
doi: 10.1098/rsta.2011.0048
, 2448-2455369 2011 Phil. Trans. R. Soc. A

 
Toschi and R. Tripiccione
L. Biferale, F. Mantovani, F. Pozzati, M. Sbragaglia, A. Scagliarini, F. Schifano, F.
 
evolution in turbulent stratified fluids

Taylor front−Numerical simulations of Rayleigh
 
 

References
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/369/1945/2448.ful

 This article cites 10 articles

Subject collections

 (4 articles)thermodynamics   �
 (107 articles)fluid mechanics   �

 (29 articles)computational physics   �
 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

This journal is © 2011 The Royal Society

 on October 5, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/369/1945/2448.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/cgi/collection/computational_physics
http://rsta.royalsocietypublishing.org/cgi/collection/fluid_mechanics
http://rsta.royalsocietypublishing.org/cgi/collection/thermodynamics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;369/1945/2448&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/369/1945/2448.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Phil. Trans. R. Soc. A (2011) 369, 2448–2455
doi:10.1098/rsta.2011.0048

Numerical simulations of Rayleigh–Taylor front
evolution in turbulent stratified fluids
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We present state-of-the-art numerical simulations of a two-dimensional Rayleigh–Taylor
instability for a compressible stratified fluid. We describe the computational algorithm
and its implementation on the QPACE supercomputer. High resolution enables the
statistical properties of the evolving interface that we characterize in terms of its fractal
dimension to be studied.
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1. Introduction

The lattice Boltzmann method (LBM) is a discrete (in both position and
momentum spaces) computational scheme that describes the dynamics of fluids.
Key advantages are the relative ease with which complex physics can be
implemented in the model, as well as computational efficiency on massively
parallel computers. Here, we focus on both aspects; we recall how LBMs are able
to describe thermal fluid problems and then describe an efficient implementation
on a massively parallel supercomputer based on the IBM PowerXCell-8i processor.
The combination of computational accuracy and efficiency allows us to explore
with very high resolution the dynamics of the interface during the growth of the
mixing layer in the Rayleigh–Taylor problem.

2. The lattice Boltzmann model

In this section, we briefly recall the computational method and the corresponding
simulated equations. More details and validation can be found in Scagliarini
et al. [1] and Biferale et al. [2]. The lattice description is given in terms of
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lattice populations, fl(x , t), each characterized by its velocity, cl ; the discrete-time
evolution of the populations is described by

fl(x + clDt, t + Dt) − fl(x , t) = −Dt
t

(fl(x , t) − f (eq)
l ).

Macroscopic density, momentum and temperature are defined in terms of the
fl(x , t): r = ∑

l fl , ru = ∑
l cl fl , DrT = ∑

l |cl − u|2fl . The kinetic and thermal
description of a compressible gas of variable density r, velocity u, internal
energy K and subject to a local body force g is given by: vtr + vi(rui) = 0;
vt(ruk) + vi(Pik) = rgk ; vtK + 1/2viqi = rgiui , where Pik and qi are the momentum
and energy fluxes. It can be shown that these equations are recovered starting
from a continuum Boltzmann equation by introducing an appropriate ‘shift’
of the velocity and temperature fields in the local equilibrium [3]. Also,
lattice discretization induces non-trivial correction terms in the hydrodynamical
evolution equations. In particular, both momentum and temperature must be
‘renormalized’ in order to recover the correct description from the discretized
LBM variables: the first correction to momentum is given by the pre- and post-
collisional average [4], u(H ) = u + (Dt/2)g, and the first non-trivial correction
to temperature by T (H ) = T + (Dt)2g2/4D (D = 2 is the dimensionality of the
system; see [3]). Using these ‘renormalized’ hydrodynamical fields it is possible
to recover, through a Taylor expansion in Dt, the thermo-hydrodynamical
equations [1,3],

Dtr = −rviu
(H )
i , (2.1)

rDtu
(H )
i = −vip − rgdi,z + nvjju

(H )
i (2.2)

and rcvDtT (H ) + pviu
(H )
i = kviiT (H ), (2.3)

where we use the material derivative, Dt = vt + u(H )
j vj , and neglect viscous

heating. In the above, cv is the specific heat at constant volume for an
ideal gas, p = rT (H ), and n and k are the transport coefficients. We note
that similar hydrodynamical equations can be approached with hybrid schemes
(see [5] for a review and [6]). In such cases, one has to deal with a mixed
lattice Boltzmann finite difference scheme whose competitiveness with respect
to our single population lattice Boltzmann scheme settles interesting points for
computational research in the future: in the former method the computational
advantage of using a smaller number of population fields has to be balanced
against the shortcoming of a smaller integration time step (compared with the
single population method here used).

