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We present the results of a high resolution numerical study of two-dimensional (2D) Rayleigh—
Taylor turbulence using a recently proposed thermal lattice Boltzmann method. The goal of our
study is both methodological and physical. We assess merits and limitations concerning small- and
large-scale resolution/accuracy of the adopted integration scheme. We discuss quantitatively the
requirements needed to keep the method stable and precise enough to simulate stratified and
unstratified flows driven by thermal active fluctuations at high Rayleigh and high Reynolds
numbers. We present data with spatial resolution up to 4096 X 10 000 grid points and Rayleigh
number up to Ra~ 10'!. The statistical quality of the data allows us to investigate velocity and
temperature fluctuations, scale-by-scale, over roughly four decades. We present a detailed
quantitative analysis of scaling laws in the viscous, inertial, and integral range, supporting the
existence of a Bolgiano-like inertial scaling, as expected in 2D systems. We also discuss the
presence of small/large intermittent deviations to the scaling of velocity/temperature fluctuations

and the Rayleigh dependency of gradients flatness. © 2010 American Institute of Physics.

[doi:10.1063/1.3517295]

I. INTRODUCTION

The Rayleigh-Taylor (RT) instability is present when-
ever we have the superposition of a heavy fluid above a
lighter one in a constant acceleration field.' Applications are
numerous, from inertial-confinement fusion® to supernovae
explosions3 and many others.* The RT instability has been
studied for decades, but it still presents several open
problerns.5 It is important to control the initial and
asymptotic evolution of the mixing layer between two mis-
cible fluids; the small-scale turbulent fluctuations, their
anisotropic/isotropic ratio; their dependency on the initial
perturbation spectrum, on the geometry of the containing
volumes, or on the physical dimensions of the embedding
space (see Refs. 6 and 7 for recent high resolution numerical
studies). Concerning astrophysical and nuclear applications,
the two fluids evolve with strong compressible and/or strati-
fication effects, a situation that is difficult to investigate ei-
ther theoretically or numerically. The setup studied in this
paper is two-dimensional (2D) and the initial configuration is
slightly different from what is usually found in literature: the
spatial temporal evolution of a single component fluid with a
cold uniform region on the top half and a hot uniform region
on the bottom half (see Fig. 1 for details). Such a situation is
of interest for convection in the atmosphere, ocean, or even
stars interiors, where masses of hot/cold fluid may be found
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in unstable situations.* '’ The choice to focus on a 2D ge-
ometry is motivated by different methodological, theoretical,
and phenomenological challenges. First, concerning the
method, 2D geometries allow to push the numerics up to
4096 X 10 000 grid points—with correspondingly high
Rayleigh/Reynolds numbers; this is an excellent testing
ground for the lattice Boltzmann thermal (LBT) scheme'"12
in fully developed situations, with highly intermittent gradi-
ent statistics, and a well developed inertial range of scales
with power law distributions. We initially validate the
method against exact relationships originating from the hy-
drodynamical Navier—Stokes—Fourier equations. Then,
within the limits settled by the validation steps, we show that
the scheme—albeit being only second order accurate—
allows for quantitative studies of hydrodynamical statistical
fluctuations over a four decade interval of scales. From the
phenomenological point of view, theoretical works'*!* and
pioneering numerical simulations' at smaller resolution tell
us that Rayleigh-Taylor dynamics in two dimensions dis-
plays Bolgiano statistics for velocity and temperature fields,
at least at scales small enough and far enough from the edges
of the mixing layer. Bolgiano theory, at variance with Kol-
mogorov theory,16 predicts for typical inertial range velocity
and temperature fluctuations on a generic inertial scale, R,
the following laws:

© 2010 American Institute of Physics


http://dx.doi.org/10.1063/1.3517295
http://dx.doi.org/10.1063/1.3517295
http://dx.doi.org/10.1063/1.3517295

115112-2 Biferale et al.
L./2
g
COLD
0
HOT
—L./2 _ |
T, (T(2, 2))ar(p(2, 2))2 T,

Phys. Fluids 22, 115112 (2010)

+L./2

M\I/‘y
s

0 B3 esie ;/jé?\g;gi

L2
0

L. 0 L. 0 L.

FIG. 1. (Color online) Left: initial configuration for the stratified Rayleigh—Taylor systems. Temperature in the upper half is chosen constant Ty(z) =T,,, while
density follow a hydrostatic profile, po(z)=p,, exp[-g(z—2.)/T,,], with z. being the central location in the box. In the lower half, we have
To(2)=Tgown and po(2)=Paon EXP[=€(z=2:)/ Tyown]- To be at equilibrium, we require having the same pressure at the interface, pu,7,p=PdownTdown- The
temperature jump at the interface is smoothed by a tanh profile with a width of the order of ten grid points. The bold and tiny solid lines represent the
temperature and density profiles, respectively. Right: snapshot of the RT evolution at three times r=(0.5,1,4)7.
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where L(7) is a measure of the extension of the mixing layer
at any given time ¢ during the RT evolution and K(z) is the
square root of the total kinetic energy inside the mixing layer
(see below for a precise definition). These scaling properties
tell us that temperature/velocity is rougher/smoother than ex-
pected for Kolmogorov scaling ~R'"3. This is due to the
active role played by buoyancy in the vertical momentum
evolution, i.e., temperature becomes a fully active scalar at
all inertial scales. This is in clear contrast to the
Kolmogorov-like phenomenology expected13 and
observed”!” in three-dimensional (3D) cases. 2D Rayleigh—
Taylor systems realize one of those cases where the forcing
mechanism—buoyancy—overwhelms  nonlinear  energy
transfer. This has also theoretical relevance, connected to the
universality of small-scale statistics in the presence of mul-
tiscale forcing mechanisms,lg"22 in general, or to renormal-
ization group approac:hes,23 in particular. At variance with
stochastic external multiscale forcing mechanisms, here the
statistics of the buoyancy is directly connected to the veloc-
ity field itself, opening the way for new phenomena, which
we discuss in detail later. Far from being interesting only for
theoretical reasons, Bolgiano scaling is believed to character-
ize small-scale velocity and temperature fluctuations in 3D
Rayleigh—-Bénard convection close to the rigid boundaries,
where the viscous and thermal boundary layers merge with
the bulk region.24 In fact, thermohydrodynamical evolution
in the proximity of the boundaries is considered to be the key
ingredient driving the whole cell behavior.”

