work has verified the bridge relation up
to the fourth-order moment of the Lagrangian velocity SF (Arneodo et al. 2008).
On the other hand, previous measurements of higher-order LSF (Mordant et al.
2006; Xu et al. 2006) do not agree with the inertial range bridge relation. Also, a
similar relation bridge written for MHD turbulence does not seem to apply Homann
et al. (2009). It is therefore important to test it up to high-order moments with high
statistical accuracy. Here, we show that the multifractal bridge relation is indeed valid
up to moment of order ‘ten’ for homogeneous and isotropic turbulence, the highest
moment measurable with an acceptable signal-to-noise ratio in our data. We interpret
the discrepancy with previous results as due to a possible contamination from the
viscous scale affecting the estimate of the scaling properties in Mordant et al. (2006);
Xu et al. (2006), see table 2 and related discussion.

Finally, we also discuss the theoretical implications of multifractal phenomenology
for viscous time fluctuations in the Lagrangian domain and deal with finite Reynolds
effects, the importance of vortex trapping and the dependency on the multifractal
spectrum for smooth inertial range fluctuations.

The paper is organized as follows. In § 2 we discuss the numerical simulation, the
resulting data set and its corresponding validation. In § 3 we discuss the computation
of the ESFs. In § 4 we report the analysis of LSF and discuss the physical results
obtained by our analysis. In § 5 we provide a theoretical interpretation of our findings
by employing the multifractal framework. Conclusions follow in § 6.

2. Data set and numerical simulations
As briefly highlighted in the introduction, our main purpose is to investigate

intermittency of the Lagrangian and Eulerian velocity fields in the inertial range for
homogeneous and isotropic turbulent flow (see figure 1 for a colour rendering). The
numerical simulations have been performed using the FLASH code developed by the
Flash Center at the University of Chicago (Fisher et al. 2007). The Euler inviscid
equations of hydrodynamics solved by the code are:

∂tρ + ∇ · (uρ) = 0,

∂t (ρu) + ∇ · (uuρ) = −∇P + F,

∂t (ρE) + ∇ · [u(ρE + P )] = 0,

P = (γ − 1)ρU,

E = ρ(U + 1
2
u2),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is the mass density, u is the velocity, P is the pressure, E is the total energy
density, U is the specific internal energy and γ is the ratio of the specific heats in the
system. Finally, the fourth equation in (2.1) is the equation of state closing the system.
The effect of the large-scale forcing F gives rise to a turbulent flow whose energy is
transferred from scale L0 towards small scales. The energy input

∫
d3x u · F produces

an increase of the internal energy U , which grows in time. One can easily show that
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Figure 1. (a) Example of Eulerian and Lagrangian rendering. Both the intensity of the
Eulerian enstrophy field at a given time (blue isosurface) and the Lagrangian evolution of a
bunch of particles with trajectories ending at the time of the Eulerian snapshot are shown.
Notice that the Lagrangian particles have an initially smooth evolution because we also show
the initial transient time when the underlying Eulerian field was chosen smooth and with low
energy. The bunch of particles was chosen such as to encounter a vortex filaments during their
evolution. Figure by courtesy of B. Gallagher. (b) Evolution of the total kinetic energy for
each component, 〈(ui)

2〉/2, with i = x, y, z during the whole run, including the initial transient.
Notice the good isotropy of the run, which makes the three symbols referring to the three
different components almost undistinguishable. In the paper, all Eulerian and Lagrangian
statistical data are measured only after stationarity is reached, t/TL > 3.

the quantity
∫

dx3P ∂ivi represents the energy transfer from kinetic to internal energy
of the flow. The sound speed increases in time as well, while the average Mach number
is of order 0.3. The numerical simulation is isotropic and homogeneous forcing with
a resolution 18563. The integration in time has been done for three eddy turnover
times after a transient evolution (see figure 1 for the evolution of the total kinetic
energy in the flow).

The stirring is obtained by a divergence-free, time-correlated momentum source
term on all wavenumbers with |k| � 4, using an algorithm originally proposed by
Eswaran & Pope (1988). For each mode at each time step, six complex phases (real
and imaginary in each of the three spatial dimensions) are evolved by an Ornstein-
Uhlenbeck coloured-noise stochastic differential equation. By evolving the phases of
the stirring modes in Fourier space, imposing a divergence-free condition is relatively
straightforward. At each time step the solenoidal component of the velocities is
projected out, leaving only the non-compressional modes to add to the velocities. The
velocities are then converted to physical space by a direct Fourier transform. FLASH
includes a directionally split piecewise parabolic method (PPM) solver descended
from the PROMETHEUS code as proposed in Colella & Woodward (1984) and
Arnett, Fryxell & Mueller (1989). It is a higher-order version of the Godunov method,
representing flow variables with piecewise parabolic functions within cells. It also uses
a set of monotonicity constraints rather than artificial viscosity to control oscillations
near discontinuities, including both strongly sheared interfaces and contact surfaces
as well as shocks. The high resolution and accuracy of PPM are obtained by the
explicit nonlinearity of the scheme and through the use of dissipation algorithms,
such as monotonicity enforcement and interpolant flattening, which are tailored
to activate only in the immediate vicinity of discontinuities. More details on the
numerical code can also be found in Benzi et al. (2008) and § 2.1 below. About
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16 million separate Lagrangian tracers have been evolved together with the Eulerian
fields. Particle velocities are obtained by quadratic interpolation of the Eulerian
hydrodynamic velocity field at the particle position. A standard second-order Runge–
Kutta algorithm was used for the time integration scheme. The code develops density
gradients due to compressibility. Despite compressible effects, which lead to non-
trivial scaling of density and entropy fluctuations (Porter, Pouquet &. Woodward
2002; Benzi et al. 2008), the net feedback on the velocity scaling is very weak, if any.