3. Lattice Boltzmann method implementation on QPACE

In this section, we describe our parallel implementation of the LBM algorithm
described above, which we tuned for the QPACE computer and used for a large
simulation campaign in spring 2010. QPACE [7,8]—currently ranking as the top
entry of the Green500 list (http://www.green500.org/)—is a massively parallel
computer optimized for compute-intensive computational physics applications.
Its processing nodes use the IBM PowerXCell-8i processor, a multi-core
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Figure 1. Graphical representation of a ring of QPACE nodes. Each node exchanges data with its
nearest neighbours. The comm() procedure exchanges sites sitting at the borders of the sub-lattice,
as shown for nodes N0 and N1. (Online version in colour.)

heterogeneous processor with a peak performance of about 100 Gflops. Nodes
are interconnected by a three-dimensional toroidal network. The processor choice
and the interconnection topology make QPACE a somewhat unusual architecture;
however, our work is relevant in a more general framework, since (i) the pattern
of data traffic associated with our parallel implementation has a simple structure
so it can be quickly re-coded for virtually any other network structure and (ii) the
multi-core architecture of the cell processor is becoming more and more common
to all high-performance engines, so our results are a valuable starting point for
other implementations, e.g. for the multi-core processors recently introduced by
Intel.

Our code belongs to the D2Q37 class, so each lattice site is described by a
structure with several members, containing the double precision floating array
p[] of 37 LBM populations and just a few additional variables. In order to use
all the performance of the QPACE system, parallelism has to be exploited at
several levels. First, the lattice has to be split over the processing nodes. We
split our lattice of size Lx × Ly on Np nodes along the x dimension, that is,
we allocate on each node a sub-lattice of size Lx/Np × Ly . This splitting makes
the parallelization of the code easier: the overhead introduced with respect to a
different splitting is negligible.

The LB code evolves over the system for many time steps. At each step, each
site is processed in several computational phases. We allocate two copies of the
lattice in the memory: each phase reads operands from one copy and writes results
to the other. We have four processing phases within the loop over the time steps,
as follows.

1. comm(): this step moves data between the nodes on the machine. Indeed,
processing sites at the borders of each sub-lattice require that data are stored on
neighbour nodes. We maintain an updated copy of the required sites sitting at the
border of each sub-lattice (figure 1). Routine comm() copies data associated with
these border sites using QPACE communication routines. As discussed above,
rewriting this routine for a different communication package requires little effort.

2. stream(): for each lattice point, this phase gathers the population elements
of neighbour points (up to three lattice sites away) whose velocities cause them
to drift to the current site. This phase accesses non-contiguous memory locations
according to a fairly complex addressing scheme.

3. bc(): this phase enforces boundary conditions (e.g. constant temperature)
at the top and bottom of the lattice.

4. coll(): for each site, this phase performs the collision among the
populations gathered by the stream() phase. This step is computationally
intensive and completely local (i.e. arithmetic operations use only those
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populations in the site). A further level of parallelism is within each node:
we further split the sub-lattice among the processor cores (called synergistic
processing units (SPUs) in CELL jargon), so that each SPU handles a strip within
the sub-lattice assigned to the node. coll() uses a double-buffer scheme to
overlap memory access and computation: we move fresh data from the main
memory to each local store inside the SPUs (and vice versa) concurrently with
the computation. This approach is used also by stream(); here, we exploit
the parallelism owing to the SPUs and a multiple-buffer scheme to implement a
pipeline of direct memory access operations that allow us to perform the time-
consuming scattered accesses to memory in the local store (as opposed to the
main memory).

The CELL processor offers yet a third level of parallelism, namely vector
operations, i.e. the possibility to perform Single Instruction, Multiple Data
(SIMD) operations on data types of 128 bits (a pair of double precision float
values). We exploit this feature by pairing all components of the data structure of
two adjacent sites in one vector (vector double), so all independent arithmetic
operations are performed concurrently in SIMD mode.

