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Abstract
We present the results of our numerical simulations of the Rayleigh–Taylor turbulence,
performed using a recently proposed (Sbragaglia et al 2009 J. Fluid Mech. 628 299,
Scagliarini et al 2010 Phys. Fluids 22 055101) lattice Boltzmann method that can describe
consistently a thermal compressible flow subjected to an external forcing. The method allowed
us to study the system in both the nearly Boussinesq regime and the strongly compressible
regime. Moreover, we show that when the stratification is important, the presence of the
adiabatic gradient causes the arrest of the mixing process.

PACS numbers: 47.20.Bp, 47.55.Hd, 47.11.St, 42.27.E−

1. Introduction

Computational methods based on discrete-velocity models
have attracted considerable interest in recent years as efficient
tools for the theoretical investigation of the properties of
complex flows [3–7]. In particular, it has been recently shown
that an important class of these models, known as the lattice
Boltzmann models (LBM) [8–10], can be derived from the
continuum Boltzmann (BGK) equation [11]. This derivation
involves the expansion in suitable Hermite polynomials of the
distribution functions f (x, ξ, t), describing the probability
of finding a molecule at the space–time location (x, t) and
with velocity ξ [5, 12–14]. Therefore, the corresponding
lattice dynamics are well founded in terms of an underlying
continuum kinetic theory. The state of the art is satisfactory
concerning iso-thermal flows, even in the presence of complex
bulk physics (multi-phase, multi-component) [3, 4, 15] and/or
with complex boundary properties including roughness,
wetting and slip boundary conditions [16–18]. The situation
is much less satisfactory when hydrodynamical temperature
fluctuations play an active role in the flow evolution, due

to complex compressible effects or to phase transition in
multi-phase systems.

Within this framework, we recently developed [1, 2]
a new LBM that allows us to incorporate the effects
of external/internal forces into thermal systems. Here,
we use this new algorithm to study highly compressible
Rayleigh–Taylor (RT) systems, with an initial configuration
such that two blobs of the same fluid are prepared with
two different temperatures (hot, less dense and blob below,
cold, denser, blob above). We show that the method is able
to handle the highly non-trivial spatiotemporal evolution of
the system even in the developing turbulent phase. In this
case, we could push the numerics up to Atwood numbers
At ∼ 0.4. The maximum Rayleigh numbers achieved are
Ra ∼ 4 × 1010 for At = 0.05 and Ra ∼ 2 × 109 for At = 0.4.
This paper is organized as follows. We will first describe
the method (section 2), the numerical setup (section 3) and
the system studied (section 4); then we will discuss the two
main physical results, namely the stratification (section 5)
and compressibility (section 6) effects, and some features
related to the conservation of mean quantities (section 7). Our
conclusions are presented in section 8.
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Figure 1. Scheme of the discrete set of velocities; r is the lattice
constant whose value is approximately r = 1.1969 (see [2] and
references therein).

2. The lattice Boltzmann model

Here we introduce the simulated equation set, along with
a brief description of the computational lattice Boltzmann
method employed. More details, along with many validations,
can be found in [2]. The thermal–kinetic description of a
compressible gas/fluid of variable density ρ, local velocity u
and internal energyK and subject to a local body force density
g is given by the following equations:

∂tρ + ∂i (ρui )= 0,

∂t (ρuk)+ ∂i (Pik)= ρgk, (1)

∂tK + 1
2∂i qi = ρgi ui ,

where Pik and qi are the momentum and energy fluxes
describing advection, viscous properties and thermal
diffusivities in the hydrodynamical limit.

In [1], it has been shown that it is possible to recover
exactly these equations, starting from a continuum Boltzmann
equation and introducing a suitable shift of the velocity and
temperature fields entering the local equilibrium.

The lattice counterpart of the continuum description
can be obtained through the lattice Boltzmann discretization
( fl(x, t) are the fields associated with the populations),

fl(x+ cl1t, t +1t)− fl(x, t)= −
1t

τLBM
( fl(x, t)− f (eq)

l ),

(2)
where the equilibrium f (eq)

l is expressed in terms of
hydrodynamical fields and the body force term g, and the
subscript l runs over the discrete set of velocities cl (see
figure 1); in equation (2) τLBM is the relaxation time (which
is related to the dynamic viscosity ν via ν = ρT (τLBM − 1/2),
T being the temperature field), and 1t the time step of the
simulation.