2.1. Validation of the numerics

The FLASH code is the product of nearly a decade of intensive software development,
including careful attention to code verification and validation (Rosner et al. 2000).
Different validation studies on problems, as diverse as Richtmyer–Meshkov and
Rayleigh–Taylor instabilities (Calder et al. 2002), shock–cylinder interaction (Weirs
et al. 2005) and laser-driven high energy density laboratory experiments (Kane et al.
2001), have been performed in the past. The code has also been applied to study
buoyancy-driven turbulent combustion (Zhang et al. 2007), wind-driven instabilities
in neutron star atmospheres (Alexakis et al. 2004), type Ia supernovae (Plewa, Calder
& Lamb 2004) and many other astrophysical flows.

In the following, we show that to the best of our testing ability, in the simple
homogeneous isotropic case investigated here, without coupling to chemical or
combustion effects, the Lagrangian and Eulerian velocity fluctuations in the inertial
range are indistinguishable from those measured in incompressible fluid turbulence.
The only appreciable differences can be captured for viscous scales, where one is
forced to define an ‘effective viscosity’ and an effective ‘dissipative scale’ to compare
with Navier–Stokes results. Although the integration is formally inviscid, there is a
net energy transfer from the turbulent kinetic energy 1/2ρu2 to the internal energy.
Thus, we may think that an effective viscosity νeff is acting on the system. In order
to estimate the effective viscosity, we proceed as if the Kolmogorov 4/5 equation (see
Frisch 1995) – valid for incompressible turbulence – applies to our case, with effective
parameters:

S
(3)
L (r) = −4

5
εeff r + 6νeff

d

dr
S

(2)
L (r). (2.2)

A fit of our data with this formula gives, εeff =0.054, νeff = 8.3 · 10−6, which
corresponds to a Kolmogorov scale, η = (ν3

eff /εeff )1/4, equivalent to roughly half a
grid cell in units where the total box size is L = 1, and to a microscale Reynolds
number Rλ ∼ 600. The dynamical effects of the effective viscosity present here is,
however, different from what one usually observes in the Navier–Stokes equations,
i.e. the dissipation range does not behave similarly to the Navier–Stokes solutions.
Thus, while on the energy flux (i.e. the third-order SFs) we still observe an effective
dissipation. The dissipation range is changed according to the specific mechanism
employed in the simulation. One may thus have problems in assessing correlation
between particle trajectories and viscous-scale fields as vorticity and strain, in the spirit
of the refined Kolmogorov hypothesis translated to the Lagrangian domain (Benzi
et al. 2009). Because our main interest here is to describe inertial range physics, the
uncertainty in defining the exact value of the viscous cut-off is unimportant.

In inertial range quantities, the physics get closer to Navier–Stokes equations.
We discuss hereafter these inertial range properties using analytic, numerical and
experimental validation. For isotropic and incompressible flows described by the
Navier–Stokes equations, there exists an exact relation which connects second-order
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Figure 2. Test of the isotropic and incompressible constraint, we show the left-hand side
(LHS) and the right-hand side (RHS) of (2.3). Inset, a percentage estimate of the breaking
of the relation: (RHS − LHS)/LHS. Notice that percentagewise the relation is well verified,
within 5 % of accuracy.

longitudinal and transverse SFs (Frisch 1995):

S
(2)
T (r) = S

(2)
L (r) +

r

2

d

dr
S

(2)
L (r); (2.3)

this equation is useful because any deviations from it give a quantitative hint on
the cumulative importance of anisotropy and compressibility, scale-by-scale. We show
in figure 2 the comparison between S

(2)
T (r) and its reconstruction via the right-hand

side of (2.3). As one can see, the agreement is very good. In the inset of the same
figure we show that combined effects due to anisotropy and compressibility are
less than a few percent for second-order statistics (see also figure 4 for higher-
order statistics). Moreover, it is well known that third-order longitudinal SFs in
isotropic, homogeneous and incompressible turbulence obeys the 4/5 law: S

(3)
L (r) ∼ r ,

which is the only exact result involving non-trivial dynamical properties known for
fully developed turbulence. In figure 3 we show the third-order longitudinal ESF
as measured in our numerics. As one can see there is a clean scaling range over
more than one decade extending from r/η ∈ [10:100], with a slope close to the scaling
prediction. Both these comparisons with exact inertial range results for incompressible
Navier–Stokes equations show us that the velocity field in the FLASH code does not
present important compressibility effects (a simple worst-case estimate based on the
Mach number would indeed suggest effects within 9 %).

Two additional papers recently published further extend the validation study
presented here. In the first, we have quantitatively compared the inertial range
local slopes of ESFs as measured with our code with those obtained from a pseudo-
spectral incompressible code (see figure 1 of Benzi et al. 2008). An additional, even
more stringent, test was also recently completed for the Lagrangian statistics. A
joint collaboration of 28 scientists put together all currently existent Lagrangian data
concerning second- and fourth-order SFs, the results of three different experiments
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Figure 3. Third-order longitudinal SF, S
(3)
L (r) with the power law exact relation coming from

the 4/5 law (Frisch 1995). Inset, compensated plot, S
(3)
L (r)/r .

and five different numerical simulations (four pseudo-spectral and the one obtained
by using our FLASH code). As shown in figure 1 of Arneodo et al. (2008), all data
are consistent with one another, and, more importantly, the FLASH data set is the
one with the smallest statistical and systematic errors, thanks to the high number of
particle trajectories integrated numerically.

