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Abstract – Reactive Rayleigh-Taylor systems are characterized by the competition between the
growth of the instability and the rate of reaction between cold (heavy) and hot (light) phases.
We present results from state-of-the-art numerical simulations performed at high resolution in
2d by means of a self-consistent lattice Boltzmann (LB) method which evolves the coupled
momentum and temperature equations and includes a reactive term. We tune parameters in
order to address the competition between turbulent mixing and reaction, ranging from slow- to
fast-reaction rates. We also study the mutual feedback between turbulence evolution driven by the
Rayleigh-Taylor instability and front propagation against gravitational acceleration. We quantify
both the enhancement of “flame” propagation due to turbulent mixing for the case of slow reaction-
rate as well as the slowing-down of turbulence growth for the fast-reaction case, when the front
quickly burns the gravitationally unstable phase. An increase of intermittency at small scales for
temperature characterizes the case of fast reaction, associated to the formation of sharp wrinkled
fronts separating pure burnt/unburnt fluids regions.

Copyright c© EPLA, 2011

Introduction. – Many natural and industrial
processes involve fluid transport and mixing of passive
or active scalar fields; examples include concentration
fields of chemicals or biological species as well as the
temperature field in natural convection. While many
of these phenomena have been the subject of in-depth
studies, the cases where chemical reactions are involved,
presenting an even richer phenomenology, have received
considerably less attention. We address the problem of the
interplay of reaction and turbulent mixing in Rayleigh-
Taylor (RT) systems (a situation occurring, for example,
in thermonuclear burning of type-Ia Supernovae [1–3]
or in the inertially confined nuclear fusion [4]) focusing
on the different regimes which develop as we vary the

(a)E-mail: ascagliarini@gmail.com

ratio between the characteric time scales of underlying
turbulence, τturb, and the reaction time, τR. We limit
this study to the case of single-step reaction, i.e. two
reactant scalar fields are distinguished by a reaction
progress variable, proportional to the temperature (see
fig. 1). The two different temperatures, in the hot and
cold blobs of fluid of our numerical setup, mimick the
combustion of a cold mixture of actual reactants into
a hot mixture of burnt products [5–7]. The interesting
point in this setup is given by the natural competition
between gravitational forces, which tends to mix the
fluid and to produce a larger and larger mixing layer
with uniform temperature, and combustion, which works
against this mixing, trying to burn the whole volume
and producing a propagating front of given thickness
and velocity. Moreover, the global phenomenology is
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Table 1: Parameters for the three sets of runs. Size is Lx×Lz = 4096× 10000 for the three runs; Atwood number, At=
(Td−Tu)/(Td+Tu); (laminar) Froude number Fr= V 2f /(gLf ), where Vf and Lf are the front laminar velocity and thickness
(see text), respectively; viscosity ν; thermal diffusivity κ= ν; gravity g; temperature in the upper half region, Tu; temperature
in the lower half region, Td; reaction characteristic time τR; normalization time, τ =

√
Lx/(g At).

At Fr ν g Tu Td τR τ

run A 0.05 7.5× 10−3 0.005 2.67× 10−5 0.95 1.05 5× 103 5.5× 104
run B 0.05 2.4× 10−4 0.005 2.67× 10−5 0.95 1.05 5× 104 5.5× 103
run C 0.05 7.5× 10−6 0.005 2.67× 10−5 0.95 1.05 5× 105 5.5× 103

T (x, z) x

g

T=1

T=0

.TdTu

Lz/2

0

−Lz/2

Fig. 1: Initial configuration for the Rayleigh-Taylor system with
combustion: cold fluid (fresh fuel) at T = 0 on top and hot fluid
(burnt material) at T = 1 on bottom. Such temperature jump
at the interface is smoothed by a hyperbolic tangent profile
with a width of the order of 10 grid points and with a randomly
perturbed centre (thus enabling to perform independent runs).
The system used is two dimensional and has size Lx×Lz plus
periodic boundary conditions applied in the streamwise (x)
direction. The fluid used is an ideal gas.

complicated by the natural unsteadiness of the underlying
RT problem. The Damköhler number, Da, is the natural
control parameter and is identified by the ratio between
the turbulent time scale, τturb and the reaction time scale
τR. Notice that because of RT unsteadiness Da depends
on time:

