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Abstract. The parameterization of small-scale turbulent fluctuations in convective systems
and in the presence of strong stratification is important for many applied problems in
oceanography, atmospheric science and planetology. In the presence of stratification, both bulk
turbulent fluctuations and inversion regions, where temperature, density –or both– develop
highly nonlinear mean profiles, are crucial. We present a second order closure able to reproduce
simultaneously both bulk and boundary layer regions. We test it using high-resolution state-of-
the-art 2D numerical simulations in a Rayleigh-Taylor convective and stratified belt for values of
the Rayleigh number, up to Ra ∼ 109. The system is confined by the existence of an adiabatic
gradient. Our numerical simulations are performed using a thermal Lattice Boltzmann Method
(Sbragaglia et al, 2009) able to reproduce the Navier-Stokes equations for momentum, density
and internal energy (see also (Biferale et al, 2011b) for an extension to a case with forcing on
internal energy). Validation of the method can be found in (Biferale et al, 2010; Scagliarini et
al, 2010). Here we present numerical simulations up to 4096 × 10000 grid points obtained on
the QPACE supercomputer (Goldrian et al, 2008).

1. Introduction

Parameterization of convective regions in presence of strong stratification is interesting for
the evolution of the convective boundary layer in different applied and fundamental fields as
atmospheric science (Siebesma et al, 2007), stellar convection (Canuto & Christensen-Dalsgaard,
1998; Ludwig et al, 2006; Trampedach, 2010) and oceanography (Large et al, 1994; Burchard &
Bolding, 2001; Canuto et al, 2002; Wirth & Barnier, 2008). The problem is also theoretically
important because of the interplay between buoyancy and turbulence at the edge between a
convective region and a stable stratified volume above/below it. Due to turbulent activity,
temperature blobs tend to enter the stratified region, producing an inversion in the energy
balance: kinetic energy is indeed lost, potential energy is increased (see Fig. 1). Recent studies
have shown that, in the absence of strong stratification, mixing length theory based on Prandtl
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or Spiegel closure works very well in situations as different as for the case of Rayleigh-Taylor
systems (Boffetta et al, 2010) or in fluid mixing by gravity currents (Odier et al, 2009).

Figure 1. 4 snapshots of the RT evolution at two different times (RUN B with strong
stratification). From left to righ: temperature; total kinetic energy; vorticity; amplitude of
temperature gradients. Top four snapshot are taken at t = 5tRT bottom four snapshots at
t = 10tRT , i.e. at the moment of the arrest and after it, respectively. Notice how mixing layer
does not evolve anymore. After the evolution halted, only temperature gradients show a clear
depletion (fourth column). See also figure 4 for the global evolution of the mixing layer.

When strong stratification stops the evolution of the mixing profile, an overshooting region
with temperature inversion develops and local closures fail. The situation can be visualized in the
4 panels of Fig. 1 where we plot temperature, kinetic energy, vorticity and temperature gradients
of a Rayleigh-Taylor system whose evolution has been stopped by stratification (Biferale et al,
2011a; Lawrie & Dalziel, 2011). Here, the mean temperature profile is linear in the bulk and
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Figure 2. Initial vertical density and temperature configuration for the RT experiment.

it develops two –symmetric– overshooting regions at the edge between the turbulent boundary
layer and the fluid at rest with the heat flux inverting sign (Biferale et al, 2011a).

In this proceedings we first briefly review a closure for the evolution of the mixing layer, able
to capture both the initial transient (free of any stratification effect) and the late slowing down
and stopping due to stratification effects. Then, we present new data showing that our is also
able to reproduce the late decay state, many characteristic times after the evolution stopped,
where we observe a slow kinetic energy decay (typical of 2D systems where bulk kinetic energy
is slowly dissipated).