3. Intermittency and anomalous scaling in the Eulerian inertial range
We start our analysis by measuring the scaling behaviour of the ESFs. In figure 4

we show a typical log–log plot of longitudinal ESF for p = 2, 6, 10. A qualitative
scaling behaviour is clearly detectable. In figure 4(b), we show the estimate of the
statistical fluctuations by showing the effects of halving the sample size, i.e. plotting
the ratio between two structure functions averaged over the whole statistics or over
one half of it. As one can see, statistical fluctuations become, at the maximum, of
order 10–20 % at small scales (where intermittency is more severe) and only for
high-order moments p = 6 and larger. Inside the inertial range, r > 10η, they are
of order 5 % or even less. Similarly, in figure 4(c) we give a quantitative estimate
of residual anisotropy, by plotting the ratio between longitudinal measurements over
two different orthogonal directions. Here, as expected, deviations are larger close to
the integral scale, reaching a maximum of 10 % for high-order moments. As a result,
the combined effect of statistical and anisotropic fluctuations for the Eulerian scaling
is small, and it results in an estimate of the error bars that are within the size of the
symbols for the log–log plot showed in figure 4(a).

One of the advantages of high spatial resolution is the possibility to go beyond
log–log plots, analyzing scaling properties ‘scale-by-scale’. In order to do that, we
analyse scaling by using the local scaling exponent (LSE) given by the log-derivative
of SFs:

ζ
(p)
L (r) ≡ d log S

(p)
L (r)

d log r
; ζ

(p)
T (r) ≡ d log S

(p)
T (r)

d log r
. (3.1)
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Figure 4. (a) Log–log plot of longitudinal ESFs, S
(p)
L (r) for p = 2, 6, 10. (b) Estimate

of the statistical fluctuations, obtained by plotting the ratio of S
(p)
L (r) calculated over

the whole statistics or over one half of it. (c) Estimate of the anisotropic fluctuations,
〈[ux(x + rx) − ux(x)]p〉/〈[uy(x + ry) − uy(x)]p〉, for p = 2, 6, 10. The sum of the two error
sources leads to error bars that are of the order of the symbol size in (a).

The advantage of the LSE is twofold. First, it allows for assessing statistical properties
locally, removing large-order non-universal contributions coming from the overall
prefactors in the SF. Second, and more importantly, it assesses scaling without the
need for any fitting; in other words, it is just the outcome of a measure and it
does not depend on an ‘arbitrary’ definition as the extension of the inertial range, in
order to define the degree of intermittency. For instance, let us consider the scaling
of the fourth-order longitudinal flatness. It is easy to see that it can be rewritten,
independently of any scaling assumptions and for all separations r , as:

F
(4)
L (r) =

S
(4)
L (r)

(S(2)
L (r))2

= (S(2)
L (r))φ

(4)
L (r); φ

(4)
L (r) =

ζ
(4)
L (r)

ζ
(2)
L (r)

− 2. (3.2)

In other words, the presence of intermittency, i.e. a non-trivial scale-dependent flatness
behaviour, is directly measured by how much the ratio of the LSE, ζ

(4)
L (r)/ζ (2)

L (r), is
different from its dimensional value, 2, scale-by-scale. Let us start to analyse the LSE
for the longitudinal and transverse ESF. In figure 5 we show the LSE for p = 2, 4, 6, 8
and in figure 6 we show the LSE for p = 10. Let us first notice that longitudinal
and transverse statistics have significantly different viscous cut-offs, with transverse
fluctuations having the tendency to have less important viscous damping with respect
to the longitudinal ones (Gotoh et al. 2002). This is an effect already present for
low-order p = 2 (figure 5c) and therefore certainly induced, at least partially, by
geometrical constraints as the ones discussed about (2.3). Beside this remark, let us
also notice the small – in amplitude, but important in principle – difference in the
scaling exponents between longitudinal and transverse fluctuations. Up to p = 4 the
LSEs are almost coinciding, within error bars, in the range of scales r/η ∈ [20:80]. For
larger orders we start to detect a difference, with the transverse being systematically
below the longitudinal. This difference becomes significantly visible for p = 10 as
shown separately in figure 6. Note that this statement is not the outcome of any
fitting procedure, and what is shown in figures 5 and 6 is a measurement independent
of any theoretical interpretation. On the other hand, in order to decide about the
existence, and extension, of a ‘power law’ range needs some fitting. The value of
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Figure 5. Local scaling exponents, ζ
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T (r) of Eulerian longitudinal and transverse SFs

for p = 2, 4, 6, 8. Error bars are obtained by estimating the residual anisotropy, given by the
spread between measurements on different directions, r/r = x̂, ŷ, ẑ. Statistical error bars are
smaller. The horizontal straight line corresponds to the Kolmogorov dimensional prediction,
ζ (p) = p/3.
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Figure 6. (a) Longitudinal and transverse local scaling exponents, the same as figure 5
but for p = 10. (b) Summary of the Eulerian scaling from table 1. The two solid lines
represent a fit to the scaling exponents with two different multifractal spectrum DL(h)
and DT (h) both having a log-Poisson statistics (Dubrulle 1994; She & Leveque 1994):
DL,T (h) = (3(h − h∗))/(log(βL,T ))

[
log

(
(3(h∗ − h))/(d∗

L,T log(βL,T ))
)

− 1
]

+ 3 − d∗
L,T . The only

parameter we have hanged for the two data sets is βL = 0.6 and βT = 0.4, while we kept the
highest singularity to be the same, h∗ = 1/9. The fractal dimension of the highest singularity is

then fixed by the requirement that ζ
(3)
L = ζ

(3)
T =1, d∗

L,T = (1 − 3h∗)/(1 − βL,T ).
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p ζ
(p)
L ζ

(p)
T ζ

(p)
L [G02] ζ

(p)
T [G02] ζ

(p)
L /ζ

(3)
L ζ

(p)
T /ζ

(3)
T

2 0.71 ± 0.02 0.71 ± 0.02 0.70 ± 0.01 0.71 ± 0.01 0.69 ± 0.005 0.71 ± 0.01
4 1.29 ± 0.03 1.27 ± 0.05 1.29 ± 0.03 1.26 ± 0.02 1.28 ± 0.01 1.26 ± 0.01
6 1.78 ± 0.04 1.68 ± 0.06 1.77 ± 0.04 1.67 ± 0.04 1.75 ± 0.01 1.68 ± 0.03
8 2.18 ± 0.05 1.92 ± 0.10 2.17 ± 0.07 1.93 ± 0.09 2.17 ± 0.03 1.98 ± 0.1

