
Procedia Computer Science 00 (2010) 1–8

Procedia Computer
Science,

International Conference on Computational Science, ICCS 2010

Lattice Boltzmann fluid-dynamics on the QPACE supercomputer

L. Biferalea, F. Mantovanib,c,∗, M. Pivantib, M. Sbragagliaa, A. Scagliarinia, S. F. Schifanod, F. Toschie,
R. Tripiccioneb

aDepartment of Physics and INFN, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
bDipartimento di Fisica, Università di Ferrara and INFN - Sezione di Ferrara, I-44100 Ferrara, Italy

cDeutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany
dDipartimento di Matematica, Università di Ferrara and INFN - Sezione di Ferrara, I-44100 Ferrara, Italy

eDepartment of Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The
Netherlands; and International Collaboration for Turbulence Research

Abstract

In this paper we present an implementation for the QPACE supercomputer of a Lattice Boltzmann model of a
fluid-dynamics flow in 2 dimensions. QPACE is a massively parallel application-driven system powered by the Cell
processor. We review the structure of the model, describe in details its implementation on QPACE and finally present
performance data and preliminary physics results.

Keywords: Fluid-dynamics, Lattice Boltzmann Model, CBE processor, QPACE supercomputer

1. Overview

Fluid-dynamics is studied today with the critical support of numerical techniques, that allow to compute solutions
for the highly non-linear equations of motion in regimes and geometries interesting in physics or engineering contexts.
Over the years, many different numerical approaches – implicit and explicit, in direct space or Fourier space – have
been theoretically developed and implemented on several massively parallel computers.

The Lattice Boltzmann method (LBM) is a very flexible approach able to encode (in its many versions) many
different fluid equations (e.g., multiphase, multicomponent and thermal fluids) and to consider complex geometries
and boundary conditions. LBM builds on the fact that the details of the interaction among the fluid components at the
microscopic level are irrelevant in defining the structure of the equations of motion at the macroscopic level, but only
modulate the values of their parameters. The key idea is that of creating on the computer simple synthetic dynamics
of fictitious particles (the “populations”) that evolve explicitly in time and, appropriately averaged, provide the correct
values of the macroscopic quantities of the flow; see [1] for a complete introduction.

From the computational point of view, LBM is “local” (i.e. it does not involve computation of pressure or other
non local fields, communications are only amongst nearest neighbor nodes), so it is easy to parallelize. This has
already been done in several cases, e.g. for irregular geometries [2] and even for the Cell processor [3], with focus on
biomedical applications. In this paper, we report on a high-efficiency implementation of LBM for QPACE, a massively

∗Corresponding author: filippo.mantovani@fe.infn.it

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 1075–1082

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.119

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.119
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 2

Figure 1: Left: Velocity scheme for the D2Q37 LBM model (see [4] for more details). Right: Graphical representation of the data organization on
the processing nodes. Two neighbor nodes (Pi and Pi+1) are shown. Populations handled by each processor are stored in area B. Vertical strips n
and p (and n′ and p′) store a copy of the first 3 columns of data updated by the neighbor processor. Vertical dashed lines show data splitting within
each processor: each SPU updates one strip of B.

parallel system powered by IBM Cell processors: the challenge is twofold; i) adapting a complex numerical algorithm
to the architecture of the Cell and ii) partitioning the computation on a large set of processing elements.

Our paper is structured as follows: in section 2 we briefly review the structure of our LBM algorithm, while
in section 3 we recall the QPACE architecture. Section 4 describes our implementation and section 5 reviews our
performance results. Section 6 reports on preliminary physics results, and is followed by our concluding remarks.

2. The Lattice Boltzmann approach

Here we introduce the system studied in terms of its mathematical formulation along with a brief description of
the computational method employed. More details, along with validations can be found in [4].