The main idea of the closure developed in (Biferale et al, 2011a) is to go beyond single
point closure for the mean temperature evolution, and closing only for second order quantities:
the Reynolds stresses, the heat flux and temperature fluctuations, see e.g. (Burchard &
Bolding, 2001). In (Biferale et al, 2011a) we tested the closure against state-of-the-art numerical
simulations at high resolution. We choose to work in a 2D geometry to maximize the capability
to get quantitative measurements at high Reynolds and Rayleigh numbers. Our numerical
simulations are performed using a thermal Lattice Boltzmann Method (Sbragaglia et al, 2009)
able to reproduce the Navier-Stokes equations for momentum, density and internal energy.
Validation of the method can be found in (Biferale et al, 2010; Scagliarini et al, 2010). We
investigate two different set-up, one with weak stratification, i.e. the usual RT evolution (RUN
A) and a second one with strong stratification (RUN B). Table I provides details of numerics
obtained running on the QPACE supercomputer (Goldrian et al, 2008; Belletti et al, 2008). We
discuss the case of an ideal gas and at small Mach number, with the equation of state P = ρT .
In this case, the main effect of stratification is limited to the presence of an adiabatic gradient
affecting the evolution of temperature (Spiegel, 1965). The equations are the following: (double
indexes are summed):{

∂tui + uj∂jui = −∂ip
ρm

− δi,zg
θ

Tm
+ ν∂jjui; i = x, z

∂tT + uj∂jT − uzγ = κ∂jjT ;
(1)
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Figure 3. Strong stratification, RUN (B). Mean temperature profile T (z) after the RT evolution
has stopped at the adiabatic slope (solid line). Bottom left panel: zoom of the overshooting
region, with temperature inversion. Top right inset: heat flux profile uzθ(z) at three times before,
during and after stopping: two regions develop with negative heat flux in correspondence of the
temperature overshooting.

Lx Lz γ Ramax Nconf Lγ tRT

RUN (A) 4096 10000 −1 · 10−5 8 · 109 18 10000 6.4 · 104

RUN (B) 3072 7200 −4.2 · 10−5 3 · 109 11 2408 2.7 · 104

Table 1. Run (A): weak stratification. Run (B) strong stratification. Adiabatic gradient:
γ = −g/cp; cp = 2. Adiabatic length in grid units: Lγ = ∆T/|γ|, ∆T = Tdown − Tup,
Tm = (Tdown + Tup)/2 and Tup = 0.95, Tdown = 1.05. Rayleigh number in presence of
stratification is defined as (Spiegel, 1965): Ra(t) = gL(t)4(∆T/L(t) + γ)/(ν κ)). Maximal
value is obtained when L(t) = 3/4Lγ . Number of independent runs with random initial
perturbation: Nconf . Atwood number = At = ∆T/(2 Tm) = 0.05. Characteristic time scale,
tRT =

√
Lx/(gAt).

where p is the deviation of pressure from the hydrostatic profile, p = P −PH and ∂zPH = −gρH ,
Tm and ρm are the mean temperature and density in the system, g is gravity and the adiabatic
gradient is given by its ideal gas expression γ = −g/cp with cp the specific heat. In this
Boussinesq approximation (Spiegel, 1965) for stratified flows, momentum is forced only by
temperature fluctuations θ = T − T̄ where we use the symbol (·) to indicate an average over the
horizontal statistically-homogeneous direction. The initial configuration is given by two regions
of cold (top) and hot (bottom) fluids prepared in the two half volumes of our cell (see Fig.2);
turbulence is triggered by a small perturbation of the interface between them (Sharp, 1984).
From (1), one easily derives the equations for the mean temperature profile, total kinetic energy,
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Figure 4. Evolution of the mixing layer extension L(t) for both run (A) and (B). Notice the stop
by stratification effects for the latter. Solid lines correspond to the second closure prediction for
the mixing length evolution obtained with the choice [1.45, 4.5] (run A) and [0.3, 6.5] (run B) for
the parameters [bθ, bθuz ] (see text). We also show 5 consecutive snapshots of the overshooting
region highlighting the formation of a turbulent plume trying to enter the stable region and
rejected back by gravitational forces.