Da(t) = τturb(t)/τR,

where τturb ∝ t, as of standard RT phenomenology [7].
We perform highly resolved numerical simulations in

2d, with a resolution up to 4096× 10000 grid points
(see table 1). The 2d setup allowed us to reach a wide
scale separation and a time-span large enough to address
problems at both small and large Damköhler numbers,
something still unfeasible in 3d. Our study has also a
methodological motivation. We adopted a fully consistent
thermal lattice Boltzmann method to evolve simulta-
neously the momentum equations and the advection-
diffusion-reaction equations for temperature. We show
here that the method works well also in a non-trivial
case where the thermal modes are directly forced by the
combustion terms.

The main result of the paper concerns the quantification
of the front propagation due to turbulence enhancement
for the slow-reaction case, Da� 1, and the clear signature
of a strong feedback on the fluid evolution induced by
the front propagation when Da> 1. In the latter case, we
also measure an important increase of the temperature
intermittency at small scales.

Equations of motion and numerical setup. – We
adopt a numerical scheme based on a recently proposed
thermal lattice Boltzmann algorithm [8,9], which is able
to reproduce the correct thermohydrodynamics of an ideal
gas with good numerical accuracy [10]. To do that, the
probability densities fl(x, t) for a particle with velocity
cl (belonging to a discrete set, with the index l running
over 37 values [9]) at space location x and time t evolve
according to the lattice Boltzmann BGK equation [11–13]

fl(x+ cl∆t, t+∆t)− fl(x, t) =− ∆t
τLB
(fl− f (eq)l )(x, t);

(1)
the lhs stands for the free streaming of particles and the
rhs represents the relaxation process towards Maxwell

equilibrium f
(eq)
l (x, t) with a characteristic time τLB

(∆t is the simulation time step). Once the density (ρ),
velocity (u) and temperature (T ) fields are defined in
terms of the lattice Boltzmann populations as

ρ=
∑
l

fl; ρu=
∑
l

flcl; dρT =
∑
l

fl |cl−u|2 , (2)

(d is the number of space dimensions), it has been
shown [8,9] that the following set of macroscopic equations
can be recovered (repeated indexes are summed upon):


Dtρ=−ρ∂iui,
ρDtui =−∂ip− ρgδi,z + ν∆ui,
ρcvDtT = k∆T +

1
τR
R(T ),

(3)

where k is the thermal conductivity, τR the reaction time,
g the gravity and cv = d/2 the specific heat at constant
volume. Equations (3) are obtained provided that the
thermohydrodynamic fields appearing in the equilibrium
density functions are properly shifted:

u→u+ τLBg; T → T + τLB(∆t− τLB)
d

g2+
τLB

τR
R(T ).

(4)
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The novelty here is in the extra reaction term introduced
for the temperature field [8,9].
Concerning the hydrodynamical limit reported in

eqs. (3) we observe that extra terms breaking Galilean
invariance may emerge at higher order in the Chapman-
Enskog expansions [14–18]. In our case such terms can
be kept small by controlling the intensity of the external
body force. To rule out important sources of errors, we
have benchmarked directly the equations of motion in the
numerical simulations (see, e.g., fig. 4 of [10]). The energy
balance equation has been found very well verified within
a few percent for all used resolutions.
Notice also that in the third equation of (3) we have

subtracted the compression term p∇·u to avoid effects
due to a varying heat capacity or global heating of the
system coming from a steady increase of the underlying
mean pressure1.
The reaction rate must be zero in the pure phases, which

we set at temperatures T = 1, for the hot fluid at the
bottom, and T = 0, for the cold fluid on top (see fig. 1), so
that R(0) =R(1) = 0; it must also transforms, irreversibly,
the pure cold phase (unstable) into the hot one (stable).
A simple model for R(T ) with these properties is given by
a logistic-type expression

