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We define a (chaotic) deterministic variant of random multiplicative cascade 
models of turbulence. It preserves the hierarchical tree structure, thanks to the 
addition of infinitesimal noise. The zero-noise limit can be handled by Perron- 
Frobenius theory, just like the zero-diffusivity limit for the fast dynamo 
problem. Random multiplicative models do not possess Kolmogorov 1941 
(K41) scaling because of a large-deviations effect. Our numerical studies indicate 
that deterministic multiplicative models can be chaotic and still have exact K41 
scaling. A mechanism is suggested for avoiding large deviations, which is present 
in maps with a neutrally unstable fixed point. 

KEY WORDS: Fully developed turbulence; chaotic maps; large deviations; 
transfer matrix; dynamo theory. 

1. INTRODUCTION 

One popular  way to describe the small-scale activity of fully developed 
turbulence is to suppose that energy is transferred from the injection scale 
to the viscous scales by a muitistep process along the inertial range. This 
idea has been often used to predict impor tant  features of turbulent  flows. 
Still, relations with the structure of Navier-Stokes equations are poorly 

understood. 
In  his 1941 work, Kolmogorov  I1) uses his phenomenology to postulate 

that all the statistical properties of the turbulent  flow at scales belonging to 
the inertial range are universa l ,  in the sense that they depend only on the 
scale l and on the mean energy dissipation rate per unit  mass g. As a conse- 
quence, moments  of velocity increments, over small distances /, should 
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possess universal forms. This led Kolmogorov to dimensionally-based 
expressions for the structure functions: 

SI p) = E{ avP(x) } - E{ (v(x + 1)-- v(x)) p } ~ (gl) p/3 (1) 

where E{.- .  } denotes ensemble average and the symbol ~ means equality 
within O(1 ) multiplicative constants. Thus (1) predicts scaling behavior for 
the structure functions, the function of order p having the exponent 
(p = p/3. 

Although early experimental data seemed to confirm the prediction (at 
least for p = 2), the K41 theory has been criticized because it does not take 
into account the natural (and also experimentally verified) presence of 
fluctuations in the energy dissipation. These fluctuations are commonly 
believed to be the consequence of the chaotic transfer of excitations along 
the inertial range. A possible way to account for this effect, suggested by 
Obukhov, (2) is the following. First, one introduces the average rate of 
energy dissipation over a cubic box A~(x) of side l centered on x: 

1 e,(x) =~ I.,(x)e(x) dx (2) 

Second, fluctuations in the velocity increment are related to fluctuations in 
e~(x) by a "bridging relation" suggested by Kolmogorov's cll theory, namely 

&~'(x) ~ (~,(x)) 1/3 (3) 

This bridging relation is still widely used. It has received good experimental 
support. (3~ Still, it leads to some conceptual difficulties which are unrelated 
to the material to be presented in this paper. (41 From (2) and (3), we find 

SIP)-.. E{ef/'} l p/3 (4) 

Considerable experimental c5-7) and theoretical work ~s'9"3) has been 
devoted in recent years to measuring and predicting the dependence of the 
quantities E{8~/3 } on the scale l. It seems that a certain consensus has been 
reached. From the experimental side, there is clear evidence of a nontrivial 
l dependence (at least for high-order moments). Similarly, from a theoreti- 
cal point of view, all models based on random multiplicative cascades 
(Section 2) introduce power-law corrections to K41 scaling. The fact that 
these simple models have deviations to K41 scaling has led perhaps to the 
misconception that any cascade model having nontrivial fluctuations is 
inconsistent with K41 scaling. 

Actually, we shall show that the chaotic transfer of energy described 
by a deterministic multiplicative process can still be consistent with K41, or 
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more precisely that possible deviations disappear in the "fully developed 
limit," i.e., for cascades with very many steps. 

