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The parametrization of small-scale turbulent fluctuations in convective systems and in the presence of strong
stratification is a key issue for many applied problems in oceanography, atmospheric science, and planetology. In
the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where
temperature, density, or both develop highly nonlinear mean profiles due to the interactions between the turbulent
boundary layer and the unmixed—stable—flow above or below it. We present a second-order closure able to cope
simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art
two-dimensional numerical simulations in a convective and stratified belt for values of the Rayleigh number up
to Ra ∼ 1010. Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.
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I. INTRODUCTION

Realistic parametrization of convective regions in the
presence of strong stratification is a problem of interest for
the evolution of the convective boundary layer in fields as
different as atmospheric science [1], stellar convection [2,3],
and oceanography [4–7]. The problem is intriguing also from
a purely theoretical point of view: one would like to predict
the interplay between buoyancy and turbulence at the edge
between a convective region and a stable stratified volume
above or below it. Due to turbulent activity, intermittent
puffs of temperature, density, and momentum tend to enter
the stably stratified region, locally producing an inversion in
the energy balance: kinetic energy is indeed lost as potential
energy is increased. Those turbulent puffs are the result
of intense plumes traveling across the volume producing a
“nonlocal” interaction between the edge and the bulk of the
turbulent medium. The problem, already recognized in the
early 50s [8,9], is still a subject of intense research (see, e.g.,
Ref. [5]). Recent studies have shown that, in the absence of
strong stratification, mixing length theory based on Prandtl or
Spiegel closure works very well in situations as different as
the case of Rayleigh-Taylor (RT) systems or in fluid mixing
by gravity currents [10–12]. Nevertheless, whenever strong
stratification stops the evolution of the mixing profile, an
overshooting region with temperature inversion develops and
local closures fail. The problem arises from nonlocal effects
caused by turbulent plumes or convective updraft.

The situation can be visualized in the middle panel of
Fig. 1, where a highly turbulent configuration is confined
by two stably stratified media below and above it. Similarly,
in Fig. 2 we show four time snapshots focused on a typical
“overshooting” event happening at the top boundary layer:
here a vortex structure is injected into the stably stratified
layer and sent back down to the turbulent region due to gravity
restoring forces.

The system we are working with is an important variant of
the classical RT case. Here, instead of isothermal mixing of
two fluids with different densities we study the spatiotemporal
evolution of a single-component fluid when initially prepared
on the hydrostatic unstable equilibrium, i.e., with a cold
uniform region in the top half and a hot uniform region in the
bottom half (see right panel of Fig. 1). In the two half volumes
we then fix two different homogeneous temperatures, with the
corresponding hydrostatic density profiles ∂zp0(z) = −gρ0(z).
Considering that in each half we have p0(z) = Tρ0(z), with T

fixed, the solution has an exponentially decaying behavior in
the two half volumes, each one driven by its own temperature
value. The initial hydrostatic unstable configuration is there-
fore given by

T0(z) = Tu; ρ0(z) = ρu exp(−g(z − zc)/Tu); z > 0;

T0(z) = Td ; ρ0(z) = ρb exp(−g(z − zc)/Td ); z < 0.

(1)

To be at equilibrium, we require to have the same pressure at the
interface, z = zc = 0, which translates to a simple condition
on the prefactor of the above expressions:

ρuTu = ρbTd. (2)

Because Tu < Td , we have at the interface ρu > ρb. As far
as we know, there are no exhaustive detailed calculations of
the stability problem for such a configuration, even though
it is not too different from the usual RT compressible case
[13–15]. As stated, this is not the common way to study RT
systems, which is usually meant as the superposition of two
different miscible fluids, isothermal, with different densities
[13]. As long as compressible effects are small, one may safely
neglect pressure fluctuations and write—for the case of an
ideal gas—δρ/ρ ∼ −δT /T ; the two RT experiments are then
strictly equivalent.