The macroscopic fields (density, momentum
and temperature) are defined in terms of the lattice
Boltzmann populations: ρ =

∑
l fl , ρu=

∑
l cl fl , DρT =∑

l |cl −u|
2 fl . Lattice discretization induces non-trivial

correction terms in the macroscopic evolution of averaged

hydrodynamical quantities. In particular, both momentum and
temperature must be renormalized by discretization effects in
order to recover the correct description out of the discretized
LBM variables: the first correction to momentum is given by
the pre- and post-collisional average [19, 20] u(H) = u+ 1t

2 g
and the first, non-trivial correction to the temperature field
is given by [1] T (H)

= T + (1t)2g2

4D (D is the dimensionality
of the system). Using these ‘renormalized’ hydrodynamical
fields it is possible to recover, through a Taylor expansion in
1t , the thermo-hydrodynamical equations [1, 2],

Dtρ = −ρ∂i u
(H)
i , (3)

ρDt u
(H)
i = −∂i p − ρgδi,3 + ν∂ j j u

(H)
i , (4)

ρcvDt T
(H) + p∂i u

(H)
i = k∂i i T

(H), (5)

where we have introduced the material derivative,
Dt = ∂t + u(H)j ∂ j , and we have neglected viscous dissipation in
the temperature equation (usually small). Moreover, cv is the
specific heat at constant volume for an ideal gas p = ρT (H),
and ν and k are the transport coefficients. From now on, for
the sake of simplicity, we will drop the superscript (H),
knowing that we are dealing with lattice hydrodynamical
quantities satisfying equations (3)–(5). As a tool for the
numerical simulation of systems such as (or similar to) the
one we plan to study, the LBM may suffer, in principle,
from some issues, such as having too high Mach numbers
and too low viscosity (i.e. very small relaxation time, which
is undesirable especially in the presence of processes very
far from local equilibrium): we could, however, check the
accuracy of our method against different methods, finding
it extremely competitive, within the range of parameters
discussed in this paper [21].

3. Details of the numerical simulations

We use a two-dimensional (2D) LBM algorithm, with 37
population fields (a so-called D2Q37 model), moving with the
lattice speeds shown in figure 1. Since the lattice spacing can
be taken to be unitary, the time step 1t will be the inverse
of the lattice unit speed, i.e. 1t ∼ 0.835 [2]. Three different
kinds of simulations have been performed (whose parameters
are summarized in table 1): (A) with a large enough adiabatic
gradient (but small Atwood number) in order to address the
stratification effects on the mixing layer growth, while still
being very close to the Boussinesq approximation; (B) with an
adiabatic gradient that is twice the one of run A; (C) with large
Atwood number in order to describe compressibility effects,
outside the Boussinesq regime, but far from the adiabatic
profile; (D) with small adiabatic gradient and small Atwood
number.

4. The RT system

Superposition of a heavy fluid above a lighter one in a
constant acceleration field depicts a hydrodynamic unstable
configuration called the RT instability [22] with applications
in different fields ranging from inertial-confinement
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Table 1. Parameters for the three types of RT runs. Key: Atwood number, At = (Td − Tu)/(Td + Tu); viscosity, ν = ρT (τLBM − 1/2);
gravity, g; temperature in the upper half region, Tu; temperature in the lower half region, Td; normalization time, τ̃ =

√
L x/(g At). The

average density value is 1. All entries are in natural lattice Boltzmann units.