The paper is organized as follows. In Section 2 we connect the well- 
known case of random independent multiplicative cascade models and our 
(deterministic) case in two steps. First, we introduce a Markov random 
model and then, by means of a special limiting construction, we obtain 
the deterministic model. A particular class of deterministic multiplicative 
models is introduced in Section 3 and studied numerically in Section 4. 
Finally, in Section 5 we give a possible interpretation of the lack of correc- 
tions to K41 scaling observed in our model. 

2. P U R E - R A N D O M  A N D  N O I S Y - D E T E R M I N I S T I C  
M U  LTIPLICATIVE M O D E L S  

Random multiplicative models were introduced by Novikov and 
Stewart t ~  and Yaglom t~4~ as a simple way to describe stochastic transfer 
of energy along the inertial range. Their fractal properties were discussed 
by Mandelbrot. c~5) Let us give now the definition of these models. A binary 
tree structure, obtained by hierarchically partitioning the original volume 
of size l0 into subvolumes of size 1, = 2-"/o, is used to describe fluctuations 
at different scales (Fig. la illustrates the one-dimensional case). The energy 
dissipation e,, associated with a cube at scale l,, is multiplicatively linked to 
the energy dissipation e,_ ~ at the larger scale l,,_ ~ through a random 
variable W,,: 

~ .=  W,,~,,_, = W,,W,,_, W,,_2... W ~  (5) 

The W,, are identically and independently distributed positive random 
variables. The structure functions are now defined as 

S',:~ =- E{~/3  } l, p/3 (6) 

Using (4) and (5), we obtain 

- l , ,  with ( ( p ) = p / 3 - 1 o g z E { W  "/3 } (7) 

where E{. . .  } denotes the mathematical expectation. Here, -log,_ E{ W p/3 } 
is the correction to the K41 exponent in the structure function of order p. 
Actually, the multiplicative model (5) has very interesting properties 
when considered, in the light of the theory of large deviations, as noted, 
in particular by Oono ~6) and Collet and Koukiou. "7~ It follows from 
Cram+r's *~s~ work (see also refs. 19 and 20) that, for large n, the quantity 

1 logz e. = I  (logz W, + l o g  2 W 2 + . . .  + log2 W,,) (8 )  
n n 
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Fig. 1. (a) A one-dimensional representation of the dyadic tree for the random multiplicative 
chaos model. Each variable { l, Vi} is chosen independently and identically distributed. (b) The 
branching process for the noisy deterministic maps; the ~'s are chosen independently on each 
link. 
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can deviate from its limit value E{log 2 W} by a finite, nonvanishing 
amount a with a probability which decreases as e x p [ - f ( a ) n ] .  The Cram6r 
function 3 f ( a )  is positive and convex and can be identified with an entropy 
in applications to statistical thermodynamics, c2~ The presence of such large 
deviations, with probability decreasing exponentially in n (i.e., as a power 
law in l.), introduces fluctuations in the effective scaling exponent and 
therefore an overall change of the scaling properties of all structure 
functions. Indeed, we can rewrite (7) in the following form: 

S~ p) oc E{~"./3} l~/3 = E { l ~  (p/3)(1/n){I~ Wt+log2 w2+ ..-+log2 w.)} lP/3 oc l~n t' (9) 

As is well known, in large-deviations theory, the function ((p) is given by 
a Legendre transformation: 

f(~)~ ~(p) i-nS/ (10) 

Our aim now is to construct a deterministic variant of such models. 
We shall do it in two steps. First, we consider, instead of independent 
random variables { IV,.}, successive points on the orbit of a Markov process. 
This means that we consider a Markov process on a phase space X with 
a transition probability operator P and an observable h: X ~  R~+. The 
(generalized) structure function at the scale l , - - 2 - " /o  is then defined as 

'p' t S.  - S .  [h ,P ]=E  hP(xk) (11) 
I 

where xk~ X are points of an orbit of the Markov process. Introducing 
n o w  

(P)-- f i  hP(xk)  (12) Z n  I 

we easily find that the conditional expectation of Z.(p) with respect to the 
initial distribution density p(x) is given by 

E{Z~,P~Ip } = fxhP(x) p(x) P"h, pl(x) dx (13) 

Here, the operatdr Ph, p is defined by the relation Ph.pqk(x)=ha(x)P(~(x). 
This concludes the first step. The second step is to change from a Markov 
random dependence to a deterministic dependence by use of a chaotic map. 