The Thermal-Kinetic description of a compressible gas/fluid of variable density, ρ, local velocity u, internal
energy, K and subject to a local body force density, g, is given by the following equations: ∂tρ + ∂i(ρui) = 0,
∂t(ρuk) + ∂i(Pik) = ρgk, ∂tK + 1

2∂iqi = ρgiui where Pik and qi are the momentum and energy fluxes.
It has been shown that it is possible to recover exactly these equations, starting from a continuum Boltzmann

Equations and introducing a suitable shift of the velocity and temperature fields entering in the local equilibrium [5].
The lattice counterpart of the continuum description can be obtained through the usual lattice Boltzmann discretization
(fl(x, t) are the fields associated to the populations):

fl(x + clΔt, t + Δt) − fl(x, t) = −Δt
τ

(
fl(x, t) − f (eq)

l

)

where the equilibrium is expressed in terms of hydrodynamical fields on the lattice, f (eq)
l (x, ρ, ū, T̄), and the subscript

l runs over the discrete set of velocities, cl (see fig. 1). The macroscopic fields are defined in terms of the lattice
Boltzmann populations: ρ =

∑
l fl, ρu =

∑
l cl fl, DρT =

∑
l |cl − u|2 fl (for simplicity and clarity of exposition, here

we ignore a shift that has to be applied to the fields entering in the Boltzmann equilibrium, see [5] for details).
Lattice discretization induce non trivial corrections terms in the macroscopic evolution of averaged hydrodynami-

cal quantities. In particular both momentum and temperature must be renormalized by discretization effects in order to
recover the correct thermal kinetic description out of the discretized LBM variables: the first correction to momentum
is given by the pre and post-collisional average [11, 12]: u(H) = u + Δt

2 g and the first non-trivial, correction to the

temperature field by [5]: T (H) = T + (Δt)2g2

4D . (D is the dimensionaly of the system). Using these “renormalized” hy-
drodynamical fields it is possible to recover, through a Taylor expansions in Δt, the thermo-hydrodynamical equations
[5, 4]:

Dtρ = −ρ∂iu
(H)
i (1)

1076 L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 3

ρDtu
(H)
i = −∂i p − ρgδi,3 + ν∂ j ju

(H)
i (2)

ρcvDtT
(H) + p∂iu

(H)
i = k∂iiT

(H) (3)

where we have introduced the material derivative, Dt = ∂t + u(H)
j ∂ j, and we have neglected viscous dissipation in the

heat equation (usually small). Moreover, cv is the specific heat at constant volume for an ideal gas p = ρT (H), and ν
and k are the transport coefficients.

In this paper we consider a 2D LBM algorithm, that uses 37 population fields (a so called D2Q37 model), moving
as shown in fig. 1 (left). At each time step populations move up to 3 lattice points away; this has an impact on the
parallelization strategy.

3. The QPACE supercomputer

QPACE – described in details elsewhere [6, 7, 8] – is a novel massively parallel computer, primarily developed for
Lattice QCD simulations. It turns out (see later for all details) that this machine almost ideally fits the needs of LBM
algorithms.

QPACE is powered by IBM PowerXCell 8i processors (an enhanced version of the well known Cell processor).
Processing nodes have one PowerXCell 8i processor; they are interconnected by a custom application-optimized 3-
dimensional torus network. Each node has a peak performance of ∼ 100 Gflops (double precision) and a private
memory bank of 4 Gbyte; the peak bandwidth between processor and memory is 25 Gbyte/sec, while each of the 6
bi-directional communication links of the torus fabric has a bandwidth of ∼ 900 Mbyte/sec. QPACE machines are
assembled in blocks of 32 processing elements (informally known as “backplanes”); large systems have 1024 closely
interconnected processing nodes each, providing a peak performance of the order of ∼ 100 TFlops.

QPACE nodes are independent systems, running Linux. A large application on QPACE has two hierarchically
structured levels of parallelism:

• The inner level stays inside each processor on the node, containing one control processor (the so-called PPU)
and 8 independent floating-point optimized computing cores (so called SPUs). The workload belonging to each
node has to be divided in a balanced way between the cores, which are able to exchange data on an on-chip high
bandwidth bus and share access to just one external memory bank.

• The outer level of parallelism has to do with mapping the application on the nodes connected by the torus
network. Multiple instances of the application program start independently on all nodes; they exchange data
by passing messages over the network. From this point of view, the programming style appropriate for QPACE
is conceptually similar to the well-known and widely used MPI model. A major difference is however that the
network performs data send and receive operations only between adjacent nodes in the torus, a limitation with
no significant impact for LBM applications, as shown later on. In exchange for this restricted set of allowed
communication patterns, the torus network has a low communication latency of the order of � 3μsec. From the
programmer point of view, this means that there is no real need to gather large amount of data and send them to
a destination node as a single message, since even small messages are transfered with high effective bandwidth
(bandwidth of approximately 50% (85%) of peak have been measured for messages of 512 (2048) bytes).