Here, we will be mainly interested in small-scale prop-
erties even though large-scale evolution presents many im-
portant open issues, in particular, for stratified flows. For
example, we have recently shown that RT evolution in the
setup of Fig. 1 is stopped by the adiabatic gradient in the
presence of a strongly stratified atmosphere.” The investiga-
tion of small-scale properties of such situation, as well as the
overshooting observed at the edge of the mixing layer, is in
progress and will be reported elsewhere.

All simulations are performed using an innovative LBT,
proposed in Ref. 12 and already validated concerning large-
scale properties on the same geometry here investigated.”
Stable, accurate, and efficient discrete kinetic methods de-
scribing simultaneous hydrodynamical evolution of momen-
tum and internal energy are notoriously difficult to
achieve.”®”” The main difficulties stem from the develop-
ment of subtle instabilities when the velocity increases lo-
cally. In recent years, the situation has started to improve, as
different attempts have been made to describe active thermal
modes within a fully discretized Boltzmann approach.zg_35

The advantages offered by LB codes are threefold. First,
the hydrodynamical manifold is described by the whole
Navier—Stokes—Fourier equations, without the need to rely
on incompressible and Boussinesq-like approximations. Sec-
ond, the method is particularly efficient in dealing with com-
plex bulk or boundary physics, opening the way to incorpo-
rate either surface tension effects or complex boundary
conditions. Last but not least, pressure fluctuations are fully
incorporated in the hydrodynamical evolution, so we do not
need to solve for Poisson equations; the method becomes
fully local in space, allowing for efficient implementations
on massively parallel machines even if limited interconnec-
tion is available. Building upon this point, our numerical
results have been obtained on the QPACE (QCD Parallel
Computing on the Cell Broadband Engine) system, a mas-
sively parallel machine that uses PowerXCell 8i processors
connected by a toroidal network,36’37 following the lines of
similar older attempts.38

The results are as follows. In Sec. II, we present the
notation and the main physical quantities that we study in
this paper, including a cursory overview of RT large-scale
properties. In Sec. III, we briefly summarize the LBT
method, we present the numerical details, and we discuss the
validation steps. In Sec. IV, we present our results on statis-
tical fluctuations of temperature, velocity, temperature fluxes,
and buoyancy terms over the whole range of scales accessed
by our numerics. We show that velocity statistics is
Bolgiano-like with very small—if any—intermittent correc-
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tions. We discuss the possible origin of these small anoma-
lous corrections, in relation to the corresponding small inter-
mittent fluctuations of the buoyancy term, a new scenario for
2D turbulence. On the other hand, we show that temperature
fluctuations are strongly intermittent with high order mo-
ments fully dominated by hot/cold fronts. Such strong inter-
mittency has a direct influence also on the temperature flux
statistics. Our resolution allows us to address quantitatively
and scale-by-scale the statistical properties of all hydrody-
namical fields; this analysis is still not within reach in the 3D
case. Our concluding remarks (Sec. V) discuss possible fur-
ther development toward the study of (i) reactive Rayleigh—
Taylor systems, (ii) strongly stratified systems, and (iii)
multiphase/multicomponent Rayleigh-Taylor or convection
systems.

Il. RAYLEIGH-TAYLOR SYSTEMS

The spatiotemporal evolution of a stratified compressible
flow, in an external gravity field, g>0, is ruled by the
Navier—Stokes—Fourier equations (double indices are meant
summed upon)

Dp=— pdu;
pDu;=—0;P — pgb; . + pojju; (2)
pc, DT = D,P = x0;T,

where D, is the material derivative, w and y are the molecu-
lar viscosity and thermal conductivity, c,, is the specific heat
at constant pressure, and p, 7, P, and u are density, tempera-
ture, pressure, and velocity field, respectively. Under the as-
sumption that compressibility and stratification are small (the
situation addressed in this paper) and that fluid parameters
depend weakly on the local thermodynamic fields, one can
expand pressure around its hydrostatic value P=Py+p, with
d,Py=—gp and p<P,, and perform a small Mach number
expansion,””’

Du;=- w + g—05,-2+ vd;iu;

p T, 7 (3)
DT —-u,y=ko;T.

In this approximation, only temperature fluctuations 6 force
the system; we have introduced the mean temperature, 7,,;
kinematic viscosity, v=pu/p; thermal diffusivity, k=x/(c,p),
and adiabatic gradient for an ideal gas, y=g/c,. The small
Mach expansion and small stratification decouple the pres-
sure from the internal energy equation, i.e., p in Eq. (3) is
just a Lagrange multiplier used to enforce du;=0 every-
where. As we will show in Sec. III, the LBT algorithm we
are going to use is meant to reproduce the set of Egs. (2) and
(3) in the corresponding limit.