3A name suggested by Mandelbrot. ~2~ 
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It seems that this can be done in an obvious way, replacing the transition 
probability operator by the transfer matrix (Perron-Frobenius operator) of 
the chaotic map. However, some additional work is needed to define a 
deterministic construction possessing the same tree structure as in the 
random case (Fig. la). Indeed, with a deterministic map, how can we avoid 
giving the same value to the two offsprings of the next generation, thereby 
trivializing the whole tree structure? 

It is necessary to define a consistent procedure to distinguish the 
branches of the tree. We build up this branching-deterministic process by 
inserting a small amount of noise at each node and by considering the total 
process as the superposition of the deterministic transfer along consecutive 
levels plus the noise. The final map will be obtained by taking the zero- 
noise limit. 

Let f :  X--* X c  R d be the deterministic map which describes the rela- 
tion between any two consecutive scales of the tree structure (see Fig. lb), 
and let us fix an observable h: X--* R~+. Then for any fixed number t 1 > 0  
we may consider a random Markov chain (X~k '1) such that 

x(,n =f(x~,))  + q~k (14) k + l  

where the ~k are random variables, independently and identically distributed 
on the interval [ - 1 ,  1 ]. Now, we may apply the previous construction by 
considering different realizations of the noise ~k on each link connecting 
consecutive nodes. Then any cascade process along a branch of the tree in 
Fig. lb will be described by the map (14) with different realizations of the 
noise. 

We define our structure functions as the zero-noise limit of (11). For 
a fixed value of ~ > 0  it follows from (13) that the large-n limit of the 
structure functions is governed by the spectrum of the operator: 

Ph, p., = hpQ,~P (15) 

Here, Q, is the transition operator for the random perturbation, P is the 
transfer matrix, or Perron-Frobenius operator of the map f,  and h is an 
observable (for definitions see, for example, ref. 22). 

Let us mention, incidentally, that there is also another possibility to 
define a deterministic (chaotic) process on a tree structure. Using a method 
of finite-state Markov approximations of chaotic maps proposed by Ulam, 
we obtain a Markov chain with transition probabilities given by p,j= 
I x i n f - ~ X j l / l X i ] ,  where the set of X; defines a suitable finite partition of 
the original phase space X. It is known, for instance, that for sufficiently 
"good" maps (for example, piecewise expanding with derivatives larger 



Chaotic Cascades with Kolrnogorov 1941 Scaling 787 

than two), invariant distributions of this simple Markov chain converge 
to the density of the invariant measure of the map under consideration 
when IX, I-- '  0. With this Markov process, we construct the analog of (15), 
namely the operator Ph.p=hPP. (Here P is the transition operator with 
matrix elements p/j.) These possibilities will not be explored further here. 

We now observe that the construction based on taking the zero-noise 
limit appearing in (15) is similar to that of the mathematical theory of fast 
dynamos. (23-251 Fast dynamo theory describes the phenomenon by which 
rapid magnetic field growth can be sustained in the presence of a prescribed 
velocity field when taking the zero-diffusivity limit. From a formal point of 
view, fast dynamo theory involves a combination of two operators: a trans- 
fer matrix for some deterministic map, associated to a deterministic velocity 
field, and a diffusionlike operator, or equivalently small-amplitude noise. 

The main purpose of the theory is then to find the properties of the 
zero-noise limit of the combined operator. Oseledets, 125J in his study of the 
dynamo problem, considered a noise-perturbed Perron-Frobenius operator 
similar to that of (15) and was able to show in special cases that it con- 
verges for r / ~ 0  to the Perron-Frobenius operator for the deterministic 
problem. The latter is than said to be "stochastically stable." 