4. Performance

We summarize the performance of our code in table 1; we list the time
spent in each phase of the program for one time step (i.e. one full sweep
of the lattice) for several lattice sizes and for a QPACE configuration of
32 processors (the typical configuration used in our extensive runs, even if,
occasionally, we used larger systems with up to 128 nodes). Some comments
are in order. (i) coll() is the most time-consuming part of our code. This
is the floating point-intensive part of the program. (ii) The performance
bottleneck is mostly in routine stream(), which accesses memory at sparse
addresses and performs a negligible amount of computation. (iii) Establishing
the appropriate boundary conditions (routine bc()) has a negligible impact
on performance. (iv) Moving data among processors (routine comm()) has
a limited impact on performance, not larger than approximately 5 per cent.
(v) The last column in table 1 lists values of Tp = T (Np/LxLy), that is, the
total time spent by the program for each site of the lattice, independently
of the number of processors. For perfect scaling, this number should remain
constant: fluctuations less than or equal to 10 per cent show very good scalability
for physically interesting configurations. (vi) We can make the previous point
more accurate with a rough performance model that takes into account the
fact that the time spent in communication should depend only on Ly (and
not on the number of processors), while all the other phases are in principle
fully parallelizable. One writes then T = c1Ly + c2LxLy/Np, where T is the
total execution time, Np is the number of processors and c1 and c2 are fitted
constants. We find a good fit with c1 ≈ 0.003 ms and c2 ≈ 0.00049 ms. Rewriting
T/Ly = c1 + c2Lx/Np, we find that the communication phase is the limiting
factor (in the spirit of Amdahl’s Law) to scaling; however, inserting the actual
values for c1 and c2, we see that serious violations to scaling occur only
when the second term becomes comparable to the first, e.g. for Lx/Np ≤ 6,
a very unrealistic case indeed. (vii) Our sustained performance is 14–17% of
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Table 1. Breakdown of the execution time for each processing phase. All numbers are in milliseconds
(microsecond for the last line). Tp, defined as T (Np/LxLy), should be a constant for perfect scaling;
it varies by approximately 10%.

2048 × 3600 4096 × 6000 4096 × 16000

comm() 11.6 19.4 51.4
stream() 37.2 135.0 360.2
bc() 0.8 1.7 1.7
coll() 71.8 239.3 637.9
total 121.4 451.1 1051.2
Tp 527 489 513

peak; our implementation has reached a reasonable level of performance for a
real-life production code. Further improvements—mainly merging stream and
collision, to avoid unnecessary memory access—may improve performance by up
to approximately 20 per cent.

5. Simulating the Rayleigh–Taylor system

We have used the LBM code described here for an extensive series of runs on
QPACE, characterizing the Rayleigh–Taylor instability that develops when a
heavy fluid is superposed above a lighter one in a constant gravity field. The
Rayleigh–Taylor instability has applications in different fields, while the physics
beyond the instability still has several open problems. Small-scale fluctuations
may differ in two- or three-dimensional geometries, but the large-scale mixing
layer growth is expected not to change its qualitative evolution [9,10]. In our
simulations, the starting configuration is a single component compressible flow
in a two-dimensional tank of size Lx × Lz , with adiabatic and no-slip boundary
conditions at the top and bottom walls and periodic boundary conditions
on the vertical boundaries. The initial interface is at height z = 0, in a box
extending from z = −Lz/2 to z = +Lz/2. In the two half volumes the temperature
is initially constant, with the corresponding hydrostatic density profiles, r0,
verifying vzp0(z) = −gr0(z). The full solution then has an exponentially decaying
behaviour in the two half volumes, each one driven by its own temperature value.
The unstable initial hydrostatic configuration is given by

T0(z) = Tu; r0(z) = ru exp
(−g(z − zc)

Tu

)
; z > 0

and T0(z) = Td; r0(z) = rb exp
(−g(z − zc)

Td

)
; z < 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

Equilibrium requires the same pressure at the interface, z = zc = 0, which
translates into a simple condition on the pre-factors: ruTu = rbTd. As Tu < Td,
at the interface ru > rb. We have performed three sets of simulations (parameters
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Figure 2. (a) A typical Rayleigh–Taylor configuration shaded according to the local values of the
temperature gradient squared. Pixels are shaded in grey when above threshold, in black otherwise.
(b) Starting from shaded configurations the algorithm for the interface reconstruction is applied in
order to extract the external hull. Represented here are three different times, t/t = 1.25, 2.5 and 5
(the last corresponds to the same configuration as in (a)). (c) Averaged hull length minus its initial
value, L(t) − L(0). We show the hull growth for different values of the threshold, respectively K =
10−7 (plus symbols), 10−8 (crosses) and 10−9 (asterisks), and x is represented by the continuous
line (see text). The overall behaviour is insensitive to the threshold chosen and the interface length
grows linearly in time except for in its very early stages. (Online version in colour.)