R(T ) = T (1−T )

originally proposed [19,20] as a model for the propagation
of an advantageous gene in a population and as a model
for reactions in a Rayleigh-Taylor system in [7].
The choice of using a lattice Boltzmann algorithm has

both physical and computational reasons; from the physi-
cal point of view, it allows to tune the degree of compress-
ibility of the flow [9], opening the way to the study of
situations where these effects are not negligible at all (e.g.,
the numerical modelling of nuclear burning in Supernovae
explosions [1]). Computationally speaking, the advantage
of LB is its very good scaling when run on parallel archi-
tectures, due to the fact that the algorithm is completely
local in space. Issues on the performance of this code
have been studied in [21]. Briefly summarizing, the perfor-
mance bottleneck is mostly in the streaming routine that
accesses memory at sparse addresses and performs a negli-
gible amount of computation. Establishing the appro-
priate boundary conditions has a negligible impact on
performance. Sustained performance is 14–17% of the
peak of the machine (the QPACE Supercomputer [21,22]).
Further improvements, mainly merging stream and colli-
sion, to avoid unnecessary memory access, may improve
the performance up to approximately 20%.
We performed three high-resolution sets of runs (on

lattices of 4096× 10000 grid points) with different reaction
times (run parameters are collected in table 1). For each
set, we carried out several (O(10)) independent runs, in
order to enhance statistics.

1This is done by adding an extra counterterm in the LB shifted
temperature inside equilibrium.

Fig. 2: (Colour on-line) Snapshots of the magnitude field of
the temperature gradient for the fast-reaction case, run A (top
panel), and for the non-reacting case (bottom panel).

Results and discussion. – Any RT system, even
in the case of τR� 1, will eventually reach the fast-
reaction limit, i.e. a situation where Da(t)� 1. This is
due to the fact that the underlying turbulence slows down
adiabatically, τ(t)∝ t. As a consequence, sooner or later
the “flame” tends to become active, burning at a rate
faster than the turbulence stirring/mixing. Here we study
the two regimes Da� 1 and Da> 1 and the transition
between them.

Mean-temperature-profiles evolution. For large Da,
the mixing is effective only at very small scales (where the
characteristic times of the fluid motion are shorter), while
the reaction tends to make uniform the mixed regions:
as a result we get a topology of the temperature field
which is made of “patches” separated by rather thin
interfaces, which are smoother than the non-reacting RT
case [7]; in addition, the front of the hot phase moves, on
average, with a non-zero mean drift velocity towards the
top. These preliminary features can be better understood,
at a pictorial level, looking at fig. 2, where we show the
magnitude of the temperature gradient |∇T |2 = ((∂xT )2+
(∂zT )

2) at three different times in the evolution for the
fastest-reaction rate that we have studied (top panel), and
compare it with the non-reacting case (bottom panel). On
the other hand, the larger the reaction time τR the closer
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Da ∈ [0.05; 0.15]

T̄ (z)

+Lz�20−Lz�2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Da ∈ [3; 10]

T̄ (z)

+Lz�20−Lz�2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Fig. 3: Mean temperature profiles at various times for run A
(bottom panel) and run C (top panel). The latter case is almost
identical to the non-reacting case.

is the phenomenology to the standard RT case: to see this
we compare in fig. 3 the evolution of the mean temperature
profile

T̄ (z, t) =
1

Lx

∫
T (x, z; t) dx (5)

for the two extreme cases in our database, runs A and C:
while for τR = 5× 105 the evolution is basically undis-
tinguishable from the usual RT dynamics[9,10], in the
fast-reaction case (τR = 5× 103) the center of mass of
the system clearly moves upwards, due to the burning
processes, causing a shift —and an asymmetry— of the
mixing region. The propagation of the burnt hot material
front against the fresh reactant (T = 0) can be quantified
by the barycentric coordinate Zf (t), that we define as the
following integral [23,24]:

Zf (t) =

∫ +Lz/2
−Lz/2

T̄ (z, t) dz. (6)

In fig. 4 we plot the function Zf (t) vs. t for the three
different reaction rates: the growth of Zf (t) in time is
greatly enhanced when going towards smaller τR.