10 2.50 ± 0.06 2.10 ± 0.20 2.53 ± 0.09 2.08 ± 0.18 2.5 ± 0.05 2.25 ± 0.15

Table 1. Estimate of the global scaling exponents, out of the figures for the local scaling
exponents (figures 5 and 6). The first and second columns refer to our numerics, the third
and fourth to the data published in Gotoh et al. (2002) (G02) from a pseudo-spectral DNS at
comparable Reynolds number. The last two columns correspond to the ESS estimate of our

data, using the third-order longitudinal ESF as a reference for the scaling of S
(p)
L (r) and using

the third-order transverse ESF for the scaling of S
(p)
T (r). Error bars are obtained by summing

the uncertainty obtained from estimating the scaling in three different spatial directions
(anisotropy contributions) and by changing the scaling range in the interval r ∈ [10:100]η,
where the global exponent is evaluated.

the ‘global’ scaling exponent, ζ
(p)
L , ζ

(p)
T would then be given by the average of the

LSE in the region where they are close to constant. An error bar on the mean
value can then be estimated on the basis of the oscillation induced by statistical
and anisotropic effects in the fitting range and by the change as a function of the
extension of the scaling range used to make the fit. Such a fitting procedure (detailed
in the caption) leads to the summary for the ‘global’ Eulerian scaling exponents
depicted in figure 6(b) and also summarized in table 1, where we compare our results
with another pseudo-spectral DNS obtained with fully incompressible Navier–Stokes
equations at comparable Reynolds numbers. From a theoretical point of view, we
know that there are exact constraints that fix ζ

(p)
L = ζ

(p)
T for p =2 (for p = 3, a similar

constraint fixes the scaling of third-order longitudinal SFs with mixed second-order
transverse and first-order longitudinal increments). Moreover, there is no strong
theoretical argument suggesting the possibility that for p � 4 one should expect a
different scaling. Consequently, the results shown in figures 5 and 6 are not fully
understood. Whether the difference between longitudinal and transverse ESF will
shrink as one goes to higher Reynolds numbers remains to be investigated, and it is
an important open question. The good news is that the value found in our numerics
are in agreement with previous results (see table 1), making us confident that they are
robust and are not dependent on compressibility. Even the relative scaling behaviour,
obtained by plotting each SF versus the third-order one, a procedure known as
extended self similarity (ESS) in the literature (Benzi et al. 1993, 1996), does not
change much the above picture (not shown). In table 1 we also give the results of
the LSE for both longitudinal and transverse ESF estimated by using ESS. Again
a small spread between longitudinal and transverse is measured. Nevertheless, it is
interesting to note that while the ESS procedure applied to longitudinal statistics
reduces the error bars with respect the usual LSE considerably, for the transverse
statistics there is no clear gain in adopting ESS. This may suggest the possibility that
the different scaling behaviour detected between S

(p)
L (r) and S

(p)
T (r) may be due to

different sub-leading corrections to the main leading scaling, contributing more to the
transverse scaling than to the longitudinal. Due to the lack of any hints on the possible
sub-leading correction we refrain here from entering into a fitting procedure with too
many free parameters. The issue whether the difference in the LSE shown in figure 5
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Figure 7. Lagrangian p.d.f. for a single component velocity increments along particle
trajectories, over different time increments, τ ∈ [2:400]τη . Curves are shifted along the y-axis
for presentation purposes.

is the signature of a true mismatch between the scaling properties of longitudinal and
transverse fluctuations, or the result of a superposition of leading and sub-leading
power laws with coinciding exponents between longitudinal and transverse but with
different prefactors, remains open.

4. Intermittency and anomalous scaling in the Lagrangian inertial range
We now turn our attention to Lagrangian particles. As it is known, LSF shows very

strong intermittency. In figure 7, we show the p.d.f. of δτvi for different values of τ and
averaging over the different velocity components: for small τ the probability density
exhibits stretched exponential tails, as also measured experimentally in Mordant et al.
(2001). Concerning the LSF, we show in figure 8 a first overview on a log–log scale
for moments up to p = 8. From this figure we can already extract some conclusions.
First, scaling in Lagrangian framework is not as good as the Eulerian one, as one can
judge by the naked eye. This is a common feature of all Lagrangian statistics, and
was already observed in many other experimental and numerical previous works.

The simplest explanation is that the finite Reynolds effects are more important in
the Lagrangian domain: dimensional estimate gives for the Lagrangian inertial range
extension the scaling TL/τη ∼ Re1/2, while in the Eulerian case we have L/η ∼ Re3/4.
In the inset of figure 8, we show the importance of anisotropic fluctuations, by
comparing the ratio between two LSF on two different components, S(p)

x (τ )/S(p)
y (τ )

for p = 4, 8. As one can see, the importance of anisotropic fluctuations is again of the
order of 10 % at most, for the highest moments. Such corrections are of the order of
the symbol size of the LSF averaged over the three components shown in the body of
figure 8. Let us stress that anisotropic effects give also an hint on statistical error bars.
Indeed, since our forcing is statistically isotropic, any anisotropic residual signal can
be only due to limited statistical samples. The measured scaling in the Lagrangian
domain does not allow for a systematic assessment on the local scaling exponents as
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p〉, for p = 4 (circles)
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done for the Eulerian field. Here, if one wishes to retain good local properties, it is
necessary to resort to the ESS method, plotting the local scaling exponents relative
to one moment versus a reference one (here taken the second order):