If the adiabatic gradient is negligible, y~0, it is well
known that starting from an unstable initial condition, as
depicted in Fig. 1, any small perturbation will lead to a tur-
bulent mixture between the hot and the cold regions, expand-
ing along the vertical z-direction. Concerning large-scale
quantities, a huge amount of earlier work (e.g., see Ref. 5)
has focused on the estimation of the growth rate of the mix-
ing layer extension, L(¢), and of the total turbulent kinetic
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energy, K*(1)=[0.5/L,L(t)]fdxdzu?, produced by the conver-
sion of the initial potential energy. Using dimensional analy-
sis and self-similar assumptionsf“’42 one predicts

K(t) ~ B, (4)

where t is the typical time needed for the system to reach a
fully nonlinear evolution. The values of the coefficients,
a, B, have been extensively studied both in two and three
dimensions.>!' 134143747 They depend on the definition of
L(r), typically taken either as the region where the mean
temperature profile, averaged over the horizontal direction,

L(1) ~ alt+1)%,

7_"(z)=(f) JdxT(x,z,t), is within a given range, for example:

T(z) € [(14x)Typ: (1-x)Tyown] with x=0.05, or as an integral
property over the whole temperature distribution,

L=+ f dxdz®[—BT(x’Z’t) L ] (5)
Lx down — Tup

with O[x]=2x, 0=x=1/2, and O[x]=2(1-x), 1/2=x=1.
Using the estimate (4), one may predict the whole profile
evolution, adopting either simple constant eddy viscosity
models or more refined Prandtl mixing length theory.48 In
Fig. 2, we show the growth rate of the mixing layer, the
kinetic energy, and the temporal evolution of the temperature
profile as an example of typical evolutions of large-scale
quantities in our numerics. The agreement with the expected
phenomenology is very satisfactory. Notice a systematic
small deviation at a large time. This deviation is probably
due to a transition induced by the evolving aspect ratio.
When the aspect ratio becomes of order 1, important hori-
zontal fluctuations develop in the system, preventing an effi-
cient conversion of potential energy to vertical kinetic energy
(inset in the same figure).

In this paper, on the other hand, we focus on small-scale
quantities, i.e., velocity, temperature, and flux statistics scale-
by-scale. In particular, we focus on the following set of
structure functions, based on moments of order p of velocity,
temperature, or mixed increments:

SP(R.1) = (| 561"
SPR.1) = (|Seuf?). i=x.
SR, = |30 S )

SYUR, 1) = ([(85z0)% Spue.| 1),

(6)

where we define the increment of a generic hydrodynamical
field, A(x,z,1), as SpA=A(x+R,z,t)—A(x,z,t) and the aver-
age

1 Ly fZZ/Z
<<-)>=LXXLJ0 ) ;)

is performed on the whole horizontal direction and on a
given vertical range inside the mixing layer. In order to mini-
mize nonhomogeneous contributions, we typically restrict

the vertical extension of the averaging region to I;:%L(t),
with L(r) estimated according to the volume average (5).
Moreover, in the correlation functions defined above, we
only show the results for spatial increments along the fully
homogeneous horizontal direction, £. Subscripts (B) and (F)
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in the third and fourth rows of Eq. (6) denote the correlation
functions driving the time evolution of the pth moment of
velocity increments (the buoyancy forcing term) and of the
temperature flux, respectively. Chertkov'"” developed a co-
herent phenomenology for small-scale 2D Rayleigh—Taylor
systems on the reasonable assumptions that (i) the mixing
layer evolution is adiabatically slow compared to small-scale
fluctuations, (ii) the amount of kinetic energy dissipation at
small scales is negligible (absence of direct energy cascade
in 2D turbulence), and (iii) temperature is efficiently dissi-
pated at small scales (direct temperature cascade). These
three ingredients lead to a unique possible dimensional pre-
diction, the Bolgiano scaling (1). In particular, one expects in
the inertial range:

p
®) N i:|§9(lﬂ)
SY(R,1) [LU)_ _
R Zu(p)
S,(Z?MZ(R,I) ~ Kp(t) T[)
_R 23(1?) (7)
SP(R,1) ~ K”(t){m] . () <R<L(®)
T e I
T L]
while in the viscous range,
p h _
) B (1) {9(17){i p
SeRD [L@ T
®) N ﬂ 2u(p) i P
S (R.1) K”(t)_ I
Lp(p) P
SY(R.1) ~K”(t){%} [%} . R< ()
(p) ~ kP13 _@_{F(p)_i_p
\SF (R,1) ~ K (t)_L(t)_ 0l
(®)
with
_P _3
Lop) = 5 &up) = P )

and

Zp(p) =[6(1) + Lu(p)], €F(P)=[§a(2)+§u(1)]§. (10)

Moreover, according to 2D Bolgiano scaling, the dissipative
scale increases with time, as 7(¢) ~ "/ 8. The two expressions
[Egs. (7) and (8)] for inertial and viscous ranges are such that
they match at the viscous scale, 7(). The presence of a non-
stationary evolution makes the problem particularly interest-
ing. The above phenomenology has been already investi-
gated numerically in Ref. 15, where a good agreement with
Bolgiano scaling for low order velocity structure functions
and a departure from Bolgiano dimensional scaling for tem-
perature structure functions were measured, for the first time.
On one hand, the results presented in Ref. 15 clearly indi-
cates the validity of Chertkov’s phenomenology, plus the ex-
tra complexity of anomalous intermittent corrections to the
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temperature field. On the other hand, due to limited spatial
resolution, the authors of Ref. 15 could not assess statistical
properties in a quantitative way scale-by-scale because they
had scaling over only about a decade. Our data add to the
above discussion a detailed investigation of inertial, viscous,
and integral range properties covering all together around
four decades. We confirm and measure the presence of large
anomalous corrections to the temperature scaling,

Lop)=p/5+Ayp).