Front propagation speed. If we integrate the third of
eqs. (3) over the whole volume, and divide by Lx, we get
an exact equation for the propagating front speed:

Vf (t) = ∂t

(∫ +Lz/2
−Lz/2

T̄ (z, t) dz

)
=
1

τR
〈T (1−T )〉, (7)

Vf (t)

t/τ

1010.10.01

0.02

0.01

0.0

Da ∈ [0.03 : 0.2]
Da ∈ [0.3 : 2]
Da ∈ [3 : 15]

t�τ

Zf (t)
Lz

1010.10.01

0.5

0.4

0.3

0.2

0.1

0.0

Fig. 4: Reaction front coordinate Zf (normalized by the total
vertical box length) and front speed Vf (t) (inset) as a function
of time for the three sets of runs: the faster the reaction, the
more rapidly Zf and Vf grow in time.

(where 〈(·)〉= (1/Lx)
∫∫
(·) dxdz) since the boundary

terms vanish, owing to the periodic conditions on the
lateral walls and to the adiabatic condition at top and
bottom plates (∇T |z=±Lz/2 = 0). For the laminar “flame”
the integral can be evaluated exactly (using, for instance,
the usual hyperbolic tangent profile) to give an explicit
expression for the speed, that is Vf ∝Lf/τR, where Lf
is the front thickness: as the latter can be estimated
to be Lf ∝√κτR, we end up with the well-known
result:

Vf ∝
√
κ

τR
, (8)

that is the front propagates at constant speed.
We now ask what changes when turbulence sets is. In

the small Da limit, when turbulence has the time to mix
the fluids before reaction becomes active, we are in the
so-called pre-mixed combustion. In this case, it has been
conjectured [23,25] that the simplest way to extend the
result of the laminar case is to replace in expression (8) the
molecular diffusivity κ with an effective (turbulent) eddy
diffusivity κT . Let us introduce the mixing layer length as

L(t) = 〈T̄ (1− T̄ )〉,

which is directly related to the definition usually used
in RT turbulence [26]. A dimensional estimate for the
turbulent diffusivity is κT (t)∼U(t)L(t), where U is a
large-scale characteristic velocity (in our case the root
mean square velocity). Plugging it into (8), we get

Vf (t)∼
√
κT

τR
∼
√
U(t)L(t)

τR
∼U(t)

√
(L(t)/U(t))

τR
, (9)

where

Vf (t)∼U(t)
√
τturb

τR
≡U(t)Da(t)1/2. (10)
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This prediction, probably valid to describe the evolution
of slow “flames” in stationary turbulent flows is unlikely to
be relevant for RT turbulence. The reason is that in order
to observe an “eddy-diffusivity”–driven propagation one
needs also a scale separation between the turbulent eddies
and the “flame” tickness, something that is not realized
by the evolving RT system. On the other hand, we can
rewrite (7) exactly as

Vf (t) =
1

τR
[〈T̄ (1− T̄ )〉− 〈θ2〉], (11)

where with θ= T − T̄ we denote the fluctuations with
respect to the mean vertical profile. It is clear now that
for Da< 1, the front cannot have any strong influence on
the underlying RT evolution and we can identify the first
term on the rhs as the mixing layer length L(t). Moreover,
we know that in RT temperature fluctuations are almost
constant in time and homogeneous inside the mixing layer,
so also the second term on the rhs is proportional to
the mixing layer extension [27]. A natural prediction for
Da< 1 is therefore

Vf (t)∝ L(t)
τR
; Vf (t)∝U(t)Da(t). (12)

Let us notice that this result is valid also for different
choices of the reaction term (see also [23]): in fact as long
as we may write R(T, τR) = (1/τR)f(T ) (where f is some
smooth function of T ), we will have, for the front speed

Vf (t) =
1

τR
〈f(T )〉;

moreover, it is always possible to use f(T ) = f(T )+
fluctuations, and f is non-zero (and positive) only in the
mixing layer (being a reaction term). Then, 〈f(T )〉 ∝L(t)
and the scaling (12) of Vf with Da is recovered.
In standard (stationary) turbulent reacting systems, one

can check this prediction against experiments/simulations
at various Da, obtained changing the reaction rate or
the underlying turbulent intensity, while in a reacting RT
setup we can exploit the fact that Da=Da(t) varies in
time. In fig. 5 we plot the front speed (normalized with the
root mean square velocity) as a function of Da (which is
itself a function of the simulation time) for the three runs.
As one can see, our prediction (12) works satisfactorily
in a wide range of Da(t), showing deviations only for
very small times, where turbulence is not yet developed
and the front evolution is strongly influenced by the
initial configuration, and for Da(t)> 1 where it cannot be
expected to be valid. In the latter case, data point flatten.
We observe the feedback of the “flame” on the turbulent
evolution with a sort of synchronization between front
propagation and evolution of the turbulent kinetic energy
toward a value where Vf (t)∼U(t). Such a behaviour turns
out to be in agreement with recent theoretical results
obtained through a mean-field approach [28].