χ (p)(τ ) ≡ d log S(p)(τ )

d log S(2)(τ )
, (4.1)

which are related, in presence of pure power-law scaling, to the scaling exponents of
the LSF defined from (1.2) by the obvious relation:

χ (p)(τ ) ∼ const. = ξ (p)/ξ (2). (4.2)

Let us stress, nevertheless, that the importance of the local exponents (4.1) goes
much beyond their interpretation as a simple proxy of the ratio between the SFs
exponents (4.2). Indeed, they give a clear and simple way to assess the importance of
intermittency in the Lagrangian domain as the only quantities entering in the scaling
properties of Lagrangian hyper-flatness:

F(p)(τ ) =
S(2p)(τ )

(S(2)(τ ))2
= (S(2)(τ ))χ

(2p)(τ )−p/2. (4.3)

Again, here, the same comment made for the Eulerian case is in order: via the
Lagrangian hyper-flatness (4.3) we are able to assess intermittency in a quantitative
way, ‘free of any fitting ambiguity’, without having to assume power-law properties, by
simply checking the difference between χ (2p)(τ ) and p/2, scale-by-scale. In figure 9 we
show the hyper-flatness local exponents for p = 4, 6, 8, 10. The scaling range extends
up to more than one decade, for τ/τη ∈ [20:300]. As one can see, there are two
remarkable facts. First, the Lagrangian scaling is much more intermittent then the
Eulerian one, if measured in terms of deviations from the dimensional scaling given
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Figure 9. Lagrangian local scaling exponents for hyper-flatness, χ (p)(τ ), for p = 4, 6, 8, 10.
Notice the extremely good scaling behaviour for low moments, which deteriorates only mildly
for p = 6, 8. Notice also the dip region close to the viscous time scales, an effect interpreted in
terms of trapping into vortex filaments (Jimenez et al. 1993; Bec et al. 2006). The horizontal
straight lines (K41) correspond to the dimensional Kolmogorov scaling χ (p) = p/2. Error bars
are an estimate of the anisotropic effects and are obtained by comparing the measurements
on three different velocity components.

by the Kolmogorov 1941 theory, χ(p) = p/2. For example, for p = 10, we measure
χ (10) = 2.45±0.35, which is 50 % off from the dimensional value χ (10) = 5. The second
fact is the strong dip measured across the viscous scale, for time lags τ/τη ∈ [1:10].
This is similar to the Eulerian ‘bottleneck’ (Lohse 1994), while for the LSFs, this was
observed first in Mazzitelli & Lohse (2004) and interpreted as being induced by the
presence of small scale vortex filaments in Biferale et al. (2005) and Bec et al. (2006).
The value of the Lagrangian exponents measured in our numerics in the inertial
range are reported in table 2 and compared with previous measurements on other
DNS or experiments. Let us stress ‘that there are currently no other measurements
of the higher-order LSFs with comparable statistics and Reynolds numbers as the
one presented here’. A global fit in log–log of the scaling properties does not allow
disentangling the inertial range from viscous–inertial contribution (affected by the dip
visible for τ ∼ τη) as they emerge from figure 9. This explains the slightly systematic
underestimate of the scaling exponents from all previous studies, in comparison to
those found here. The only data presented previously for p = 8, 10 at comparable
Reynolds are those published in Xu et al. (2006), where the scaling properties are
estimated very close, if not inside, the dip region, τ ∈ [3:6]τη. Similar uncertainty occurs
with the data in Homann et al. (2007). The numerical data for p = 8, 10 presented
in Mordant et al. (2006) also underestimate the value of the scaling properties with
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χ (p) p = 4 p = 6 p = 8 p = 10

Our numerics (Rλ ∼ 600) 1.66 ± 0.02 2.10 ± 0.10 2.33 ± 0.17 2.45 ± 0.35
EXP1 (Rλ ∼ 800) 1.47 ± 0.18 1.73 ± 0.25 1.92 ± 0.32 1.98 ± 0.38
EXP2 (Rλ ∈ [500:1000]) 1.56 ± 0.06 1.80 ± 0.20 — —
DNS1 (Rλ ∼ 320) 1.51 ± 0.04 1.76 ± 0.11 — —
DNS2 (Rλ ∼ 75) 1.56 ± 0.03 1.82 ± 0.08 1.92 ± 0.14 1.93 ± 0.3

Table 2. First row: summary of the local scaling exponents for Lagrangian statistics as
extracted from our data shown in figure 9. Error bars are evaluated out of the anisotropic
statistical degree, estimating the LSE out of the three different velocity components and
by changing the fit range in the interval τ ∈ [20:200]. Statistical fluctuations due to finite
sampling are of the same order of anisotropic effects. The other rows correspond to other data
available for high-order moments from both experiments at comparable Reynolds numbers
and numerical works at smaller Reynolds numbers. EXP1 (Xu et al. 2006); EXP2 (Mordant
et al. 2006); DNS1 (Homann et al. 2007); DNS2 (Mordant et al. 2006).

respect to our data. Probably, in this case, the low value of the Reynolds number
(Rλ ∼ 75) is such that the whole scaling region is dominated by the viscous dip.
Considering all these pitfalls, we may conclude that when scaling properties are
analyzed in the inertial range and where statistical fluctuations are not too high, there
exists a good universality in Lagrangian statistics, as also tested quantitatively for
p = 4, 6 in Biferale et al. (2008) and Arneodo et al. (2008). As for the universality
of high-order moments, from p =8 and up, we need to wait for other data with
statistical properties and Reynolds number comparable with those of this study, to
decide.