We also show that our data cannot exclude the presence of
small deviations from Bolgiano scaling also for velocity
field, a novel observation, never reported before and some-
how surprising for 2D turbulence,

lll. NUMERICAL METHOD AND VALIDATION
STEPS

A. The thermal lattice Boltzmann algorithm

In this section, we recall the essential features of the
computational lattice Boltzmann method employed in the nu-
merical simulations. A complete analysis, along with exten-
sive validation steps, can be found in Refs. 11 and 12. The
thermal-kinetic description of a compressible gas/fluid with
variable density p, local velocity u, internal energy K, and
subject to a local body force density g is given by the fol-
lowing equations:

ap + d(pu;) =0
I puy) + ,(Py) = pgy (11)
K+ %51‘% = pgilki,

where P; and ¢; are the momentum and energy fluxes, still
unclosed at this level of description. A recent paper12 has
shown that it is possible to recover exactly Eq. (11), starting
from a suitable discrete version of the Boltzmann equations
with self-consistent local equilibria. The reference scheme is
summarized by the following set of equation:

A
filw + e+ A0 = i) == = w0 - 9w 0],
LB

(12)

where f(x,1) represents a probability density function to find
a particle at space-time location (x,7) whose velocity ¢; be-
longs to a discrete set.>** The left-hand side of Eq. (12)
stands for the streaming step of such probability, whereas the
right-hand side represents the relaxation toward local Max-
wellian distribution function ﬁeq) with characteristic time
TiB-

The macroscopic fields (density, momentum, and tem-
perature) are defined in terms of the lattice Boltzmann popu-
lations,

p=2fn pu=cf, DpT=2le,—ul’f;, (13)
] / /

with D being the space dimensionality. The novelty of the
algorithm employed here stems from the form of the equilib-
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FIG. 2. (a) Mean temperature profile at four different times during the RT
evolution. In the inset, we show the rescaling according to the instantaneous

mixing layer length L(z), {T{z/ L(1),1]=Typ}/ (Tyown—Typ)- The profile res-
cales perfectly and in agreement with the cubic shape predicted by a Prandtl
mixing length theory (Ref. 17) (solid line). (b) Evolution of the mixing
layer, L(t), superposed with the best parabolic fit (solid line), using the
self-similar prediction (4). Lower inset: ratio between horizontal (uf) and
vertical (uf} kinetic energy, calculated in the whole, half, or one-quarter of
the mixing layer: a transition around 7~4 is clearly visible. Despite this
slowing down, the relative scaling of the total kinetic energy with respect to
the mixing layer length satisfies the scaling (4). This is shown in the upper
inset where we have K(r) ~L"3().

rium distribution function. Here, it directly depends on the
coarse grained variables plus a shift from the local body
force term,

7p(Af — 7 ) 2
- - 8

D (14)

ﬁeq) =f§eq) p.u+ 7pg, T+

The detailed structure of this equilibrium distribution func-
tion can be found in Refs. 11, 33, and 34. Lattice discretiza-
tion also induces corrections terms in the macroscopic evo-
lution of averaged quantities: both momentum and
temperature must be renormalized by discretization effects in
order to recover the correct hydrodynamical description from
the discretized lattice Boltzmann variables. The first correc-
tion to momentum is given by a pre- and postcollisional

average, 11,49,50
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FIG. 3. Scheme of the discrete set of velocities, r is the lattice constant
whose value is r=1.1969 (Refs. 33 and 34). To recover the correct degree
of isotropy for tensors describing thermal fluxes, one needs at least 37
speeds in two dimensions. A smaller set of discrete velocities can be used if
off-grid vectors are allowed (Ref. 51).

and the first nontrivial correction to the temperature field
by'?

T(H)=T+M
4D

Using these “renormalized” hydrodynamical fields, it is pos-
sible to recover, using a Chapman—Enskog expansion,“’12
the standard thermohydrodynamical equations for a com-
pressible fluid with energy conservation. Such procedure, ap-
plied to the kinetic Eq. (11), sets the fluxes P; and ¢g; equal
to their hydrodynamical counterpart describing advection,
dissipation, and diffusion. In two dimensions (D=2), the re-
sulting equations for the hydrodynamical fields are those
given in Eq. (2) (for the explicit calculation, see Ref. 11).

B. Details of the numerical simulations

We use a 2D LBT algorithm, with 37 population fields
(the so-called D2Q37 model), moving in the directions
shown in Fig. 3. We have run on the QPACE
Supercomputer,3 637 a novel massively parallel computer,
powered by IBM PowerXCell 8i processors (an enhanced
version of the Cell processor) that supports our algorithm
very efﬁciently.52 Three different sets of runs have been per-
formed (parameters are summarized in Table I) at varying
accuracy: (A) a fully resolved high resolution simulation, up
to 4096 X 10 000 collocation points with kinematic viscosity
and thermal conductivity large enough to ensure optimal res-
olution of velocity and temperature fields even for large or-
der statistics; (B) a less resolved high resolution simulation,
up to 4096 X 6000 collocation points, with small-scale trans-
port parameters a factor 2 smaller than in case (A); and (C)
an even less resolved case with the same resolution of (B)
and viscosity a factor 5 smaller than (A). Runs (B) and (C)
make the Rayleigh and Reynolds numbers as large as pos-
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TABLE I. Parameters for the three types of RT runs. Atwood number At=(T,~T,)/(T;+T,), viscosity v; thermal diffusivity k; gravity g; temperature in the
upper half region 7,; temperature in the lower half region 7; normalization time 7=+/L,/(g At); adiabatic length corresponding to the adiabatic gradient
L,=AT/y; dissipative scale calculated at t=7, 7(7); maximum Rayleigh number Ra,,,; and number of independent RT evolution N gy