Da ∈ [0.03 : 0.2]
Da ∈ [0.3 : 2]
Da ∈ [3 : 15]

Da1/2

Da

10210Da10−110−2

10

1

10−1

Vf�U

10−3

10−4

Fig. 5: Front speed normalized by the root mean square
(vertical) fluid velocity for the three runs as a function of
the Damköhler number Da(t). The solid line represents the
theoretically predicted behaviour Vf/U ∝Da, obtained on the
basis that for Da< 1 “flame” propagates inside the well-mixed
mixing layer. The prediction Vf/U ∝Da1/2, obtained from the
assumption that in the pre-mixed combustion (slow reaction)
regime one can simply substitute the molecular diffusivity with
the turbulent one κ→ κT in the expression for the laminar front
speed, is also plotted (dashed line).

Small-scale intermittency. When the reaction rate is
fast (Da� 1), there are no extended regions which are
well mixed, since the cold material is rapidly burnt. As a
result, the temperature field organizes in patches of pure
reactants/products separated by sharp interfaces (being
in the so-called “segregated regime”), and, consequently,
it has been conjectured that an increased intermittency
develops at the small scales [7]. The authors in [7] also
derived a phenomenological prediction for the scaling laws
of fluid temperature (and velocity) structure functions,
according to which, in the asymptotics of Da� 1, they
should follow the relation

S
(p)
T (R, t)≡ 〈|δRT |p〉 ∼

(
R

L(t)

)2/3
, (13)

(where L(t) is the mixing layer length), irrespective of the
order p. From eq. (13) the expression for the flatness reads

F
(p)
T (R, t) =

〈|δRT |p〉
〈|δRT |p/2〉2 ∼R

−2/3L(t)2/3 (14)

and so it increases with decreasing R for all orders, a
clear indication of strong small-scales intermittency. In

fig. 6 we show the growth of F
(4)
T (R= 1, t) as a func-

tion of L(t), for the three runs: the flatness for run
A, corresponding to the smallest reaction time, is in
good agreement, within error bars, with the prediction of

eq. (14), F
(4)
T ∼L2/3; instead, at increasing τR, intermit-

tency is depleted and the flatness grows more slowly, at a
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F
(4)
T (1↪ t)

− L2/3
τR → ∞
τR = 5 × 105

∗ τR = 5 × 104
× τR = 5 × 103

L(t)�(g At)
1010109108107

102

1

Fig. 6: The 4-th order flatness F
(4)
T (R= 1, t) for the three

runs and for the non-reacting RT (τR→∞). Data from run
A (Da� 1) agree well, within error bars, with the prediction
given by eq. (14), F

(4)
T ∼L2/3.

rate comparable (within error bars) with the non-reacting
RT case, whose data are also reported for comparison.

Conclusions. – We used a self-consistent thermal
lattice Boltzmann algorithm to perform numerical simu-
lations of 2d Rayleigh-Taylor turbulence, in the presence
of chemical reactions between hot and cold fluids. The
reaction was modelled by means of a Fisher-Kolmogorov-
Petrovsky-Piskunov source term in the temperature equa-
tion; this term has been introduced by a suitable shift of
the temperature field appearing in the equilibria of the
lattice Boltzmann equation.
We analyzed the crossover among the various regimes

emerging from the competition of turbulent mixing and
reaction, going from the segregated (τR� τturb) to the
well-mixed one (τR� τturb). We showed that, in the latter
case, the effect of turbulence is to enhance the reac-
tion front speed leading to an homogeneous burning in
the whole mixing layer region. On the other hand, for
moderate and large Damköhler, there is a feedback of the
reaction on the statistical properties of the temperature
field, resulting in increased intermittency at small scales
in reasonable accordance with the prediction of [7].
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