At L x L z τLBM − 0.5 g Tu Td τ̃

Run A 0.05 800 1400 0.001 2.5 × 10−4 0.95 1.05 8 × 103

Run B 0.05 800 1400 0.001 5 × 10−4 0.95 1.05 5.6 × 103

Run C 0.4 1664 4400 0.1 1 × 10−4 0.6 1.4 6.5 × 103

Run D 0.05 1024 2400 0.005 5 × 10−5 0.95 1.05 2 × 104

T (x, z) x, ρ(x, z) x

g

HOT

COLD

TdTu

Lz/2

0

−Lz/2

Figure 2. Initial condition of the RT system, as given by equation
(7). We show the mean temperature (bold line) and density (thin
line) profiles as a function of the z-coordinate (on the vertical axis).

fusion [23] to supernovae explosions [24] among many
others [25]. Although this instability was studied for decades
it is still an open problem in several aspects [26]. In particular,
it is crucial to control the initial and late evolution of the
mixing layer between the two miscible fluids; the small-scale
turbulent fluctuations, their anisotropic/isotropic ratio; their
dependence on the initial perturbation spectrum or on the
physical dimensions of the embedding space [27, 28]. In
many cases, especially concerning astrophysical and nuclear
applications, the two fluids evolve with strong compressible
and/or stratification effects, a situation that is difficult to
investigate either theoretically or numerically. Here, we
concentrate on the large-scale properties of the mixing
layer, studying a slightly different RT system than is usually
found in the literature: the spatiotemporal evolution of a
single-component fluid when initially prepared in hydrostatic
unstable equilibrium, i.e. with a cold uniform region in the top
half and a hot uniform region on the bottom half (see figure 2)
in analogy with natural convection. For the sake of simplicity
we limit the investigation to the 2D case. While small-scale
fluctuations may be strongly different in 2D or 3D geometries,
the large-scale mixing layer growth is not supposed to change
its qualitative evolution [29, 30]. Gray-scale coded snapshots
of a typical RT evolution are shown in figure 3, showing
all the complexity of the phenomena. Let us start to define
precisely the initial setup. We prepare a single-component
compressible flow in a 2D tank of size L x × L z , with
adiabatic and no-slip boundary conditions on the top and
bottom walls and with periodic boundary conditions on the
vertical boundaries. For convenience we define the initial
interface to be at height z = 0, the box extending up to

Figure 3. Spatiotemporal evolution for a typical RT run with
L x × L z = 1024 × 2400, Tu = 0.95, Td = 1.05 at four instants of
time: t = τ̃ , 2τ̃ , 4τ̃ and 6τ̃ (run D in table 1) going clockwise from
the top left panel.

z = L z/2 above and z = −L z/2 below it (see figure 2). In
the two half volumes, we then fix two different homogeneous
temperatures, with the corresponding hydrostatic density
profiles, ρ0, verifying

∂z p0(z)= −gρ0(z). (6)

Considering that in each half we have p0(z)= Tρ0(z), with
T fixed, the solution has exponentially decaying behavior in
the two half volumes, each one driven by its own temperature
value. The initial hydrostatic unstable configuration is
therefore given by

T0(z)= Tu; ρ0(z)= ρu exp(−g(z − zc)/Tu); z > 0

T0(z)= Td; ρ0(z)= ρb exp(−g(z − zc)/Td); z < 0.

(7)

3
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To be at equilibrium, we require to have the same pressure
at the interface, z = zc = 0, which translates into a simple
condition on the prefactor of the above expressions:

ρu Tu = ρbTd . (8)

Because Tu < Td , we have at the interface ρu > ρb. As far as
we know, there are no exhaustive detailed calculations of the
stability problem for such a configuration, even though not too
different from the usual RT compressible case [22, 31, 32].
As mentioned before, this is not the common way to study
RT systems, which is usually meant as the superposition
of two different miscible fluids, isothermal, with different
densities [22, 27, 31, 33]. As long as compressible effects are
small, one may safely neglect pressure fluctuations and write,
for the case of an ideal gas,

δρ

ρ
∼ −

δT

T
(9)

and the two RT experiments are then strictly equivalent.
Moreover, in the latter case, if one neglects the dependence
of viscosity and thermal diffusivity on temperature, the
final evolution is indistinguishable from the evolution of
temperature in the Boussinesq approximation [28, 29].