016305-11539-3755/2011/84(1)/016305(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.016305


L. BIFERALE et al. PHYSICAL REVIEW E 84, 016305 (2011)

FIG. 1. (Color online) Right panel: Initial density and temper-
ature profiles. Left and middle panels: Vorticity and temperature
snapshots with weak and strong stratification, respectively. Notice
the free rising plumes in the left panel typical of nonstratified RT
systems. In the middle panel stratification is stronger and turbulence
is confined below and above the unmixed fluid at rest: at the boundary
the temperature profile overshoots.

Our configuration is obtained by evolving the above RT
system in two dimensions [16,17] with stratification [18,19].
The evolution of the RT mixing layer, unbounded in the
absence of stratification [20–24], is stopped because of
the presence of an adiabatic gradient: mixing is arrested
when the potential temperature profile becomes flat [9]. One

FIG. 2. (Color online) A typical overshooting event happening
in the entrainment region after the mixing layer evolution stopped
because of stratification (Run B). A vortex structure is injected inside
the above stable region by turbulent fluctuations and then sent back
by gravity. During such events, kinetic energy is lost against gravity
forces.

TABLE I. Adiabatic gradient: γ = −g/cp; cp = 2. Adiabatic
length in grid units: Lγ = �T/|γ |, �T = Tdown − Tup, Tm =
(Tdown + Tup)/2, and Tup = 0.95 and Tdown = 1.05. Rayleigh number
[9]: Ra(t) = gL(t)4[�T/L(t) + γ ]/(ν κ). Maximal value is obtained
when L(t) = 3/4Lγ . Number of independent runs: Nconf . Char-
acteristic time scale: tRT = √

Lx/(gAt). Atwood number = At =
�T/(2 Tm) = 0.05.

Lx Lz γ Ramax Nconf Lγ tRT

A 4096 10 000 −1 × 10−5 1.2 × 1010 18 10 000 6.4 × 104

B 3072 7200 −4.2 × 10−5 8 × 109 11 2380 2.7 × 104

C 2048 3600 −8.4 × 10−5 3 × 109 23 1190 1.6 × 104

control parameter is given by the Rayleigh number, i.e., the
ratio between buoyancy and viscous forces in the system (see
Table I). The mean temperature profile is linear in the bulk and
it develops two, symmetric, overshooting regions at the edge
between the turbulent boundary layer and the fluid at rest, with
the heat flux inverting sign (see Fig. 3). Similar problems have
recently been addressed in the realm of “standard” RT systems,
for both stratified and unstratified systems.

Here we address the RT turbulent evolution for the case of
an ideal gas, where the adiabatic gradient is given by γ = g/cp,
where g is gravity and cp the specific heat at constant pressure.

The aim of this paper is twofold. First we present state-of-
the-art numerical results at varying stratification intensities.
Second, we propose a second-order closure for the evolution
of the mixing layer, able to capture both the initial transient
(free of any stratification effect) and the late slowing down and
stopping due to stratification effects. The main idea is to go
beyond closure for the mean temperature evolution, keeping
it exact and closing only for second-order quantities: the
Reynolds stresses, the heat flux, and temperature fluctuations
(see, e.g., Ref. [5]). We also show that our proposal goes
back to the Spiegel’s generalization of Prandtl mixing length
theory [9] for small stratifications.

FIG. 3. Run B. Mean temperature profile T (z) after the RT
evolution stopped at the adiabatic slope (solid line). Bottom left
inset: Zoom of the overshooting region, with temperature inversion.
Top right inset: Heat flux profile at three times, before, during,
and after stopping: two regions develop with negative heat flux in
correspondence with the temperature overshooting.
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II. NUMERICAL SIMULATIONS