Applications achieve performance on QPACE if they are mapped in a balanced way at both levels of parallelism,
and if data exchange and computation can be overlapped in time, so parallelization overheads are limited. In the next
section we describe how we reach this goals for our LBM algorithm.

4. Porting LBM on QPACE

Grid-like interconnection structures are perfectly fit for massively parallel implementations of the LBM algorithm.
In fact the physical lattice can be regularly tiled onto the available processing elements and the corresponding commu-
nication pattern only involve data exchanges between neighbor nodes in the grid; successful attempts in this direction
on massively parallel machines are almost 20 year old [9].

L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082 1077

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 4

In our 2D simulation, we divide our physical lattice of size Lx × Ly in equally sized vertical strips, each strip
containing (Lx/Np) × Ly physical points (Np is the number of processing elements). Processors handling adjoining
strips in the physical lattice exchange data associated to the right and left borders of the lattice. This arrangement does
not minimize data traffic among processing elements, but we do not need more clever partitioning since the overheads
are small (see later for details). We use two appropriate communication channels on each processing element of the
QPACE torus and establish an 1D path that orderly links the processors handling successive strips in the physical
lattice. The toroidal structure makes it possible to enforce periodic boundary conditions in the x direction.

On each processing element, we prepare a data structure for the population data that includes two vertical borders
– each 3-point wide, corresponding to the largest distance a population can move at each time step – at the right
and left edges of the local lattice. The parallelization strategy is straightforward: at the beginning of each iteration,
we copy the population values of the outermost 3 vertical lines on each side of the lattice onto the borders of the
neighboring processors; after this step is made, each processor works independently, updating its physical points and
using data from the outer borders as needed (see fig. 1, right).

Before entering into the details of our implementation, let us derive approximate upper bounds on the performance
that we may expect on QPACE. If we are able to fully overlap in time i) data processing, ii) access to the memory
bank of each processor and iii) data exchange with the neighbor processors (and neglecting any control overhead) we
compute the new populations at each lattice site in a time T ≥ max (W/F, I/BM , E/BN), where W is the workload
for each lattice point and F the performance of the processor; I is the amount of data moved between processor and
memory for each point and BM is the memory bandwidth; finally, E is the information exchanged with the neighbor
processors, and BN is the interconnection bandwidth. For QPACE, we have F � 100Gflops, B � 25Gbyte/sec,
BN � 0.9Gbyte/sec. For each lattice point, our algorithm needs ∼ 7850 double precision floating-point operations;
we read from memory 37 incoming populations and store 37 outgoing populations. We have to exchange data with
neighbor processors only for the right and left vertical borders, so E = 37 · 8 · 6 · Np/Lx. Our equation reads (the time
unit is ns):

T ≥ max (78.5, 23.7, 1973 × (Np/Lx)) (4)

This equation shows that: i) full performance might be expected for this algorithm on QPACE, and ii) parallelization
overheads can be hidden in principle as long as the third term in the equation is smaller than the first one, that is
for Lx/Np > 25. In practice this nice upper limit is difficult to reach, for three main reasons: overlap of the various
operations is difficult to achieve in a real life code, actual memory bandwidth is much lower that its peak value
for sparse access patterns and – for practical reasons - we move data from/to memory more often than required in
principle. We now describe in detail our implementation, that follows the lines of some earlier exploratory attempts
[10].

The data structure for the dynamical variables is an array of structures called pop. Each pop represents a site of the
2D physics lattice and has 48 double words (384 bytes): 37 floating point numbers for the population components and
11 more values associated to the macroscopic physical values and to some padding in order to keep data alignment on
128 byte boundaries, as required by the Cell architecture for DMA transfers.

The LBM kernel evolves the system for one time step. It uses 4 main routines;

• comm copies onto the border locations the fresh data generated by the previous iteration (see fig. 1 (right)). This
is the only routine involving internode communication.