Returning to the structure function of the multiplicative model, we 
shall also assume that the Perron-Frobenius operator is stochastically 
stable. In addition, we assume that the map (14), with r/= 0, is chaotic and 
ergodic. We can then compute the structure functions as averages along the 
orbit for the deterministic map, i.e., 

S, p= Nlim -N 2 hP(xi+k ) (16) 
i=l k=l 

with xi+ l =f(x i ) .  

3. A CLASS OF D E T E R M I N I S T I C  C A S C A D E  M O D E L S  
BASED ON SHELL M O D E L S  

The construction defined in Section 2, after taking the zero-noise limit 
as explained, amounts simply to the following: we keep (5) as it stands, but 
instead of searching the W,, randomly, we assume that 

w , , = g ( W . _ , ,  w,,_2 ..... w,,_r) (17) 

where g is a deterministic map which involves a finite number r of 
antecedents. Although it is known that maps with only one antecedent can 
be chaotic, with the constraints that we shall use later, we shall need more 
than one antecedent. 
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There is an alternative formulation in terms of characteristic velocities 
associated with the hierarchy of scales l. = lo 2-" .  By analogy with (3), we 
introduce a set of velocity variables, denoted u.,  related to the e. by 

lu"13 (18) 
e. = /n 

The u,, can be thought of as (real or complex) velocity amplitudes associated 
with eddy motion on scale 1.. Instead of (5) we then use 

u .  = q, ,q , ,_  , q , ,_  2 " "  ql  Uo 

while (17) becomes 

(19) 

Equation (20) will be called the "ratio map" since the q,, are the ratios of 
successive velocity amplitudes. 

We now consider a particular class of ratio maps generated from "shell 
models." The latter can be viewed as the poor man's Navier-Stokes equa- 
tions: instead of the whole velocity field, one retains only a discrete set of 
velocity amplitudes u., the dynamics of which is governed by a set of 
coupled differential equations of the form 

a . = F , , ( u  . . . . . . . . .  u . . . . . .  u . + s )  (21) 

where the F,, involve finitely many neighbors (in scale) of u.. The various 
n's are referred to as "shells." Except for viscous and forcing terms, the Fn 
are chosen quadratic and satisfy energy conservation. We shall not here 
attempt any review of the considerable literature on shell models (see, e.g., 
refs. 10, 12, 26, and 27 and references therein). Our intention is to use a 
s ta t i c  form of shell models, i.e., we assume 

F , , ( u  . . . . . . . . .  u . . . . . .  u,,+s)=0 (22) 

It is not our intention to discuss such thorny issues as: Are shell models 
"good" approximations to true turbulence? Can we learn something about 
the dynamics of shell models by studying the time-independent solutions? 4 

We just observe that static shell models immediately generate ratio 
maps of the form (20). Indeed, ignoring viscous and forcing terms, which 

4 Numerical simulations of the time-dependent GOY model and related models indicate that 
the solutions are "most of the time" static, with occasional violent time-dependent events. ~2s~ 
Why this is so is not yet understood, but it gives added motivation to study the statics of 
such models. 

q , , = f ( q , , - ~  ..... q n - r )  (20) 
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are not relevant in the inertial range, and assuming that F, is a homo- 
geneous polynomial of degree two in the u,, we find that q,, = u,,/u,,_ t 

satisfies a recursion relation of the form (20). An example will make this 
clear. One popular model is the Gledzer-Ohkitani-Yamada (GOY) 
model, t~'~2) which, in its complete form (with viscosity, forcing, and time 
dependence), reads 

�9 * 2 ~ _ _  _ _  1 1 u. + v k . u .  + f . - F . =  -- ik . (u .+lU, ,+2--zU.+lU._l--~u, ,_zU._l)  (23) 

Here, v is the viscosity, f .  is the forcing, and k. = 1,7 ~ is the shell wave- 
number. The inviscid, unforced, and static GOY model gives 