At Lx Lz v k 8 Tup Tdown T L y 77( T) Ramax N, conf
Run (A) 0.05 4096 10 000 0.005 0.005 2X 107 0.95 1.05 6.4x10* 10 000 4.3 8 10° 18
Run (B) 0.05 4096 6 000 0.0025 0.0025 2.67%x107° 0.95 1.05 5.5%x10* 7500 2.2 2% 10 5
Run (C) 0.05 4096 6 000 0.001 0.001 2.67%x107° 0.95 1.05 5.5x10* 7500 1.5 1x 10" 23

sible even though the statistical properties for subviscous
scales will not be as accurate as for set (A). The remarkable
result that we are able to present is that the LBT method is
able to reproduce large-scale and inertial range physics cor-
rectly even in those cases [e.g., runs (B) and (C)], where very
small scales are not resolved correctly. A systematic way to
validate the accuracy of the method and its convergence to-
ward the hydrodynamical manifold of the kinetic equations
is to benchmark the numerical results against the exact rela-
tionships coming from the hydrodynamical Navier—Stokes
equations of motions. For example, large- and small-scale
accuracy can be checked via the equations for the kinetic
energy and the enstrophy of the systems,

I3y == €+ g0y )
at%<W2>V =—€,t g<(9x0W>V7
where the two dissipative terms are €,=1{(du;)*)y and
€,=1{w?)y, and with {(-)),, we mean the average over the
whole volume, and with w the vorticity. These two exact
relations probe large and small scales, respectively. In Fig. 4,
we show the percentage difference between the left-hand
side and the right-hand side normalized with the buoyancy
term, for the three set of runs of Table I. Gradients of each
field have been calculated either as a centered difference of
the hydrodynamical variable or using the lattice definition

0.9 + (a) energy 0.6 ,

0.8 - 0.5 | (b) enstrophy 1

0.7 F 0.4 ¢ R ]

!

0.6 | 0-3 1
.2 R

05 | 02 ]
0.1 | 1

04 F ]

0 1
03+ 1 2 3 4 ]
t/T
0.2 F / R
0.1 | ]
0 ; ; n B e A
0 0.5 1 5 2 2.5 3 3.5 4 4.5 5

t/T

FA(x) = D) wclAlx + ¢ A1),
1

with w; being the suitable weights11 and ¢, being the lattice
velocities (see Fig. 3); we find that the second choice gives
better agreement. While the energy balance equation is well
verified within a few percent for all resolutions, the enstro-
phy balance for runs (B) and (C) is not satisfactory. As a
result, gradient statistics will be measured only using data
from run (A). The next question concerns the range of scales
at which accuracy becomes acceptable also for runs (B) and
(C). This can be monitored by plotting a sort of normalized
“effective gradient” at different scales. In Fig. 5, we show for

temperature and  vertical velocity the quantities
S (R.D)=ILO) 90428, (R.0)/ [KOR] (1) and

SOR.0)=[L(0)/ 7(D1DSOR .0 /[RI ()P at  different

(a)

S2(R.t)
10 + | t=120000 f
5F T b
T %
t=240000 — B5P;
SR
| %
107! 10° 10!

FIG. 4. Large- and small-scale validation of the LBT scheme for the three
sets of runs (A)—(C) in Table 1. (a) Difference between the left-hand side and
the right-hand side of the energy equation in Eq. (15), normalized with the
buoyancy term. (b) The same as in (a), but for the enstrophy equation.

103

10*

R/n(t)

FIG. 5. Normalized effective gradients for runs (A) (O) and (C) (OJ) at two
different times along the RT evolution: 7/=(120 000,240 000) in LBT units.
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times during the RT evolution. Clearly, even though run (C)
does not resolve gradients correctly, i.e., the curves do not
reach a well developed plateau for small scales, they super-
pose well with the well resolved run (A) as soon as
R~35m(t). This result is important and makes us confident
that the LBT numerics is quantitatively accurate even when
small scales are not perfectly smooth, i.e., the method pro-
vides for a sort of implicit large eddy simulation with an
effective subgrid dissipation.

IV. SMALL-SCALE STATISTICS

As the mixing layer evolves, the effective Rayleigh num-
ber, characterizing the thermal instability inside the layer,
grows. In the presence of stratification, the expression for the
Rayleigh number is not unique. It is possible to introduce a
z-dependent Rayleigh number,”

_ [T O[ATIL®) - 7]
[x/p(2)e, [ mw/p(z)]

where the notation (-) indicates averages over the horizontal
direction. We follow here a common procedure defining a
Rayleigh number based on the middle plane, i.e.,
Ra(r)=Ra(z=0,7). Notice that the presence of stratification
appears also through the adiabatic term 1y, i.e., any RT mix-
ing of the kind studied here will be stopped sooner or later
once an adiabatic atmosphere is reached. For the case when
the adiabatic term is not important, AT/L(r) > v, the ultimate
scaling regime predicted by Kraichnan is expected. In this
regime, there is a relationship between the normalized heat
flux and the Rayleigh number,”'>!73