• stream gathers – for each lattice site – all populations that will “collide” among each other in order to evolve
into the new set of populations at the next time step. This process involves several small accesses at non
contiguous memory locations.

• bc sets the boundary conditions at the top and bottom walls of the cell, computing the values of the populations
lying on a thin layer of sites close to the wall. This routine is floating point intensive but involves less than 0.1%
of all sites, so its computational impact is negligible.

• coll performs the mathematical steps associated to the collision of the populations gathered by stream and
computes the new set of populations.

1078 L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 5

Routines stream and coll move data from main memory to processor and vice versa two times: merging them
together would halve memory traffic and should increase performance; however we kept them as independent routines
since attempts at optimizing at the same time many memory accesses and heavy computation proved to be a “chaotic”
process.

The general organization of the algorithm described above has been carefully adapted to the details of the Cell
architecture. coll is executed by each SPU on independent subsets of the lattice. We operate concurrently on
pairs of adjacent sites so we exploit the vector (SIMD) datapath on the SPU. We accurately overlap data transfer
and calculation using double buffering technique. stream is also executed by all SPUs, even if it does not perform
compute intensive tasks. By having the SPUs post independent memory access requests, we partially hide the large
latencies associated to the sparse addressing patterns. Performance is remarkably better than obtained if we execute
the routine on the PPU, but still much lower than peak. Finally, the SPUs also handle communications, as required by
the QPACE network architecture that only supports SPU-to-SPU transfers.

5. Performance analysis

In December 2009 we used QPACE to perform the first large scale physics campaign since the machine was
commissioned. Our main focus of interest has been a high-resolution study of the properties of the Rayleigh-Taylor
instability. A short summary of preliminary physics results is given in the next section.

We used for our simulation up to seven QPACE backplanes (e.g., a total of 224 processing elements). After
tuning the relevant physics parameter with some preliminary runs, we extensively simulated two lattices, that we label
type A and type B. Type A lattices have a size of 4096 × 6000; they are followed for 2.6 · 105 time steps. Type B
lattices are smaller, 2048 × 3600; we evolve them for a longer time span of 106 time steps. For each of the two
lattices, we performed 25 independent runs with different initial configurations. Each simulation was run on a set
of 32 interconnected processing elements, several independent runs being in progress on different backplanes at the
same time. Each run takes approximately 32 hours on type A lattices and 44 hours on type B lattices. All in all
approximately 61000 Cell-CPU hours have been used in about 15 days wall-clock time (average up-time ∼ 75%).
We have dumped configurations of key physics variables (ρ, u, v,T) on the whole lattices at regular time intervals, for
later off-line analysis. Altogether our simulation data-base is ∼ 1.5TB.

Table 1: Performance figures for LBM on QPACE as a function of the number of processors. For each lattice size and number of processors we list
the time spent in the 4 kernel routines and the total time (T) for one time step (time units are ms, except for the last column). In the last column,
we list (in ns) T multiplied by the number of processors and divided by the number of lattice sites; this figure – a constant for perfect scaling –
fluctuates by less than 10%.

comm stream bc coll T T × Np/(LxLy)

2048x3600@32p 11.6 37.2 0.8 71.8 121.4 527

2048x3600@16p 11.7 81.0 1.7 143.6 238.0 516

2048x3600@08p 11.6 148.9 3.3 287.3 451.1 489

4096x6000@32p 19.4 135.0 1.7 239.3 395.4 515

4096x6000@16p 19.4 248.0 3.3 478.8 749.5 488

4096x6000@08p 19.4 476.1 6.7 957.4 1459.6 475

4096x16000@32p 51.4 360.2 1.7 637.9 1051.2 513

Performance figures are gathered in table 1 where we list the time spent by the program in the four key routines
of the program at each time step, for type A and type B lattices and for a larger lattice that we plan to study in the
near future. In order to measure the scaling properties of our implementation, we list data for different numbers of
processors.

Some comments are in order:

• the most time consuming part of the code is routine coll, encompassing most of the floating point part of the
computation.

L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082 1079

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 6

• a non negligible fraction of the program is spent in the streaming part of the code. Stream does not perform any
“useful” processing: it loads and stores data words from memory with a very irregular addressing pattern. The
memory interface is not very efficient in this case: the measured memory bandwidth is ∼ 3.5Gbyte/sec, about a
factor 7 lower than peak. This is the single most severe bottleneck of the computation.