heat flux and temperature fluctuations:
∂tT + ∂zuzθ = κ∂zzT
1
2∂tθ2 + 1

2∂zθ2uz + uzθ(∂zT̄ − γ) = κθ∂jjθ
1
2∂tu2 + ∂z[u2uz + uzp] = −gθuz − εν

∂tθuz + ∂z[θu2
z + θp] = −gθ2 + β(z)u2

z − εθ,uz

(2)

where u2 = u2
x + u2

z, β(z) = (∂zT − γ), and the dissipative terms are: εθ,uz = (ν + κ)∂iθ∂iuz,
εθ = κ∂iθ∂iθ, εν = ν∂iuj∂iuj . These equations are exact, except for boundary dissipative
contributions as for example, κ∂zθ∂zθ which are irrelevant when κ, ν → 0 in absence of walls.
From the second of (2) it is evident that temperature fluctuations are not forced anymore as
soon as the mixing region develops a mean temperature profile of the order of the adiabatic
gradient:

∂zT ∼ γ. (3)

As a consequence, once the mean profile in the bulk has reached that slope, turbulence will
decline. Given γ, we can identify the adiabatic length, Lγ = ∆T/|γ| which corresponds to the
prediction for the largest possible extension of the mixing layer during the RT evolution. In Fig.
4 we show the evolution of the mixing layer extension for two cases with weak (RUN A) and
strong (RUN B) adiabatic gradient. Clearly, the extension of the mixing region stops to grow
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when L(t) ∼ Lγ . In this paper we measure the mixing layer width L(t) as:

L(t) = 2
∫

dz Θ
[
T (z, t)− Tup

Tdown − Tup

]
, (4)

with Θ[ξ] = 2ξ; 0 ≤ ξ ≤ 1/2 and Θ[ξ] = 2 (1 − ξ); 1/2 ≤ ξ ≤ 1. The overshoot developing
at the edge between turbulent and unmixed fluid is visible in Fig. 3, where we show both the
nonlinear temperature inversion (inset bottom left) and the corresponding inversion in the heat
flux (inset top right). This overshooting region is clearly a problem for any attempt to close the
mean profile evolution with any sort of local eddy diffusivity:

uzθ = −K(z, t)∂zT .

Different models have been proposed in the literature for K(z, t), going from simple homogeneous
closure (K(z, t) ∝ L(t)|L̇(t)|) to Prandtl-like mixing-length closure (Biferale et al, 2011a)
(K(z, t) ∝ L(t)5/2∂zT ) or following Spiegel’s nonlinear approach (Biferale et al, 2011a)
(K(z, t) ∝ L(t)2|∂zT̄ |1/2). All these attempts work well in the absence of overshooting and
all of them suffer whenever an inversion in temperature and heat flux is observed (as in Fig.
3), implying a negative effective eddy diffusivity. In order to overcome this difficulty, we keep
exact the equations for the mean profile and close only the fluctuations at the second order
moments in (2). Considering uz ∼ u, we are left with six unknown to be defined: the three
dissipative contributions on the rhs, and the three non-linear third order fluxes on the lhs.
We close them adopting the simplest dimensionally-consistent local closure, for both fluxes and
dissipative terms:

θ2uz = aθL|L̇|∂zzθ2; εθ = bθθ2/τ(z, t)
(u2 + p)uz = auzL|L̇|∂zzu2

z; εν = buzu
2
z/τ(z, t)

θ(u2
z + p) = aθuzL|L̇|∂zzθuz; εθ,uz = bθuzθuz/τ(z, t)

where the typical time defining the dissipation rates is fixed by τ(z, t) =
√

u2
z/L(t). Some

comments are in order. First, we notice that the closure is now local but on the second
order moments, i.e. non-local for the evolution of mean profiles. Furthermore, out of the
6 free parameters, 4 can be handled quite robustly, all the three coefficients in front of the
closure for third order quantities are set O(1) using a first order guess from the numerics,
aθ = 0.2; auz = 0.3; aθuz = 0.8. Moreover, the free parameter defining the intensity of the
kinetic dissipation, εν , is less relevant in 2D (absence of direct energy cascade). It will become
relevant only to define the overall long-term energy decaying once the profiles stopped (see
below). The only two delicate free parameters are those defining the intensities of temperature
and heat-flux dissipative terms, [bθ, bθuz ]. In order to get a good agreement with the numerics
we need some fine tuning for them. It is important to notice that both dissipative terms will
develop a non-trivial vertical profile, i.e. they are not given by a simple bulk homogeneous
parameterization.