Table 2. Parameters for the Rayleigh–Taylor runs. Atwood number, At = (Td − Tu)/(Td + Tu);
viscosity, n; gravity, g; temperature in the upper half region, Tu; temperature in the lower half
region, Td; normalization time, t̃ = √

Lx/(g At).

At Lx Lz n g Tu Td t̃

run A 0.05 1024 2400 0.001 2.5 × 10−4 0.95 1.05 9 × 103

run B 0.4 1664 4400 0.1 1 × 10−4 0.6 1.4 6.5 × 103

run C 0.05 1024 2400 0.005 5 × 10−5 0.95 1.05 2 × 104

are summarized in table 2): (i) with a large enough adiabatic gradient (but
small Atwood number), in order to address stratification effects on the mixing
layer growth, while still being very close to the Boussinesq approximation;
(ii) with large Atwood number, in order to describe compressibility effects, outside
the Boussinesq regime but far from the adiabatic profile; and (iii) with small
adiabatic gradient and small Atwood number, to compare with (ii). In figure 2,
we show snapshots of the typical interface evolution during the Rayleigh–Taylor
instability, displaying all the complexity of the phenomena. For further details on
the simulations see Scagliarini et al. [1].
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6. Mixing layer hull

During the evolution of the Rayleigh–Taylor instability, the mixing layer grows
into a complex geometrical object characterized by plumes and entrainment
regions (figure 2). Here, we characterize the statistical properties of the hull
embedding the mixing layer, and try to quantify its time evolution and fractal
dimension. It is evident that the mixing layer itself is non-homogeneous, making
the definition of a mixing layer thickness somehow questionable. In order to
perform any analysis, the first issue to solve is how to properly identify the
external hull of the mixing layer. We proceed in a simple way, as detailed
in the following. First, we identify (flag) the regions where the gradient of
the temperature field is above some prescribed threshold: |VT (x)|2 > K . This
produces a rough indication of the interface position (figure 2a). From the
resulting structure, we extract the top and bottom hull by means of a refined
biased walk algorithm [11]. This algorithm has two steps, as follows. A walker
moves vertically until the hull is hit (one walker is released from below and
one from above). Once the hull is hit (i.e. the next pixel is a flagged one)
the walker proceeds by performing a biased walk to explore the hull moving
to the right, while another walker moves to the left. The whole procedure
is then repeated for all possible horizontal starting positions of the vertically
landing walker. This simple algorithm is able to identify the hull even when the
latter has non-connected regions. Typical results of the algorithm are shown in
figure 2b. We measure two different quantities: the average length of the interface
and its fractal dimensions. The total length of the hull (including both top and
bottom hulls) is measured as a function of time. As the length of the interface
fluctuates, we take the ensemble average over all our independent runs. At the
start of the simulation the length of the hull is close to 2 · Lx , so it is more
interesting to consider L(t) minus its initial value, DL(t) = L(t) − 2Lx . We find
that the quantity DL(t), except for a short early stage, grows linearly with time t
and its growth is independent of the threshold chosen, as shown in figure 2c.
To go beyond the average length, one can quantify the geometrical measure
of the hull by means of its fractal dimension. To this aim, we measure the
mass density Mq(r) = 1/r2

∫
m(x)qd2x over tiles of different size r , and extract a

scaling behaviour Mq(r) ∼ (r/Lx)−mq with mq = (2 − Dq)(q − 1), where Dq is the
generalized dimensions of order q. We find that the interface is not fractal, as all
fractal measures coincide with unity within errors.

7. Conclusions

We have presented state-of-the-art numerical investigations of two-dimensional
compressible and stratified Rayleigh–Taylor turbulence. We have provided details
of an efficient implementation on the QPACE supercomputer and preliminary
analysis of the time behaviour of the statistical properties of the evolving
interface. Future development will consider extending the algorithm to three
dimensions. This step will require a considerable increase in the number of lattice
speeds in order to maintain the desired degree of isotropy for the heat flux
(this number may increase up to around 100 speeds to maintain the on-lattice
constraint). If one removes the stipulation that lattice velocities are defined only
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on grid points and one also allows for off-lattice discretized velocity sets, the
number of vectors needed to recover isotropy for moments up to order eight can
be reduced [12].

We thank the QPACE development team for support during the implementation of our code and
execution of the simulations. We furthermore acknowledge access to QPACE and eQPACE.
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