We test our second-order closure against state-of-the-art
numerical simulations at high resolution. We choose to work in
a two-dimensional (2D) geometry to maximize the capability
to get quantitative measurements at high Reynolds and
Rayleigh numbers. Nevertheless, the closure here proposed
should work as well in 3D geometry provided small changes
are implemented (see conclusions). Choosing an RT system
presents the extra complexity of nonstationarity, allowing
one to probe also different turbulent time scales. Numerical
simulations are performed using a recently proposed thermal
lattice Boltzmann method (LBM) [25] able to reproduce
the Navier-Stokes equations for momentum, density, and
internal energy. Validation of the method can be found in
Refs. [18,19]. Here we present numerical simulations up
to 4096 × 10 000 grid points. Table I provides details of
our numerical experiment, which was run on the QPACE
supercomputer [26,27]. We limit our discussion here to
the case of an ideal gas, with the equation of state P =
ρT , and at small Mach number. In this case, the main
effect of stratification is limited to the presence of an
adiabatic gradient affecting the evolution of temperature
[9]. The equations are the following (double indexes are
summed):

∂tui + uj∂jui = −∂ip

ρm

− δi,zg
θ

Tm

+ ν∂jjui, i = x,z,

(3)
∂tT + uj∂jT − uzγ = κ∂jjT ,

where p is the deviation of pressure from the hydrostatic
profile, p = P − PH and ∂zPH = −gρH , Tm and ρm are the
mean temperature and density in the system, and the adiabatic
gradient is given by its ideal gas expression (see Table I).
In the Boussinesq approximation [9] for stratified flows,
momentum is forced only by temperature fluctuations,

θ = T − T (z),

where we use the symbol (·) to indicate an average over the
horizontal statistically, homogeneous direction. Turbulence
is triggered from the initial configuration described before
by a small random perturbation of the interface between
them [18,19,28] (see Refs. [11,29,30] for recent studies of the
classical RT system in 3D).

From Eq. (3), one easily derives the equations for the mean
temperature profile,

∂tT + ∂zuzθ = κ∂zzT , (4)

and for the total kinetic energy, heat flux, and temperature
fluctuations,

1
2∂tθ2 + 1

2∂zθ2uz + uzθ (∂zT̄ − γ ) = κθ∂jj θ,

1
2∂tu2 + ∂z[u2uz + uzp] = −gθuz − εν, (5)

∂tθuz + ∂z[θu2
z + θp] = −gθ2 + β(z)u2

z − εθ,uz
,

where u2 = u2
x + u2

z , β(z) = (∂zT − γ ), and the dissipative
terms are εθ,uz

= (ν + κ)∂iθ∂iuz, εθ = κ∂iθ∂iθ , and εν =
ν∂iuj ∂iuj . The above set of equations is exact, except for
boundary dissipative contributions such as, for example,

κ∂zθ∂zθ , which are irrelevant when κ,ν → 0 in the absence of
any dynamics at the walls like for RT systems. From the first
of Eqs. (5) it is evident that temperature fluctuations are not
forced anymore as soon as the mixing region develops a mean
temperature profile with a slope of the order of the adiabatic
gradient:

∂zT ∼ γ. (6)

As a consequence, from that time on, turbulence will decline.
Given γ , we can identify the adiabatic length, Lγ = �T/|γ |,
which corresponds to the prediction for the largest possible
extension of the mixing layer during the RT evolution. One
possible way to define the mixing layer width, L(t), is given
by the integral expression [10,22]

L(t) = 2
∫

dz M[c(z)], (7)

where we have introduced the normalized temperature c,

c(z) = Tdown − T (z,t)

�T
,

and M is a mixing function: M[x] = 2x, 0 � x � 1/2, and
M[x] = 2 (1 − x), 1/2 � x � 1.

In Fig. 4 we show the evolution of the mixing layer
extension at changing of the intensity of the adiabatic gradient.
We present data for three different stratification parameters:
Run A (weak stratification), Run B, and Run C (strong
stratification). Clearly, the extension of the mixing region stops
growing when L(t) ∼ Lγ .