Nu ~ Ra'?,

Ra(z,7) (16)

where the Nusselt number (Nu) is defined as the total heat
flux inside the mixing layer normalized with its conducting
value: Nu=(6u_)/[kAT/L(r)]. Other important output param-
eters for the system are kinetic energy dissipation and ther-
mal dissipation, €,, €, In two dimensions, we expect
that the normalized €=¢,/[K1)/L(1)] and
€,=¢€,/[(AT)?K(#)/L()] vanish and go to a constant for large
Rayleigh (Reynolds), respectively. This is tantamount to pre-
dict the existence of a direct cascade of temperature fluctua-
tions and the absence of a kinetic energy dissipation
anomaly. The monotonic increase of Rayleigh during the
mixing layer evolution allows for a check of the previous
predictions. In Fig. 6, we show both the Nusselt versus Ray-
leigh law, confirming for more than four decades the obser-
vation of the ultimate regime and the behavior of €, and €,
during the RT evolution. We observe the tendency toward a
constant nonvanishing dissipative anomaly for temperature
fluctuations, while kinetic energy is becoming smaller and
smaller at increasing Rayleigh (Reynolds), as expected.

A. Scale-by-scale statistics

In Fig. 7, we show a log-log plot of S(H")(R,t) and
Si’j)(R,t) for different orders and different times. We also
superpose the inertial range scaling predicted by the dimen-
sional Bolgiano prediction. Even though on a log-log scaling
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FIG. 6. Nusselt vs Rayleigh, data from run (A) (O) and (C) (OJ). Inset:
dimensionless dissipative anomalies, €, and €, at changing time during RT
evolution.

the global overall agreement between data and dimensional
Bolgiano scaling is not bad, important deviations can be seen
both at the crossover between viscous and inertial range,
R~ 7(t), and around the integral scale, R~ L(z). Let us first
investigate the viscous-inertial crossover. There, typical ve-
locity fluctuations have to go from a smooth differentiable
behavior Sgu~ R to Bolgiano scaling Sgu~ R>°. The jump
in the scaling property is therefore not too large, and one
must expect important subleading contributions well inside
the inertial range coming from the viscous scaling. Such sub-
leading term may spoil scaling properties even at high Ray-
leigh values. Differently, for temperature, the jump in the

1072
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FIG. 7. Log-log plot of velocity (a) and temperature (b) scaling for
p=2,4,6 at a late time during RT evolution [#~ 57 and data from run (A)].
We also plot the corresponding Bolgiano and viscous scaling.
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scaling properties from viscous to inertial is large (from R? to
RPP). Subleading terms cannot play any role. Anyhow, such
a big change in the scaling properties cannot happen in a too
short range of scales: the interval of increments with neither
a pure viscous nor a pure inertial scaling should be large in
this case.

A “conveniently simple transition function” to encom-
pass both viscous and inertial range scaling in a single fitting
expression is given by the Batchelor palrametrization,sét_58
which for a generic structure function of order p reads as

RP
FP(R,1)=C

s 17
P[RZ + Ap,}2([)][p—£(p)]/2 (17)

where C), is a suitable dimensional normalization parameter
and A, is a dimensionless parameter taking into account
some small possible dependency of the viscous cutoff on the
order of the correlation function.”~®* The above expression
is the simplest way to glue smoothly a differential behavior
in the viscous range, ~R”, for R < 7(z) with a rough scaling,
~R%?)_in the inertial range, 7(t) <R. We need also to match
the inertial-integral layer, R~ L(r), where structure functions
start to saturate because all hydrodynamical fields decorre-
late for R> L(r). It is easy to generalize the Batchelor param-
etrization to also encompass such a region of scales, reaching
a global phenomenological description of structure functions
valid for all scales,

RP
) -
FP(R,t) = C”[R2 +A,,772(t)][”‘§(”

5 [RY + BLY(1)] €W,

(18)

where in the above expression, the crossover around
R~ L() is fixed by the parameters a and B (in the following,
always chosen as a=4 and B=1). The potentialities of the
parametrization (18) cannot be appreciated on log-log plots:
a detailed scale-by-scale analysis of structure functions be-
havior is needed.

A scale-by-scale analysis can be obtained by looking at
the so-called local scaling exponents (LSEs), i.e., the log
derivatives of any structure function,

d log[ FP(R,1)]

Up|R.1) = T dlog®) (19)

Whenever we have a pure power law behavior, the output
must be a constant as a function of the separation scale, R,
{(p|R.t)~ &(p,t). The advantage to measure Eq. (19) stems
from the possibility to follow also the crossover between
viscous and inertial range and between inertial and integral
range, scale-by-scale, hence the name. In Fig. 8, we show for
p=4,6 the velocity structure functions against the Batchelor
parametrization (18) for two different Rayleigh numbers. In
the body of the figure, we plot the LSE for Sf?(R ,1) from our
data and superposed with the corresponding éxpression com-
ing from the parametrization (18), where we have used the
Bolgiano value §u(p)=§p. The agreement is strikingly good;
considering together all data at different resolutions, we are
able to reproduce the viscous, inertial, and integral scale be-
havior over four decades of scaling range. The agreement

Phys. Fluids 22, 115112 (2010)

Bolgiaﬁo 10-3 T T T T
SW(R,t)
::r 3 0 100 107 100 ]
= A
hwd
1r (a) 1
&
e
A
Lt (b) 1
100 10 102 10