• as the lattice is split in vertical tiles among the processors, the amount of data moved by neighbor proces-
sors does not depend on the number of processor for a given size of the lattice, so the time used by comm is
independent of the number of processors. In all practical cases, the overhead is not larger than ∼ 5%.

• Establishing the correct boundary conditions (routine bc) has a fully negligible impact on performance.

• The last column in table 1 lists values of T × Np/(LxLy), that is the total time spent by the program for each site
of the lattice, independently of the number of processors. In a perfect scaling case this number should remain
constant: we have fluctuation ≤ 10% showing very good scalability for physically interesting configurations.

• If we compare the measured performance (previous point) with the theoretically derived peak (eq. (4)) we
find a sustained performance in the 14 · · · 17% range: our implementation has reached a reasonable level of
performance for a real-life production code. Further improvements – mainly merging stream and collision, to
avoid unnecessary memory access – may allow to reach a performance level of ∼ 20%.

6. Overview of physics results

In this section we present preliminary results on the Rayleigh-Taylor instability and the turbulent flow in the mixing
region, based on the simulations described above. The Rayleigh-Taylor (RT) instability is a hydro-dynamic unstable
configuration associated to the superposition of a heavy fluid above a lighter one in a constant acceleration field. It
plays an important role in several areas such as inertial-confinement fusion, supernovae explosions and many others
[13]. The RT instability – studied for decades – is still an open problem. In particular, it is crucial to control the initial
and late evolution of the mixing layer between the two miscible fluids; the small-scale turbulent fluctuations, their
anisotropic/isotropic ratio; their dependency on the initial perturbation spectrum or on the physical dimensions of the
embedding space. In many cases, especially concerning astrophysical and nuclear applications, the two fluids evolve
with strong compressible and/or stratification effects, a situation which is difficult to investigate either theoretically or
numerically. All this key questions calls for high spatial resolution [14], that can be tackled with QPACE.

The Lattice Boltzmann code we have developed, and its efficient implementation on QPACE make it possible to
achieve state-of-the-art resolution for the Rayleigh-Taylor problem. Here, we focus on the large scale properties of
the mixing layer, studying the spatio temporal evolution of a single component fluid when initially prepared on the
hydrostatic unstable equilibrium, i.e. with a cold (higher density) uniform region in the top half and a hot (lower
density) uniform region with in the bottom half of the cell. In our simulation the Atwood number (a dimensionless
measure of the density difference in the two regions) is A = 0.05 (see left panel of fig. 2 for a color figure). We study
the problem with a resolution up to 4096 × 6000 collocation points. This is the highest resolution ever reached for
RT turbulence (previous important studies in this direction reached resolution up to 128 × 4096 in 2D [16] and 30723

in 3D [14]); it will allow us to assess with high accuracy both long term properties of the mixing layer evolution and
small scale velocity and temperature properties. While small-scales fluctuations may be strongly different in 2D or
3D geometries, the large scale mixing layer growth is not supposed to change its qualitative evolution [15].

One of the key problem in Rayleigh-Taylor systems is to predict the growth rate of the mixing region. The latter
is usually defined as an integral of the dimensionless temperature profile, c(x, z) = (Tmax − T (x, z))/(Tmax − Tmin):

H(t) =
1
Lx

∫ Lx

0
dx
∫ Lz/2

−Lz/2
dzM[c(x, z)] (5)

where M is a mixing function with support only on the mixing region, for istance a tent map. Dimensionally, H(t)
is expected to grow quadratically, as the mixing region is accelerated by an almost constant density jump:

H(t) = α A g t2. (6)

1080 L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 7

Figure 2: Left: Color coded temperature field of a 2D high resolution (4096 × 6000) Rayleigh-Taylor system (yellow for high temperatures, blue
for low temperatures). The system is at an advanced stage in the evolution of the mixing layer with well developed (cold) descending spikes and
(warm) ascending plumes. Right: Growth of the mixing layer as a function of time, H(t), for 23 runs on a lattice of size 4096 × 6000. The black
solid line is a best fit in the range t ∈ [10000 : 260000] to the quadratic scaling formula proposed in [14], leading to the estimate α = 0.016±0.005.