III. FIRST-ORDER CLOSURE

A popular way to close the mean profile evolution is based
on first-order approaches, i.e., working directly on a possible
relation between heat flux and temperature gradients, so as to
be able to close directly Eq. (4) and neglect the evolution of
higher-order moments in Eqs. (5):

uzθ(z,t) = −K(z,t)∂zT (z,t). (8)

Different models have been proposed in the literature for the
eddy diffusivity K(z,t) [9,10,12]; here we first discuss the
three most popular choices:

K (H )(z,t) = kg1/2L(t)3/2, homogeneous,

K (P )(z,t) = kg1/2L(t)5/2∂zc, Prandtl, (9)

K (S)(z,t) = kg1/2L(t)2|∂zc̄|1/2, Spiegel,

where k is a dimensionless empirical coefficient to be deter-
mined case by case. Using anyone of the above, first-order
closure is very tempting because it allows for exact analytical
integration of the mean profile, whenever the mixing length
grows self-similarly in time. For unstratified RT situations, we
know that for large time

L(t) ∝ gt2.

Inserting the above expression in Eq. (9) one gets for the
normalized profile the following “diffusive” equation:

∂tc = At3+2n∂z[(∂zc)n∂zc], (10)
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FIG. 4. (Color online) Top panel: Evolution of the mixing layer
extension L(t) for runs (A–C). Yellow shaded areas correspond to
the second-order closure prediction for the mixing length evolution
with all parameters kept fixed but bθ ∈ [0.35:1.35], i.e., within the
maximum variations needed to accurately fit also the time evolution
of the whole profile at all times for all stratification values. Notice
how the overall evolution of L(t) is not too sensitive to the exact
choice of the free parameters. Inset: Values of the best fit for the free
parameters (bθ ,bθuz

) as a function of |γ |. Bottom panel: Green shaded
area corresponds to the second-order closure prediction for the mixing
length evolution with all parameters kept fixed but bθuz

∈ [4.5:6.5].
Solid lines correspond to the best fit to the mixing layer evolution
taking one particular choice for the couple (bθ ,bθuz

).

where n gives the power dependency of the eddy diffusivity
on the temperature gradient, i.e., n = 0 (homogeneous), n = 1
(Prandtl), and n = 1/2 (Spiegel). The empirical coefficient A

is given by A = kg2+n. Furthermore, by introducing a properly
normalized temperature derivative, φ(z) = B∂zc, with Bn =
(n + 1)A/(4 + 2n), and a rescaled time variable t ′ = t2(2+n),
one ends with a standard form [10,31,32]:

∂t ′φ = ∂z(φ
n∂zφ). (11)

It is easy to realize that using the homogeneous eddy diffusivity
case, n = 0, leads to the well-known error function solution for
the mean temperature profile. An exact solution can be found
also for the eddy diffusivities based on the Prandtl mixing
length theory or on Spiegel’s approach, i.e., second and third
expressions in Eq. (9). Introducing the normalized variable

ξ = z/z1(t), the solutions for the two cases are [31]

c(P )(ξ ) = 3
4

(
ξ − 1

3ξ 3 + 2
3

)
;

c(S)(ξ ) = 15
16

(
ξ − 2

3ξ 3 + 1
5ξ 5 + 8

15

)
; (12)

−1 � ξ � 1.

Where z1(t) is the semiextension of the mixing layer; i.e., it has
been chosen such that the profile derivative vanishes at the two
extrema φ[±z1(t)] = 0. In particular, we have for the Prandtl
case z1(t) = δgt2, with δ = (3/2A)1/3 [10], while for the
Spiegel’s case we have z1(t) = δgt2, with δ = (A281/160)1/5.