1 1 = 0  ( 2 4 )  Un+ 1 U n + 2  - -  "4Un+ 1Un--  I - -  "sUn-- 2Un- -  1 

Hence, the recursion relation for successive ratios is 

+ 8 q . - 1  - q" q . -  l q . -2  q,,-2q,,-3 

It turns out that the ratio map generated by the GOY model is quite 
trivial. Indeed, from (25) it follows that the product z,,=q,,q,,_~q,,_2 
satisfies a first-order recurrence relation which has a single stable fixed 
point, z,, = z ,  = 2-1. Hence, there is no chaos, and K41 scaling is obtained. 
To obtain chaotic variations (in the shell index), we need to have more 
terms in F,.  One simple way is to perturb the GOY model by putting an 
admixture of another popular shell model, the Desnyansky-Novikov (DN) 
model, c~~ In this way we generate the following ratio map: 

q . = f ( q . - l ,  q . -2 ,  qn-3) 

= - -  + + y  - 2 y +  
xy 

(26) 

Here, 6 is the so-called ratio of backward to forward cascade amplitudes in 
the DN model and ~ is the admixture parameter, which in subsequent 
numerical computations will typically be taken small (about 10-2). The 
hybrid ratio map" (26), which will be referred to as GOY-DN in the sequel, 
has still a K41 fixed point q, = q ,  = 2 -  ~/3, but it is easy to find a region in 
the phase space of the parameters y and 6 where the K41 fixed point is 
unstable; for example, ~ > 0, V6. Further information about the behavior of 
(26) requires numerical simulations. 
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Fig. 2. (a) A typical solution of the difference equation (26). (b) A magnification of a portion 
of part (a). The horizontal solid line corresponds to the Kolmogorov fixed point. 
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4. NUMERICAL RESULTS 

We found numerically that the GOY-DN map defined by (26) 
develops chaotic behavior for a sizable set of values of the control 
parameters 7 and 5. Most of the numerical simulations reported hereafter 
were done with ~--0.01 and 5--4.  However, the qualitative feature of the 
results appears to be very stable against changes in the parameters, as long 
as the dynamics is chaotic. 

Figure 2a shows a typical orbit of the map (26). The initial condition 
is obtained by adding a very small random perturbation (r.m.s. value 
about l0 -5) to the K41 fixed-point value. The orbit looks chaotic and also 
displays strong intermittent fluctuations. Its largest Lyapunov exponent is 
found to be about 0.22. The Kolmogorov fixed point, although it ceases to 
be stable as soon as 1' >0,  still plays an important role in the dynamics. 
Figure 2b shows an enlargement of Fig. 2a, revealing that the orbit mostly 
oscillates close to the K41 fixed point, occasionally going on wild excur- 
sions. We mention that in the unperturbed GOY map, the K41 fixed point 
is neutrally stable: two eigenvalues of the derivatives matrix, calculated at 
the fixed point, have modulus one. Of course, the fixed point becomes 
completely unstable as soon as 1' > 0. 

We now turn to the structure functions (16), evaluated by averaging 
along the orbit with several million points. Figure 3 shows the structure 

o 

e -  

r...- 

O 
. . - I  

Fig. 3 

-50.0 

-100.0 

-150.0 

i 

0.0 

�9 " ' " ' ~ - - ~  ~=1/3 

(4 =4/3 
1 i i i 

0.0 20.0 40.0 60.0 80.0 
N 

Logarithmic plot of the structure functions S~ m as a function of n, for p = 1, 2, 3, 4. 
The solid lines correspond to the Kolmogorov 1941 scaling. 
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functions for p from 1 to 4. They are seen to follow power laws (in k,)  at 
large n. Except for some residual chaotic noise, the exponents are exactly 
given by their K41 value: ( (p)  = p/3. Here, a word of warning is required. 
In numerical simulations of the full t ime-dependent shell models, it is not  
practical to have more than, say, 30 shells, since time steps decrease 
exponentially with n. Had  we used such a low value of n for estimating 
exponents of structure functions, we would have predicted erroneous 
values, which would be misread as "multifractal" corrections to K41. We 
do not want here to open the Pandora ' s  box of whether the multifractal 
corrections detected in the time-dependent simulations of shell models t26'27~ 
are or are not finite-shell artefacts (similar questions can be asked for finite- 
Reynolds-number turbulence data). 