5. Multifractal: a link between Eulerian and Lagrangian statistics
Multifractals were introduced 25 years ago to explain deviations to the Kolmogorov

scaling for Eulerian isotropic turbulent fluctuations (Parisi & Frisch 1985; see also
Boffetta, Mazzino & Vulpiani 2008 for a recent review). The multifractal theory has
since been extended to describe velocity gradients (Nelkin 1990; Benzi et al. 1991),
multiscale velocity correlations (Meneveau & Chabra 1990; Belinicher et al. 1998)
and fluctuations of the Kolmogorov viscous scale (Paladin & Vulpiani 1987; Frisch &
Vergassola 1991; Meneveau 1996; Biferale 2008). Let us note that other attempts have
been made to introduce fluctuations of the Kolmogorov scale in turbulence (L’vov
& Procaccia 1996; Yakhot & Sreenivasan 2004, 2005); most of these predictions are
either equivalent to or yield results almost indistinguishable from the multifractal
approach given here.

In principle, one is free to develop different, uncorrelated, multifractal descriptions
for Eulerian and Lagrangian quantities. On the other hand, in reality, Eulerian and
Lagrangian measurements are of course intimately linked. One is therefore naturally
tempted to develop a ‘unified’ multifractal description, able to describe both temporal
and spatial fluctuations (Borgas 1993; Boffetta et al. 2002). In the following we
describe such a development starting from the inertial range (where we can test it
against our data) and extending into the viscous range.

5.1. Inertial range

Concerning Eulerian multifractal theory in the inertial range, the idea goes back
to Parisi & Frisch (1985). Suppose we have different velocity fluctuations with
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different local Hölder exponents, δru ∼ rh, for scale separation in the inertial range.
Suppose that the set where the velocity field has an h-exponent is a fractal set with
dimension D(h). Then the ESF can be easily rewritten as an ensemble average over
all possible h-fluctuations: 〈(δru)p〉 =

∫
h
dhrhpr3−D(h) ∼ rζ (p)

, where the factor r3−D(h)

gives the probability to fall on the fractal set with h-exponent at scale r , and where we
have neglected, for the moment, any difference between longitudinal and transverse
scalings, calling the generic Eulerian increment, δru. The last passage is obtained in
the saddle point limit r → 0:

ζ (p) = min
h

(hp + 3 − D(h)) . (5.1)

It is easy to imagine many different possible D(h) distributions – built in terms of
a random cascade – leading to a set of exponents ζ (p) close to those measured. In a
previous section, we had shown that both our numerics and previous DNS suggest
that it is possible to have different scaling exponents for longitudinal or transverse
SF. Therefore, we must allow two different sets of fractal dimensions, DL(h) and
DT (h) describing the statistics. For example, in figure 6(b) we show the result of the
saddle point (5.1) obtained with two different fractal spectra, tuned to fit the empirical
scaling exponents as found from our numerics (see caption for details).

One possible way to simply link the Eulerian and Lagrangian statistics is to follow
the ideas of Borgas (1993). As far as scaling is concerned, in three-dimensional
turbulence we may imagine that the only relevant time in the inertial range is the
local eddy turnover time:

τ (r) ∼ r/(δru) ∼ r1−h. (5.2)

Then, we may assume that the Lagrangian velocity increment over a time lag τ must
be of the order of the corresponding Eulerian velocity increments over a scale r with
r and τ connected by (5.2):

δτ v ∼ δru, τ ∼ r1−h,

where we neglect large scale O(1) dimensional quantities connected to the root-mean-
square total kinetic energy and to the box size. By using only this simple statement
one is able to link now the LSF to the ESF, writing:

〈(δτ v)p〉 =

∫
h

dhτhp/(1−h)τ (3−D(h))/(1−h) ∼ τ ξ (p)

, (5.3)

with now the Lagrangian exponents given by the saddle point estimate (Boffetta et al.
2002):

ξ (p) = min
h

(
hp + 3 − D(h)

1 − h

)
. (5.4)

It is important to notice that via the translation factor (5.2) we obtain two different
sets of Lagrangian and Eulerian exponents but given by the same D(h) curve. The
exponents are different because the local eddy turnover is itself a fluctuation quantity,
depending on the local scaling exponent, h.

Once given the D(h), extracted from a fitting of the Eulerian statistics, it is tempting
to use it as an input in (5.4) to get a prediction with ‘no free’ parameters for the
Lagrangian scaling. Indeed, because the Eulerian statistics are different depending
if one takes longitudinal or transverse fluctuations, and because it is very natural
to think that during the Lagrangian evolution both fluctuations are felt, one may
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imagine to get two different predictions for the Lagrangian exponents:

ξ
(p)
L,T = min

h

(
hp + 3 − DL,T (h)

1 − h

)
; (5.5)

depending which Eulerian statistics one uses, DL(h) or DT (h). In figure 10 we show
the comparison between the empirical Lagrangian exponents as extracted from our
numerics (see table 2 and figure 9) and the two predictions one get using the
longitudinal, DL(h) or transverse, DT (h), expression in (5.5). As one can see the
agreement is good, indicating that the simple, but non-trivial, bridge relation (5.2)
is working well and capturing the main scaling properties of both Eulerian and
Lagrangian statistics. This is the first time the Lagrangian–Eulerian bridge relation is
probed to such high level of accuracy, and it must be considered our most important
result. Previous Lagrangian data for high orders, on the other hand, deviate from the
MF prediction. We interpret this deviation as an effect induced by a global log–log fit
of the scaling properties, contaminated by viscous corrections close to dip observed at
τη ∼ O(1), which tend to lower the value of the exponent if not disentangled properly,
as discussed in § (4).