The quadratic law is expected to onset at large times, i.e. when the initial unstable growth has reached a fully
non-linear character. Moreover, linear subleading terms may be present, due to the influence of the initial condition
[14, 4]. For this reason, it is particularly important to have large vertical resolution. In fig. 2 (right) we show a
collection of data for the evolution of H(t) on a set of 23 runs with different random perturbation of the unstable initial
configuration. In the same plot, we also show the best fit to the mean evolution and an estimate of the α prefactor.

7. Conclusions and outlook

In this paper we have reported on the implementation of a massively parallel version of an LBM model of 2D fluid
flows, carefully optimized for the QPACE architecture. Our code has a very good parallel scaling performance and
runs on each processing element at a reasonable fraction of peak performance. We have used this code for extensive
simulations of a 2D thermal flow, focusing on the properties of the Rayleigh-Taylor instability, with a spatial resolution
and statistics much better than previous state-of-the-art.

From the computational point of view it will become increasingly interesting to compare our results with those
that can be obtained with GPUs; work is in progress to tune our algorithms for these architectures. We are particularly
interested in measuring performance on recently announced architectures that strongly improve for double precision
computations.

From the point of view of physics, we have presented preliminary results on the rate of growth of the mixing layer.
This study leaves a few important questions open. First, what happens in presence of strong compressible effects, i.e.
at increasing Atwood number. Second, what are the consequences of strong stratification, where the front is stopped
by adiabatic effects. We have started to collect data to address some of these problems, performing simulations with
higher spatial resolution (lattice sizes of 4096 × 12000).

Acknowledgment

We warmly thank the QPACE development team for support during the implementation of our code and execution
of the simulations. We furthermore acknowledge access to QPACE and eQPACE during the bring-up phase of these
systems.

L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082 1081

L. Biferale et al. / Procedia Computer Science 00 (2010) 1–8 8

References

[1] S. Succi Lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press, (2001)
[2] M. Bernaschi et al., A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries.

Concurrency and Computation: Practice and Experience 22, (2009) pp. 1-14.
[3] M. Stürmera et al., Fluid flow simulation on the Cell Broadband Engine using the lattice Boltzmann method. Computers &Mathematics with

Applications 58, (2009) pp. 1062-1070.
[4] A. Scagliarini et al. Lattice Boltzmann Methods for thermal flows: continuum limit and applications to compressible Rayleigh-Taylor systems.

Phys. Fluids submitted (2009)
[5] M. Sbragaglia et al. Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria. J. Fluid Mech. 628, (2009) 299
[6] F. Belletti et al., QCD on the Cell Broadband Engine, PoS(LAT2007) 039.
[7] G. Goldrian et al., Quantum Chromodynamics Parallel Computing on the Cell Broadband Engine, Computing in Science & Engineering, 10

(2008) 46-54.
[8] H. Baier et al. , QPACE – a QCD parallel computer based on cell processors, arXiv:0911.2174
[9] A. Bartoloni et al. LBE simulations of Rayleigh-Benard convection on the APE100 parallel processor, Int. J. Mod. Phys. C (1993) vol. 4 (5)

pp. 993-1006
[10] F. Belletti, et al., Multiphase lattice Boltzmann on the Cell Broadband Engine, Il nuovo Cimento C 32 (2009) 53-56.
[11] J.M. Buick & C.A. Greated, Gravity in a lattice Boltzmann model. Phys. Rev E 61,(2000) 5307
[12] Z. Guo, C. Zheng & B. Shi. Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65, 046308 (2002)
[13] D.H. Sharp. An overview of Rayleigh-Taylor instability. Physica D 12, 3 (1084)
[14] W.H. Cabot & A. W. Cook. Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-Ia supernovae. Nature

2, 562 (2006)
[15] M. Chertkov. Phenomenology of Rayleigh-Taylor Turbulence. Phys. Rev. Lett. 91 115001. (2003)
[16] A. Celani, A. Mazzino and L. Vozella. Rayleigh-Taylor turbulence in 2d. Phys. Rev. Lett. 96, 134504 (2006)

1082 L. Biferale et al. / Procedia Computer Science 1 (2012) 1075–1082