The presence of exact K41 scaling suggests that the G O Y - D N  model 
has no large deviations. This can be checked directly by studying the 
probability density function (p.d.f.) rt(n, s of the normalized sums of 
logarithms: 

1 i Z'(n) = -  log2 Iqkl (27) 
nk=l 

which plays in the deterministic case the role of (8) in the random case. 

Fig. 4. Logarithm of the probability density function (p.d.f.) of Z'(n), divided by n, for n = 16, 
21, and 36. Notice that the peak at the Kolmogorov value .~(n)=-1/3 becomes more 
pronounced as n increases. 
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Figure4 shows the logarithm of the p.d.f, divided by n, (l/n) 
log(n(n, S)), for three values of n. Note that as n grows, the curves become 
increasingly peaked at the K41 value -1 /3 .  In the case of usual large 
deviations the p.d.f, n(n, 27) should decrease exponentially with n at fixed 27, 
implying the various curves should settle down to a limiting curve. Our 
results suggest that n(n, 27) decreases faster then exponentially with n. 
[Possibly as exp(-n~') ,  with 1 <o~ < 2; finding the precise functional form 
would require considerably more numerical work.] Anyway, our results 
lead us to conjecture the absence of large deviations of the usual type. 
A possible interpretation of this phenomenon is presented in the next section. 

5. N E U T R A L L Y  U N S T A B L E  A N D  S P O R A D I C  M A P S  

We present a very simple example of a class of maps which displays 
chaos and no large deviations. Let us define 

f.(x)=Frac(x:+x): [0 ,1 ]  ~ [0 ,1] ,  z~>2 (28) 

The deterministic maps are chaotic, piecewise expanding, and have a 
neutral (or indifferent) fixed point at the origin. These maps are "sporadic," 
in the following sense TM ~: The growth of infinitesimal errors is controlled by 
a stretched exponential with exponent less than one. Hence, the Lyapunov 
exponent is zero, although the maps certainly deserve to be called 
"chaotic." The derivative of any of these maps is equal to one at the origin 
and is strictly larger than one at all other points where it is well defined. 
This leads to some unusual ergodic properties, for example, the noninte- 
grability of the invariant measure, the density of which has a power-law 
singularity near the origin. 129-31~ The reason is that once the orbit gets very 
close to the neutral fixed point, the time to escape from it is inversely 
proportional to a power of the distance from the fixed point. As a conse- 
quence, most usual ergodic averages such as (27) will be dominated by the 
contribution from the fixed point, so that there are no large deviations. 

As for the absence of large deviations in the GOY-DN map (26), we 
are led to speculate that something similar happens: the presence of a 
neutrally unstable fixed point (or, more likely, a neutrally unstable periodic 
orbit) dominates the large-n asymptotics of structure functions. 

Let us final!y make two remarks. First, the positivity of the largest 
Lyapunov exponent in the GOY-DN map (26) is not inconsistent, as one 
would think at first, with the kind of behavior displayed by the maps (28) 
which have zero Lyapunov exponent. To illustrate this, consider the direct 
product of two one-dimensional maps: the first is any map chosen in the 
class (28) and the second is the piecewise linear map g(y)= Frac(2y) from 
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[0, I ]  to itself. The product has as its largest Lyapunov exponent log 2. 
Nevertheless, for the observable h(x, y ) = x y ,  ergodic averages of the 
logarithm of this function are still dominated by the contribution from 
x = 0, as if the multiplier y was absent. Second, let us mention that for the 
maps (28) it is possible to give an estimate of the average fraction of time 
during which the dynamics is chaotic, t3~j This average goes to zero as a 
power law of the number of iterations n (e.g., as log n/n, when z = 2). If the 
analogy  between the sporadic maps and the G O Y - D N  model is correct, 
this suggests a possible interpretation of the rather strong corrections to 
K41 scaling at finite n, which eventually disappear at large n. 
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