All these attempts work well and are almost indistin-
guishable in the absence of overshooting as one can see in
Fig. 5, where we plot both the normalized mean temperature
profile and its derivative for a given time during the RT
evolution of Run A superposed with the two predictions
using either Prandtl’s or Spiegel’s closure. In the same figure
we also plot the prediction for the second-order closure we
develop in the next section. The above procedure cannot
be extended to the case where the mixing length does not

FIG. 5. Run A, small stratification. Bottom panel: (Circles)
Normalized mean temperature profile, c(ξ ), as a function of the
normalized distance from the center of the mixing layer, ξ , at t = 4tRT.
(+) The same for Prandtl closure c(P )(ξ ). (×) The same for Spiegel
closure c(S)(ξ ). Solid line: Our second-order closure. Top panel: The
same data sets for the mean derivative of the profile, dc(ξ )

dξ
.
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evolve self-similarly in time, i.e., when stratifications stops
the evolution. This is because of two reasons. First, in this
case the temporal evolution of L(t) is not known analytically,
being itself dependent on the whole evolution of the profile
via Eq. (7), leading to an integrodifferential equation for the
temperature profile. Second, the presence of an overshooting
with temperature and heat flux inversion suggests that simple
approaches based on eddy diffusivity may become unstable.
This is why we develop a second-order closure in the next
section.

IV. SECOND-ORDER CLOSURE

The overshoot developing at the edge between turbulent
and unmixed fluid is visible in Fig. 3, where we show both
the nonlinear temperature inversion (inset bottom left) and the
corresponding inversion in the heat flux (inset top right). This
overshooting region is clearly a problem for any attempt to
close the mean profile evolution with any sort of local eddy
diffusivity as developed in the previous section. Inversion in
temperature and heat flux implies a negative effective eddy
diffusivity and the closure becomes unstable. In order to
overcome this difficulty, we keep exact the equations for
the mean profile (4) and close only the fluctuations at the
second-order moments in Eqs. (5). Considering uz ∼ u, we
are left with six unknown to be defined: the three dissipative
contributions on the right-hand side and the three nonlinear
third-order fluxes on the left-hand side. We close them by
adopting the simplest dimensionally consistent local closure
for both fluxes and dissipative terms:

θ2uz = aθL|L̇|∂zzθ2,

(u2 + p)uz = auz
L|L̇|∂zzu2

z, (13)

θ (u2
z + p) = aθuz

L|L̇|∂zzθuz,

εθ = bθθ2/τ (z,t),

εν = buz
u2

z/τ (z,t), (14)

εθ,uz
= bθuz

θuz/τ (z,t),

where the typical time defining the dissipation rates is fixed

by τ (z,t) =
√

u2
z/L(t). Some comments are in order. First, we

notice that the closure is now local but on the second-order
moments, i.e., nonlocal for the evolution of mean profiles.
Furthermore, out of the six free parameters, four can be
handled quite robustly; all the three coefficients in front of
the closure for third-order quantities are set O(1) using a
first-order guess from the numerics: aθ = 0.2, auz

= 0.3, and
aθuz

= 0.8. Moreover, the free parameter defining the intensity
of the kinetic dissipation, εν , is irrelevant in 2D (absence of
direct energy cascade). The only two delicate free parameters
are those defining the intensities of temperature and heat-flux
dissipative terms, [bθ ,bθuz

]. In order to get a good agreement
with the numerics we need some tuning. It is important to
notice that both dissipative terms will develop a nontrivial
vertical profile; i.e., they are not given by a simple bulk
homogeneous parametrization.

The closed equations have been solved numerically, starting
from the initial mean profiles obtained from the direct numer-
ical simulations. The resulting partial differential equations in

(z,t) have been been solved with an implicit method in time, by
discretizing the gradient and Laplacian operators in a suitable
pentadiagonal (matrix) form. The resulting pentadiagonal
matrix has then been inverted step by step. The expressions
for L(t) and L̇(t) have been evaluated numerically on the
instantaneous profile using Eq. (7).