5. The adiabatic gradient and the arrest of the
mixing process

The main novelty in the system investigated here is due to
the presence of new effects induced by the adiabatic gradient,
which can be written for an ideal gas as βad = g/cp. The role
of stratification, i.e. of the adiabatic gradient, is quite well
established in the context of Rayleigh–Bénard convection (see
e.g. [34]), whereas it has only in recent years been studied,
both numerically [35, 36] and theoretically [37, 38], in a
setup such as that of RT mixing. In order to understand
the main physical point it is useful to consider the RT
mixing layer as equivalent to a (developing) Rayleigh–Bénard
system with an imposed mean temperature gradient [39, 40].
Let us designate by Lml(t) the typical width of the RT
mixing layer at a given time as measured, for example, from
the distance between the two elevations where the mean
temperature profile is 1% lower or higher than the bottom and
top, respectively, unmixed temperature values, Lml = zu − zd ,
where 〈T (x, zu)〉x = 1.01Tu and 〈T (x, zd)〉x = 0.99Td . The
temperature tends to develop a linear profile inside the mixing
region, the resulting instantaneous temperature gradient being
given by β(t)= (Td − Tu)/Lml(t) and hence decreasing in
time inversely to the growth of the mixing length. As a result,
at a certain time (if the box is high enough) the instantaneous
temperature gradient will become of the same order as the
adiabatic gradient, β(t)∼ βad and the growth of the mixing
length will stop. In figure 4 we show the mean temperature
profiles once the mixing has already stopped, for two different
values of gravity (runs A and B in table 1): in the mixing
layer the two curves have developed a linear profile with slope
g/cp, which is exactly the adiabatic gradient for an ideal gas.
One can define an instantaneous Rayleigh number, driving the
physics inside the mixing layer, as

R̃a(t)=
(g/T̃0)L4

ml(t)(β(t)−βad)

(k/ρ̃0cp)(ν/ρ̃0)
, (10)

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0  0.2  0.4  0.6  0.8  1

<T>x

z/Lz

Figure 4. Mean temperature profiles 〈T 〉x (z, t) for run A (M) and
run B (�), in a stage where the mixing process has already stopped
(t ' 13τ̃ for both cases). The dashed lines represent the
corresponding adiabatic profiles.

where ˜(·) indicates quantities evaluated in the middle layer.
It is clear that for small times, β(t)� βad, the effective
instantaneous Rayleigh number is high: the system is
unstable, and the mixing length grows. On the other hand, as
time elapses, the vertical mean temperature gradient decreases
until a point when β(t)∼ βad, the instantaneous effective
Rayleigh number becomes R̃a(t)∼O(1) and the system
tends to be stabilized. We can then identify an adiabatic
length,

Lad = (Td − Tu)/βad = cp1T/g,

which determines the maximum length achievable by
the mixing layer, in our configuration. When the mean
temperature approaches the adiabatic profile, the system
shows a sudden slowing down of the growth of the mixing
layer, which eventually stops. A possible way of estimating
quantitatively when and how the adiabatic gradient starts to
play a role in the growth of the mixing layer width Lml(t)
is to use a simple phenomenological closure for large-scale
quantities in the system. We start from the self-similar
scaling predicted by [41, 42] for the homogeneous unstratified
growth,

(L̇ml(t))
2
= 4α g At Lml(t), (11)

which has a unique solution in terms of the initial value,
Lml(t0),

Lml(t)= Lml(t0)+ 2
√
α At g (t − t0)+α At g (t − t0)

2.

(12)

In order to minimally modify the above expression
considering the saturation effects induced by stratification, we
proposed to use in [2]

(L̇ml(t))
2
= 4α g At Lml(t)ψ

(
Lml(t)

Lad

)
, (13)

where ψ = ψ(x) must be a function fulfilling the condition
ψ → 1 as x → 0 (that is, for Lad → ∞), in order to recover
equation (11) for the unstratified case when the adiabatic
gradient goes to zero. We further add the requirement

4
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Figure 5. Evolution of the mixing layer, Lml(t), versus time with
two different adiabatic lengths, corresponding to run A (M) and run
B (�) in table 1. Solid bold lines correspond to the theoretical
prediction (13) with α = 0.05.

of reaching the adiabatic profile with zero velocity and
acceleration, enforcing a strict irreversible growth, i.e.
L̇ml > 0, as it must be for the case of miscible fluids. Under
these assumptions it can be shown that the simplest form
of the function ψ is

ψ

(
L

Lad

)
= C

[
e−(L−Lad/Lad) −

(
2Lad − L

Lad

)]
, (14)

where the prefactor C must be set equal to 1/(e − 2) to comply
with the prescribed boundary conditions. Equation (13) must
be considered as a zeroth order phenomenological way of
taking into account the adiabatic gradient in the mixing layer
evolution. We integrated numerically equation (13) testing
the result in figure 5, where we show that it is possible
to fit the global evolution of the mixing length Lml(t), by
using reasonable [26] values of α, for all times, including the
long-time behavior where Lml(t)∼ Lad. We can then interpret
the solution of our equation (13) as a good generalization of
(12) including also the adiabatic gradient effects.