In Fig. 4 we show that the closure is able to reproduce quantitatively the evolution of L(t)
for both cases of weakly stratified turbulence (A) and strongly stratified case (B). In Fig. (5) we
show the capability of the model to reproduce the heat flux vs. temperature profile behavior,
providing a sort of aposteriori effective eddy diffusivity. For the strong stratification case, our
model is able to capture also the long time behavior, even after the evolution has come to a halt
due to the adiabatic gradient, where the heat flux has completely inverted sign, see top panel of
Fig. 5. In the inset of the same figure we also show the capability of the closure to reproduce
the overshooting profile. As one can see the agreement is very good and the results are not very
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Figure 5. Check of the closure for the case with strong stratification (run B). Circles: numerical
data,solid line: closure.We plot the local heat flux vs the local temperature mean gradient, θuz

vs (∂zT ) × 105, i.e. the effective diffusivity K(z, t) for two different times, t = 3 tRT (bottom
panel); t = 6 tRT (top panel). Closure predictions ([bθ, bθuz ] = [0.35; 6.5]) are given by the solid
lines. Inset bottom panel: matching between the temperature profile and the closure. Inset
top panel: overshooting region around the top boundary layer. The two lines correspond to the
closure using two different choices, [bθ, bθuz ] = [0.25; 4.5]; [0.35, 6.5].

sensitive to the choice of the free parameters.
Once turbulence is confined away from the solid boundaries, kinetic energy in 2D is forced to
decay only via weak viscous bulk dissipation or via temperature fluctuations, exchanging kinetic
and potential energy at the boundary between turbulent and stratified flows. In Fig. 6 we show
the good agreement one can get even for such asymptotic behavior using our closure model.
There we compare the numerics with the outcomes of the closure using different values for the
free parameters. In particular, it is evident now how the asymptotic decay is mainly dictated
by the coefficient in front of the kinetic energy dissipation, the one irrelevant in an early stage
of the process.

In conclusions, we have performed state-of-the-art 2D numerical simulations using a novel
LBM for turbulent convection driven by a Rayleigh-Taylor instability in weakly and strongly
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Figure 6. Log-log plot of the kinetic energy during a stratified RT evolution. The peak is
reached when the profile stops. Later, energy starts to decay slowly, due to absence of viscous
friction at the walls. Solid lines give the corresponding evolution in our closure obtained by
keeping fixed all free parameters except for the one controlling the importance of kinetic energy
dissipation, buz . As one can notice, while the parameter is completely unimportant for the initial
growth, it becomes crucial to get the correct long-time energy decaying.

stratified atmospheres. For the strongly stratified case, we are able to resolve the overshooting
region with up to 800 grid points, something impossible to achieve with 3D direct numerical
simulations because of lack of computing power. We have presented a second-order closure to
describe the evolution of mean fields able to capture both bulk properties and the overshooting
observed at the boundary between the stable and unstable regions. The closure is local in terms
of fluctuations while keeping the evolution of the mean temperature profile exact. In order to
apply the same closure to 3D cases one needs to take into account some possible non-trivial
effects induced by the kinetic energy dissipation modeling, due to the presence of a forward
energy cascade. As a result, also the parameter buz will become a relevant input in the model,
not only to control the very long behavior after the halt of the profile. .

We acknowledge useful discussions with G. Boffetta, A. Lawrie and A. Wirth. We acknowl-
edge access to QPACE and eQPACE during the bring-up phase of these systems. Parts of the
simulations were also performed on CASPUR under HPC Grant 2009 and 2010.
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