In Fig. 4 we show that the second-order closure is able to
reproduce quantitatively the evolution of L(t) for all cases. Let
us notice that the global evolution of L(t) is weakly dependent
on the free parameters. Here, we show, for example, that
keeping fixed bθuz

= 5 and at changing bθ ∈ [0.35:1.35] or
keeping fixed bθ = 0.6 and at changing bθuz

∈ [4,5:6.5] (top
and bottom panels) one is always able to get a good agreement
between the closure and the numerics. In the inset of the same
figure we show for each choice of γ the best fit value for both
parameters, which gives also a good agreement with the whole
temperature and heat-flux profiles at all times (see below).

In Figs. 6 and 7 we show the capability of the model to
reproduce the heat flux vs temperature derivative locally for
each z along the whole profile, providing a sort of a posteriori
effective eddy diffusivity. As one can see, the second-order

FIG. 6. Bottom panels: Check of the closure for the case with
weak stratification (Run A). Circles: Numerical data. Solid lines:
Second-order closure. Heat flux, 104 θuz, vs the temperature mean
gradient, 105 ∂zT , for each location along the profile for two
different times t/tRT = 3.8 (left) and t/tRT = 5 (right). Error bars
are evaluated averaging over the configurations specified in Table I.
Results from the second-order closure are given by the solid line with
[bθ ,bθuz

] = [1.45,4.5] and buz
= 0.03. Top panel: Superposition of

temperature profiles at three different times, t/tRT = 2,4,5.5, with
the corresponding curves from the second-order closure.
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FIG. 7. Check of the second-order closure for the case with strong stratification (Run B). Circles: Numerical data. Solid line: Second-order
closure. Heat flux, 104 θuz, vs the temperature mean gradient, 105 ∂zT , for each location along the profile, for two different times, t = 6 tRT

(bottom panel) and t = 3 tRT (top panel). Solid lines: Second-order closure predictions ([bθ ,bθuz
] = [0.35; 6.5]). Inset both panels: Matching

between the temperature profile and the second-order closure.

closure is able to capture both the weak stratification case
(Fig. 6) and the strong stratification case (Fig. 7). For the weak
stratification case the effective eddy diffusivity is very close
to the one predicted by using the Prandtl mixing length theory
as proposed in Ref. [10] or to the one proposed by Spiegel [9]
(not shown). For the strong stratification case, our model is
able to capture also the long time behavior, even after the
evolution has come to a halt due to the adiabatic gradient,
where the heat flux has completely inverted sign (see bottom
panel of Fig. 7). In the inset of the same figure we also show
the capability of the second-order closure to reproduce the
overshooting profile. As one can see the agreement is good. We
also remark that from Eqs. (5) one may derive a dimensional
closure neglecting all terms except the one at large scales, and
assuming that temperature fluctuations are dominated by the
global temperature jump: θ2 ∼ �T . From the third equation

we derive θuz ∼ Lu2
z

1/2
∂zT̄ and from the second we derive

u2
z ∼ gL2∂zT̄ , which—combined together—leads to Spiegel’s

closure: θuz ∼ L2(∂zT̄ )1/2∂zT̄ .
In conclusion, we have performed state-of-the-art 2D

numerical simulations using a LBM for turbulent convection
driven by a RT instability in weakly and strongly stratified

atmospheres. For the strongly stratified case, we are able to
resolve the overshooting region with up to 800 grid points,
something impossible to achieve with 3D direct numerical
simulations because of the lack of computing power. We have
presented a second-order closure to describe the evolution
of mean fields able to capture both bulk properties and the
overshooting observed at the boundary between the stable
and the unstable regions. The closure is local in terms
of fluctuations while keeping the evolution of the mean
temperature profile exact. In order to apply the same closure
to 3D cases one needs to take into account some possible
nontrivial effects induced by the kinetic energy dissipation
modeling, due to the presence of a forward energy cascade. As
a result, also the parameter buz

will become a relevant input in
the model.
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