6. Effects of compressibility

In this section, we are going to study the effects of flow
compressibility on the dynamics of an RT system for varying
Atwood number. To do that, we come back to the discussion
sketched in section 4; since the equation of state for our fluid
is that of a perfect gas, the pressure, temperature and density
fluctuations are related by

δP

P
=
δρ

ρ
+
δT

T
. (15)

Hence, as discussed in section 4, if pressure fluctuations are
small, density fluctuations are linearly slaved on those of
temperature, which will also be small, and the system behaves
as a Boussinesq fluid. Conversely, if the temperature jump is
high there will be large density differences through system
(7) and hence large pressure fluctuations (6); thus we expect
that, on increasing the Atwood number, the dynamics become

10-6

10-5

10-4

10-3

10-2

10-1

1

 0.92  0.94  0.96  0.98  1  1.02  1.04  1.06  1.08

P(T)

T

Figure 6. PDFs of temperature at t = τ̃ (�) and t = 5τ̃ (M), for
At = 0.05, for which the flow is basically Boussinesq like.

10-5

10-4

10-3

10-2

10-1

1

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

P(T)

T

Figure 7. PDFs at t = τ̃ (�) and t = 5τ̃ (M), for At = 0.4, that is,
in the highly compressible regime.

more and more compressible and pressure turns out to be a
dynamically relevant variable.

We show, first, how the mixing acts on the statistics of
the (pointwise) temperature; as one can see in figures 6 and
7, where we plot the probability density function (PDF) of
temperature at two instants of time for At = 0.05 and At =

0.4 (for which the squared Mach number is Ma2
∼ 0.16),

the distribution has initially a bimodal character, since at
the beginning the volume is divided into two homogeneous
regions of hot and cold fluids. Due to the mixing, at
later times, the probability of having intermediate values
of temperature increases; however, the two peaks remain
dominant, because the system dynamics do not yet involve
the whole box and because the diffusive processes are so slow
that they are irrelevant at this stage. No evident differences
(except the obviously larger range of values spanned) emerge
between the low and high Atwood number cases. Hence, to
better address this point, we study the statistics of pressure
fluctuations (with respect to the mean profile) in the two
compressibility regimes; we define the fluctuation of the
generic thermo-hydrodynamic field φ as

δφ(x, t)= φ(x, t)− 〈φ〉x (z, t); 〈φ〉x (z, t)=

∫ L x

0
φ dx .

5
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10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15

P(δp)

δp/<p>

-0.015 0.0 0.015

Figure 8. PDFs of pressure fluctuations at time t = τ̃ (�) and
t = 5τ̃ (M), for At = 0.4 and (inset) for At = 0.05 (t = τ̃ , solid line,
and t = 5τ̃ , dashed line). Whereas in the low At case, the PDF
remains basically a δ-function at any time, it is more spread (with
tails becoming larger as time elapses) in the compressible case
(At = 0.4).

In figure 8, we show the PDFs of δp, measured again inside
the whole volume, at two different instants of time during the
mixing process, for two Atwood numbers. It can be noted
how the PDF, while being basically a δ-function for low At
and remaining such at any time (see the inset of figure 8),
is more spread at higher At and enlarges its tails as time
elapses, confirming that the pressure dynamics is now highly
non-trivial.