R/n(t)

FIG. 8. Local scaling properties for velocity structure functions, {, (p|R,1)
for runs (A) (O) at r=47 and (C) (OJ) at r=47. We show the case with
p=4 [panel (a)] and p=6 [panel (b)]. Solid lines correspond to the local
scaling exponents as predicted from Eq. (18) using the Bolgiano dimen-
sional scaling (9), also drawn as a horizontal line with values of 12/5 and
18/5, respectively. Error bars are calculates out of the scattering between the
Neons different RT evolutions for each run. Insets: structure functions,
S(M‘f)(R,t), for p=4 and p=6 and the two runs (A) and (C) (same symbols).
The solid line is the parametrization (18).

between the Bolgiano dimensional prediction and the veloc-
ity scaling is very accurate within error bars. Notice that the
use of LSE with respect to log-log scaling, as depicted in the
inset of the same figure, allows to move the discussion from
global fit over many orders of magnitude (for the latter) to a
scale-by-scale fit of O(1) quantities (for the former). Moving
to temperature scaling, the scenario changes. In Fig. 9, we
show the same as Fig. 8 but for temperature and up to p=38.
Here, the agreement with the Batchelor parametrization with
the Bolgiano dimensional scaling for temperature
Lo(p)=p/5, is less good, almost acceptable for low order
moments, but definitely not on top of the numerical data for
high order moments. In order to achieve a good fit, on the
whole range of scale, one needs to introduce anomalous cor-
rections to the exponents (4(p)=p/5+Ay(p) used in the
Batchelor formula. In the same figure, we show indeed how
the use of Ay(4)=-0.2, Ay(6)=-0.5, and A4(8)=-0.8 gives a
much better agreement between the numerical data and the
phenomenological parametrization formula (18). This is, in
our view, a very clean demonstration of the existence of
anomalous scaling for temperature fluctuations in 2D RT.
The values measured for Ay(p) are in agreement with the one
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FIG. 9. The same data as in Fig. 8, but for temperature scaling. We show p=4, p=6, and p=8. The solid line corresponds to the parametrization (18) using
the dimensional Bolgiano scaling exponents. The thick solid line is the same parametrization but with anomalous scaling exponents. Already for p=4 and
more importantly for p=6 and p=38 the LSE for the parametrization (18) with dimensional Bolgiano scaling {(p)=p/5 does not fit the numerical data. As a
guide to the eyes, we also show the Bolgiano inertial range values as horizontal lines in each panel. The curves supporting anomalous scaling are obtained with

the following correction to the exponents: Ay (4)=-0.2, A46)==0.5, and A8)

zation with anomalous inertial exponents (solid line).

presented in Ref. 15. The result on temperature scaling are
summarized in Table II.

An important feature of RT in two dimensions is the
active role played by buoyancy at all scales, as witnessed by
the Bolgiano phenomenology. The interesting point here is
that as the buoyancy is driven by temperature fluctuations,
the forcing mechanism in the momentum equations is given
by a non-self-similar—intermittent—field. Navier—Stokes
equations forced with power law forcing have attracted the
attention in the past both for the application of the renormal-
ization group23 and for issues concerning small-scale univer-
sality, i.e., understanding how strong must be the forcing
mechanism in order to change the small-scale statistics in
turbulent flows.'®*! Typically, for any given system, there
exists a critical exponent b, characterizing the power law
decaying of the forcing spectrum, E(k) ~k™”, such that for

TABLE II. Summary of temperature scaling exponents using the best fit
obtained by the parametrization (18) using for 7(¢) and L(r) the actual val-
ues measured on the data.

Lop) Bolgiano Ref. 15 Here
p=4 0.8 0.6 0.6+ 0.06
p=6 12 0.7 0.7+0.07
p=8 1.6 0.8+0.1

=-0.7. Insets: structure functions superposed with the Batchelor parametri-

b<b, the forcing is the leading mechanism of energy ex-
change at all scales. In our case, the very existence of Bol-
giano scaling tells us that we fall in the latter class. The main
interesting difference here, with previous theoretical and nu-
merical studies, is that the forcing mechanism is also inter-
mittent, i.e., very different from the typical scaling-invariant
Gaussian and delta-correlated in time power law forcing used
in Refs. 18, 19, and 23. Indeed, the high intermittency of the
temperature scaling shown in Sec. III suggests the possibility
that some degree of intermittency is also hidden in the ve-
locity field, even though a direct measure, as the one shown
in Fig. 8, rules out large effects. In Fig. 10, we are looking
directly at the forcing statistics entering in the equation of
high order velocity moments, what we call the buoyancy
structure functions in Eq. (6), Sg)(R,t). As one can see, even
there, it is hard to disentangle any deviations from Bolgiano
dimensional scaling. A different scenario appears for the
temperature flux structure functions, Sl(f)(R,t), as defined in
Eq. (6), shown in Fig. 11. Here, a deviation from the dimen-
sional scaling is visible due to the higher order of tempera-
ture fields with respect to the velocity fields entering in these
correlation functions. A possible way to highlight even better
intermittent correction is to look at the behavior of velocity
and temperature hyperflatness,
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FIG. 10. Local scaling exponent for buoyancy terms, Sg’)(R,t), with
p=1,3 for runs (A) (O) and (C) (O). The solid line corresponds to the
dimensional estimate (18) with {z(p)={4(1)+¢, (p). The two horizontal
lines give the expected Bolgiano scaling in the inertial range, 10/5 (p=3)
and 16/5 (p=5).