From figure 10 one may see that only for the highest-order p = 10, one starts to see
a trend deviating from what is predicted by the Eulerian–Lagrangian bridge relation,
although it is still within our error bars. Whether this deviation at high orders is the
signature of very intense Lagrangian fluctuations bringing new information beyond
that collected by (5.2) or not is an open and interesting question. However, it is not
possible to address this question until new empirical and numerical data allow us to
access these higher-order statistics for both Eulerian and Lagrangian domains.
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5.2. Dissipative effects

The ability to assess Lagrangian data both numerically and experimentally in the
inertial range has also opened the way to investigate dissipative and sub-dissipative
time scales. For Eulerian statistics it is very difficult to have reliable data at scales
smaller then η, due to either limitations induced by the experimental probe size or
limitations of the numerical resolution (see Yamazaki, Ishihara & Kaneda 2002;
Schumacher 2007; Schumacher, Sreenivasan & Yakhot 2007; Watanabe & Gotoh
2007 for recent DNS meant to address this issue). For Lagrangian quantities, the
development of non-intrusive experimental techniques (mainly based on fast camera
Toschi & Bodenschatz 2009) and the advancements of numerical algorithms to track
particles have allowed for assessing time fluctuations of the order of 0.1τη, even at high
Reynolds numbers. As a result, we may now pose new question about the statistical
fluctuations for τ ∼ τη or smaller. Recently, a lot of attention has been given to the
dip region visible in the local Lagrangian scaling exponents shown in numerical and
experimental studies (Arneodo et al. 2008). In the last twenty years, a great deal work
has been done to include viscous fluctuations in the multifractal theory, initially for
Eulerian statistics (Paladin & Vulpiani 1987; Nelkin 1990; Benzi et al. 1991; Frisch
& Vergassola 1991; Meneveau 1996), and more recently also for Lagrangian statistics
(Chevillard et al. 2003; Biferale et al. 2004). Unfortunately, our numerics do not allow
for a direct quantitative probe of scales deep in the viscous region, because of the
numerical dissipative nature of the FLASH code. So, we limit our discussion here to
a theoretical one: specifically, what are the predictions of the MF for scaling within
the dissipative regime? According to the MF theory, the viscous scale is not a fixed
homogeneous quantity, but fluctuates wildly due to intermittency. Moreover, viscous
and inertial fluctuations are linked by the requirement that viscous effects happen
when the local Reynolds number becomes O(1)):

δηu η

ν
∼ O(1); η1+h ∼ ν; η(h) ∼ Re−1/(1+h), (5.6)

where we have taken for simplicity, L =1, U0 = 1 and ν =Re−1. Using the bridge
relation (5.2), we may immediately find out the equivalent fluctuating relationship for
the Kolmogorov dissipative time (Chevillard et al. 2003; Biferale et al. 2004):

τη(h) ∼ η1−h ∼ Re(h−1)/(1+h). (5.7)

Taking this into account, one may use a Batchelor–Meneveau like parametrization for
velocity increments for all time lags, including the fluctuating viscous time (Sirovich,
Smith & Yakhot 1994; Meneveau 1996; Chevillard et al. 2003; Arneodo et al. 2008):

δτv = V0

τ

TL

[(
τ

TL

)α

+

(
τη(h)

TL

)α](2h−1)/(α(1−h))

, (5.8)

where α is a free parameter controlling the crossover around τ ∼ τη and V0 is the
root-mean-square large-scale velocity. In order to get a prediction for the behaviour
of the LSF we need also to introduce dissipative effects in the MF probability. This
can be done as follows:

Ph(τ, τη) = Z−1(τ )

[(
τ

TL

)α

+

(
τη(h)

TL

)α](3−D(h))/(α(1−h))

, (5.9)

where Z is a normalizing function and D(h) is the fractal dimension of the support
of the exponents h. At this point, given the Reynolds number, we are left with two



Eulerian and Lagrangian statistics in isotropic turbulence 239

1.0

 1.5

2.0

 2.5

3.0

 3.5

4.0

 4.5

5.0

1.0

 1.5

2.0

 2.5

3.0

 3.5

4.0

 4.5

5.0

α = 4
p = 4
p = 6
p = 8 α = 2

p = 4
p = 6
p = 8

p = 8, τη = const.

10–1 100 101 102 103

τ/τη

10–1 100 101 102 103

τ/τη

(a) (b)

Figure 11. Results for the local Lagrangian exponents, χ (p)(τ ) as obtained from the finite
Reynolds multifractal formula (5.8)–(5.10) for a given Reynolds number and p =4, 6, 8, with
two choices of the free parameter, α, for differing dip regions. (a) α = 4; (b) α = 2, and χ (8)(τ )
obtained from the same multifractal formula but keeping fixed the dissipative time scales,
τη(h) = const., where the dip region disappears.

parameters (α and a multiplicative constant in the definition of τη). In order to
compute the LSF at all time lags, one needs to integrate the expression (5.8) with the
weight given by (5.9) over all possible h-values:

〈(δτ v)p〉 ∼
∫ hmax

hmin

dhPh(τ )[δτ v(h)]p. (5.10)

Clearly, the above picture goes back to the inertial values when we have τ/TL → 0
and τ � τη, i.e. when we can neglect viscous effects and we can perform the saddle
point estimate. First, let us see what the qualitative impact of changing the free
parameters is (see 5.8). In figure 11 we show the results for χ (p)(τ ) as obtained from
the global MF description (5.10) for p =4, 6, 8 with a fixed D(h) by changing the
free parameter α = 4 (figure 11a) or α = 2 (figure 11b). From this figure we learn two
things. The MF description is very close to the real data, compared with figure 9(a).
In particular, the dip present in the data is also captured by the MF (Arneodo et al.
2008). Moreover, by changing the free parameter α one may deplete or enhance the
dip intensity, as can be seen comparing figures 11(a) and 11(b). We may also note
that the dip region is entirely due to the presence of the fluctuating viscous cut-off,
τη(h), as can be seen in figure 11(b), where the same data for p = 8 but with a fixed
τη are plotted and the dip has disappeared.