It is, moreover, known that increasing the degree of
compressibility of the dynamics has also a strong impact
on the stability properties of the system [43] and on the
statistics of the mixing layer growth process, determining in
the latter case an asymmetry in the growth of the mixing
layer [43], noticeable also in the statistics of the growth
parameter α [2]. We would like to discuss here such effects,
without appealing to any phenomenological model, but in
terms, again, of PDFs of the temperature field. The use
of PDFs to address compressibility effects in RT was also
suggested, although in a slightly different way, in [37, 44], in
regimes from low (Ma2

∼ 0.008) to moderately high (Ma2
∼

0.1) squared Mach number. With this aim, we measured
the P(T ) where T = T (x, z∗, t∗

= 5τ̃ ) along lines at two
fixed heights z∗ (at a certain time in the late stage of the
evolution), within the mixing layer, symmetrically displaced
with respect to the mid-cell; in particular we chose z∗

=

±Lml(t)/2. In figures 9 and 10, we plot the PDFs for such
heights for At = 0.05 and At = 0.4, respectively. In both
cases, of course, the PDF corresponding to the upper height
shows a peak at lower values of T (close to the unmixed cold
fluid value), and vice versa for the lower height. However,
whereas for small At the two PDFs are symmetric with respect
to the average temperature (in some sense they transform into
each other upon reversal around T = 1), for the compressible
case figure 10 displays a clear asymmetry, where the PDF
measured at the lower z-location develops a more intense tail
at low T values, indicating that falling cold fluid spikes are
faster (and mix more slowly) than rising hot fluid bubbles.

10-5

10-4

10-3

10-2

10-1

 0.94  0.96  0.98  1  1.02  1.04  1.06

P(T)

T

Figure 9. PDFs of the temperature field T (x, z∗, t = 5τ̃ ), measured
at z∗

= ±Lml(t)/2, for At = 0.05. The two PDFs show peaks close
to the values of T of the unmixed cold (at z∗

= +Lml/2; M) and hot
(at z∗

= −Lml/2; �) fluids, respectively; the two PDFs are
symmetric to each other with respect to the mean temperature value
T = 1 (typical phenomenology for a Boussinesq system).

10-5
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10-1

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

P(T)

T

Figure 10. The same as figure 9 but for At = 0.4. In contrast to the
Boussinesq (low At) case, the two PDFs are no longer symmetric,
since the one measured at the lower height develops a fatter tail at
low T values, indicating the asymmetry in the mixing process
evolution.

7. Evolution of averaged quantities

If we integrate equation (4), multiplied by ui , over the whole
volume, since the boundary conditions are periodic at the
vertical walls, and set zero velocity (no-slip) at the top and
bottom plates, we obtain the following equation for the mean
kinetic energy,

∂t

〈
ρu2

2

〉
= 〈ρguz〉 − εdiss, (16)

where 〈· · ·〉 = 1/(L x L z)
∫
(· · ·) dx dz denotes the space

average, and εdiss = ν〈(∂ j ui )
2
〉. Equation (16) indicates that

the total forcing, due to the gravitational field, is consumed
partly by transformation into kinetic energy and partly by
dissipation. In figure 11, we show the fraction of forcing
transferred as kinetic energy ((dE/dt)/〈ρguz〉) and dissipated
(εdiss/〈ρguz〉), and we observe that the latter is much smaller
than the former, as one would have expected, the dissipation
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Figure 11. Time derivative of the kinetic energy (�) and
dissipation (M) as functions of time, shown as fraction of the forcing
term 〈ρguz〉. Note that the forcing due to gravity is almost entirely
converted into kinetic energy, since the dissipation is basically
negligible in 2D turbulence.

being negligible in 2D. This behavior is in strong contrast with
what happens in 3D, where energy is transferred downscale
and a sort of equipartition between kinetic energy growth and
energy dissipation is achieved [45, 46].

8. Conclusions

We simulated, by means of a new lattice Boltzmann
algorithm, the turbulent dynamics of a Rayleigh–Taylor
system, the characteristics of the method letting us tune the
effects of both stratification and compressibility. Concerning
the former problem, we discussed the importance of the
adiabatic gradient for the growth of the RT mixing layer,
showing the existence of the phenomenon of arrest of the
mixing process and of a maximal width, the adiabatic length,
Lad, for the mixing region. We then measured the PDFs of
density and temperature fluctuations inside the mixing region,
observing that whereas the two statistics are almost identical
for small Atwood numbers (negligible compressibility),
they decouple when compressibility is large, owing to the
increased relevance of pressure fluctuations, whose PDF we
also measured, thus confirming that for large temperature
jumps, pressure plays an active dynamical role.
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