SY(R,1)

u, (R, SW(R,1)
[SP(R,0)T

Fy(R,1) = —[S(gz)(R,t)]z'

F,(R1)= (20)

Any systematic dependence of flatness on the reference scale
R is the signature of a nonperfect self-similar statistics. Fig-
ure 12 shows temperature and velocity flatness at two differ-
ent times during the RT evolution. Temperature is clearly
intermittent with a flatness, which increases at decreasing
scale. Velocity is more noisy; nevertheless, our data cannot
exclude a small-scale dependency of flatness also for the
latter, pointing toward small but detectable breaking of self-
similarity, i.e., corrections to the Bolgiano scaling also for
velocity. In the inset of the same figure, we show the relative
scaling of fourth and sixth order structure functions versus

. .
anomalous
Bolgiano

ot

!g»

162 R/n(t)

CF(le',t)

Bolgiano

0 ;s
109 10 102 103
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FIG. 11. Run (A): local scaling exponent for temperature flux moments,
Sgﬁ(R,t), with p=3,6 and p=8 (inset). The solid thin line for p=3,6 (main
plot) corresponds to the dimensional Bolgiano estimate (18) with
{(p)=(Ly(2)+¢,.(2))p/3. In the inset, we show fit with both dimensional
Bolgiano and anomalous estimates. Notice the better agreement with the
anomalous case.
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FIG. 12. Velocity (bottom) and temperature (top) flatness at three different
times during RT evolution r=(2,3,5)in run (A). Insets: ESS plot for struc-
ture functions of order p=6 (+) and p=8 (X) vs structure function with
p=2. The solid line corresponds to the dimensional scaling.

the second order one, a procedure known as ESS (Extended
Self Similarity) in literature®®*

S(,j’)(R,t) versus S%Z)(R,t),

SP(R,1)  versus SPU(R,1).

Here, a breaking of self-similarity is detected as a deviation
from the dimensional scaling SP(R,7)=[S®(R,7)]"?. Devia-
tions for the temperature/velocity are strong/small and
clearly detectable.

The above results suggest that in order to highlight some
possible nontrivial scaling properties in the velocity statis-
tics, one needs to look at small scales, where temperature
intermittency becomes more intense and possibly affects also
the momentum equations. In Fig. 13, we show the behavior
of the flatness of velocity and temperature derivatives during
the RT evolution, i.e., at increasing Rayleigh,

((Gu.)") ((2.0)")
(@) (3,0
Both small-scale temperature and velocity intermittency are

increasing, with the temperature case much faster. We fit a
power law behavior,

F&Xuz(t) = F; 4(1) = (21)
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FIG. 13. Flatness based on velocity and temperature gradients as a function
of the Rayleigh number. Two power laws with the best fit for Ra 107 are also
shown as a guide to the eyes.

FP ~ Rafou®),  FP) ~ Rabodp), (22)

with f;,yu_(p)=0.12(5) and gare(p)=0.15(5). While the result
for tenip%:rature is not surprising, the result for velocity is
supporting the existence of a small, but detectable intermit-
tent correction to the 2D Bolgiano scaling for the velocity
field. In the same figure, we also measure the temperature
and horizontal-velocity flatness along the vertical direction in
order to have a quantitative assessment on the importance of
residual small-scale anisotropy in the system.65 Both mea-
surements coincides with those measured on the horizontal
directions, suggesting little, if any, residual anisotropy at
those scales.

V. CONCLUSIONS AND FURTHER DEVELOPMENTS

In this paper, we have presented the results of a high
resolution numerical study of 2D Rayleigh-Taylor turbu-
lence using a new thermal lattice Boltzmann method. The
goal of this study was both methodological and physical.
Concerning the method, we validate and assess the stability,
accuracy, and performances of the numerical discrete kinetic
algorithm used, showing that even when not perfectly re-
solved at small scales, inertial and integral scale hydrody-
namics is well reproduced. This result opens the way to a
systematic exploitation of LBT algorithms also for fully de-
veloped turbulence. Concerning the physics of RT turbulence
in two dimensions, we have analyzed data up to Ra~ 10"
and shown that the dynamics is dominated by a Bolgiano
phenomenology, i.e., thermal fluctuations in the buoyancy
term are overwhelming the kinetic energy flux at all scales.
We have also shown that (i) a suitable Batchelor-like param-
etrization is able to reproduce scale-by-scale the whole sta-
tistics at all scales, over four decades; (ii) temperature fluc-
tuations show small-scale intermittency, with scaling
exponents tending to saturate at high orders (see Table II), a
signature of persistence of hot/cold fronts even at very small
scales;*®® and (iii) velocity statistics is much closer to Bol-
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giano dimensional scaling even if small intermittent correc-
tions cannot be ruled out, especially concerning gradients
evolution.

All these results are relevant for 3D thermal systems in
the presence of boundaries. Indeed, Bolgiano physics is be-
lieved to describe also thermal and velocity fluctuations
close to the boundary in real 3D convective Rayleigh—
Benard cells.””®® The existence of anomalous intermittent
small-scale fluctuations also in these cases is relevant to con-
trol the physics of the viscous and thermal boundary layers.

The algorithm presented here opens the way for natural
generalization to more complex situations. First, it is trivially
extendable to 3D cases. Second, it can be further generalized,
including bulk forcing terms in the internal energy equation,
to describe reactive system. Third, the possibility to couple
the thermal LBT scheme with multicomponent and/or multi-
phase LBT models is under investigation,69 including non-
trivial wettability properties at the boundaries:"’ a case of
interest to describe convection of boiling systems.
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