Second, from figure 11 one sees that for any finite Reynolds numbers, there
are corrections to scaling induced by the large time lags TL; as a consequence, in
the inertial range the local exponents are not exactly constant. In order to give
a qualitative assessment of the importance of this finite Reynolds correction as
described by (5.8), we plot in figure 12(a) the values of χ (4)(τ ) for three different
Reynolds numbers. As one can see, at increasing Reynolds, the curves in the inertial
range become flatter and flatter, as they must do.

Another interesting issue is connected to finite Reynolds effects. As opposed to the
limit of infinite Reynolds number, for any finite Reynolds, the whole support of D(h)
will play a role in the integration (5.10): for larger τ/TL the saddle point estimate
(5.4) becomes less and less accurate. As a result, the whole shape of the D(h) curve
becomes important for any order. Indeed, the typical D(h) curve from any MF theory
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Figure 12. (a) Reynolds effects on the local exponents predicted from the MF interpolation
formula (5.8)–(5.10), we kept fixed everything except the Reynolds numbers. (b) Sensitivity
to the whole shape of the D(h) curve of the χ (4)(τ ) as predicted from the MF interpolation
formula. We show two cases. One case is obtained integrating only on fluctuations in the left
region of the D(h) curve with respect to its peak, h ∈ [hmin , hmax ], with hmax = hpeak = 0.38;
the second case also considers smoother fluctuations up to hmax = 0.5. The typical log-Poisson
shape of the D(h) used is depicted in the inset.

is a convex function like the one used to fit the Eulerian longitudinal exponents
depicted in the inset of figure 12(b). The left part of D(h) curve, with h ∈ [hmin , hpeak ],
is connected to the positive order of the ESFs (Frisch 1995). The right-hand side,
h ∈ [hpeak , hmax ], is connected to negative moments. Negative moments are generally
ill-defined and one needs to use inverse statistics to assess the right part of the D(h)
curve (Biferale et al. 1999; Jensen 1999). Because of that, we have a good control
only on the left-hand side, where most of the previous experimental and numerical
studies focused. The extension of the integration in (5.10) over the h-value on the
right of the peak of D(h) is therefore not based on solid experimental or numerical
basis. The extension to the right part of a given functional form for D(h) (log-Poisson,
log-normal, etc.), obtained by fitting only positive moments of SFs (Chevillard et al.
2003) is therefore arbitrary.

In figure (12b) we show the dependence of the final expression (5.10) from the
extension of the integration over the h-range. As one can see, the inclusion of h-value
falling on the right of the peak gives an important contribution to the behaviour of
the local slopes for τ ∼ TL, confirming the importance of the whole D(h) if one wants
to control the finite-Reynolds corrections to the saddle point estimate (5.4). For a
more detailed investigation of the property of the multifractal formulation (5.10) also
compared with other DNS and experimental results, the reader can consult the recent
collection of data published in Arneodo et al. (2008).

6. Conclusions
We have reported new Eulerian and Lagrangian statistics from high-resolution

numerical simulations of homogeneous, isotropic weakly compressible turbulence.
The Reynolds number at the Taylor microscale is estimated to be around 600. We
have analyzed, for the first time, Lagrangian intermittency ‘scale-by-scale’ up to
moments of order 10, at large Reynolds numbers. The four main results we have
presented are as follows: (i) Eulerian longitudinal and transverse statistics have slightly



Eulerian and Lagrangian statistics in isotropic turbulence 241

different scaling properties, in agreement with previous incompressible DNS data at
comparable resolution. (ii) Lagrangian statistics are more intermittent than Eulerian
ones percentagewise with respect to the observed deviations from dimensional scaling;
its quantitative value can be captured by using a simple multifractal bridge relation.
(iii) In order to correctly assess Lagrangian scaling properties it is necessary to
make a scale-by-scale analysis, in order to disentangle the dip region close to
viscous scales from the inertial range interval. A lack of such analysis may lead
to an underestimate of the Lagrangian scaling exponents, because of the strong
intermittency of the dip interval, dominated by viscous effects. (iv) Multifractal
phenomenology is able to describe dissipative effects, inertial range fluctuations
and large-scale corrections in a unified way (Chevillard et al. 2003; Arneodo et al.
2008). Here in figures 11 and 12 we have shown the importance of viscous scale
fluctuations, finite Reynolds effects and the D(h) shape on the local scaling exponents,
‘scale-by-scale’.

This study leaves open a few important questions. First, we need to wait for
higher Reynolds numbers data, in a highly isotropic ensemble, in order to resolve
the riddle about longitudinal versus transverse Eulerian fluctuations. Second, we also
need to collect data with higher-order Lagrangian statistics to understand whether
the Eulerian–Lagrangian bridge relation remains valid for higher moments. Third, it
is important to improve experimental and numerical accuracy in order to measure
small-scale and small-time fluctuations, where highly non-trivial physics exists as
shown by the strong enhancement of local intermittency in the dip region τ ∈ [1:10]τη

(Arneodo et al. 2008). Such strong enhancement of fluctuations around the viscous
scale is due to local fluctuations of the dissipative cut-off, which reflects the existence
of different viscous effects for different moments and different correlation functions
(Frisch & Vergassola 1991; L’vov & Procaccia 1996; Yakhot & Sreenivasan 2004).
It is well described, within the multifractal theory, by the relation (5.6), as shown
by the fact that the dip region disappears by removing the viscous fluctuations
in (5.8) and (5.9), see the right-hand side of figure 11. This effect is probably
the greatest barrier to overcome in both stochastic modelling (Sawford 2001)
and theory of Lagrangian turbulence (Zybin et al. 2008; V. Yakhot 2009, private
communication).

We acknowledge very useful discussions with M. Cencini, A. Lanotte, L. Kadanoff
and V. Yakhot. L. B., R. B. and F. T. thank the Flash Center at the University of
Chicago for hospitality when part of this work was prepared. We also want to thank
B. Gallagher for helping in the data analysis and data rendering.
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