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Abstract. We present results obtained from high-resolution direct numerical simulations
(DNS) of incompressible, statistically homogeneous and isotropic turbulence, up to a Taylor
scale based Reynolds number Reλ ≃ 200 and with millions of heavy particles with different
inertia. In our set-up, particles are assumed to be spherical and rigid, they simply move
by viscous forces, such as the Stokes drag. The velocity statistics is found to be extremely
intermittent, with an almost bi-fractal behavior. Here, we consider also a new data analysis
for the stationary distribution of rescaled longitudinal velocity difference and further assess the
intermittent character of the heavy particles velocities, characterized by the presence of quasi-
algebraic tails.

1. Introduction

The acceleration of a dilute suspension of spherical heavy particles in a turbulent fluid can be
described as:

Ẋ = V , V̇ = −
1

τs
[V − u(X, t)] , (1)

where the dots indicate time derivatives. The particle position and velocity are (X(t),V(t)),
respectively, while u(X(t), t) is the incompressible Eulerian fluid velocity evaluated at the par-
ticle position. Particle inertia is quantified by means of Stokes number, St. The Stokes number
is defined as St = τs/τη, i.e. the ratio between the particle response time τs and the flow Kol-

mogorov timescale τη = (ν/ε)1/2, where ν is the flow kinematic viscosity and ε the average rate
of energy injection. The response time τs = 2a2ρf/(9νρp) depends on the particle radius a, and
the ratio between the fluid ρf and particle density ρp. In this set up, particle radius is much
smaller than the Kolmogorov scale of the flow a ≪ η, and the Reynolds numbers at the particle
size is much smaller than one. Also, gravity acceleration, as well as hydrodynamical interactions
and particle-particle integrations are neglected.
Point particle approximation is working pretty well for particles sizes smaller or of the order of
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the viscous scale, as direct comparison between numerics and experiments has shown Cencini
et al. (2006); Ayyalasomayajula et al. (2006). Finite size effects becomes important only for
large particles see e.g. Qureshi et al. (2007); Xu & Bodenschatz (2008); Qureshi et al. (2007);
Calzavarini et al. (2009); Homann & Bec (2010).
Thanks of the simple form of the above dynamics, a large amount of theoretical and numeri-
cal work has been done, particularly on two features: heavy particles spatial distribution and
velocity statistics, Because of inertia, non trivial correlations between particle positions and
structures of the underlying flow appear. Heavy particles are expelled from vortical structures
Bec et al. (2006b), and preferentially concentrate in specific regions of the flow. Hence, strong
inhomogeneities in the particle spatial distribution develop, depending on the relative impor-
tance between inertial forces and turbulent advection.
Inertia is responsible also for the formation of fold caustics (also called the sling effect), which
results in large probabilities that close particles have important velocity differences Bec et al.
(2005); Wilkinson & Mehlig (2005); Wilkinson, Mehlig & Bezuglyy (2006); Falkovich & Pumir
(2007). In other words, in a small limited region of the turbulent flow, heavy particles can be
found that move with very different velocities. Hence, particularly in the limit of moderate to
large inertia, the motion of heavy particles one can not use a continuous hydrodynamic descrip-
tion for the motion of heavy particles.
Preferential concentration and caustics can modify the rate of particles collisions in turbulent
flows: in particular, for atmospheric physics, astrophysics, and engineering applications it is
crucial to assess how these effects depend on the Reynolds number Reλ of the flow (see e.g.
Derevyanko, Falkovich, & Turitsyn (2008); Xue, Wang & Grabowski (2008)). In addition,
both effects have an impact on the way pairs of inertial particles separate in turbulent flows,
Bec et al. (2010a).

In this paper, we present a brief summary of previous results concerning scaling of velocity
differences between inertial particles, Bec et al. (2010b, 2011), and a new data analysis
concerning the probability density function (PDF) of the rescaled velocity differences of heavy
particles, namely

σ = Ṙ/R, R(t) = X1(t) − X2(t).

This can be viewed as a longitudinal velocity gradient of an effective particle velocity field.
The behavior of this quantity has been previously discussed in a series of works (see Wilkinson
& Mehlig (2005); Wilkinson, Mehlig & Bezuglyy (2006); Piterbarg (2002); Derevyanko et
al. (2007); Bec, Cencini & Hillerbrand (2007)), where the advecting flow is random and
smooth. When the advecting flow has no time persistent structures, the dynamics of σ becomes
independent of the separation R at very small scales. It is not obvious to observe the same
behavior is real flows, where time correlations and structures play important roles. Moreover,
the PDF is found to have power-law tails, and a phenomenological argument can be formulated
relating the algebraic behavior with events where the particles approach each other almost
ballistically Bec, Cencini & Hillerbrand (2007). Here, we present results from Direct Numerical
Simulations of an incompressible, three-dimensional fully developed turbulent flow at moderate
Taylor scale based Reynolds number, Reλ ≃ 200, and seeded with heavy particles.

2. DNS formulation

The flow phase is described by the Navier-Stokes equations for the velocity field u(x, t)

∂tu + u · ∇u = −
1

ρf
∇p + ν∆u + f , ∇ · u = 0 . (2)
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N Reλ η δx ε ν τη tdump δt TL

512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.0004 2.2

Table 1. Eulerian parameters for the data analyzed. N is the number of grid points in each
spatial direction; Reλ is the Taylor-scale Reynolds number; η is the Kolmogorov dissipative
scale; δx = L/N is the grid spacing, with L = 2π denoting the physical size of the numerical

domain; τη = (ν/ε)1/2 is the Kolmogorov dissipative time scale; ε is the average rate of energy
injection; ν is the kinematic viscosity; τdump is the time interval between two successive dumps
along particle trajectories; δt is the time step; TL = L/U0 is the eddy turnover time at the
integral scale L = π, and U0 is the typical large-scale velocity.As for the dispersed phase,
Ntot = 12 × 107 is the total number of advected particles; among these, Nt = 5 × 105 is the
number of trajectories of heavy particles for each Stokes number, saved at frequency τη/10, and
Np = 7.5 × 106 is the number of particles per Stokes stored at frequency 10τη . The error bars
on all statistically fluctuating quantities are of the order of 10%. The set of Stokes number is:
St ∈ [0.0; 0.16; 0.27; 0.37; 0.48; 0.59; 0.69; 0.80; 0.91; 1.01; 1.12; 1.34; 1.60; 2.03; 2.67; 3.31].

The statistically homogeneous and isotropic external forcing f injects energy in the first low
wave number shells, by keeping constant their spectral content. Here we give a reference table
1, summarizing the main parameters of the DNS. Further details can be found in Bec et al.
(2006); Cencini et al. (2006).
Kinematic viscosity is chosen such that the Kolmogorov length scale η ≈ δx, where δx is the grid
spacing. The numerical domain is cubic and 2π-periodic in the three directions of space. We
use a fully dealiased pseudo-spectral algorithm with 2nd order Adam-Bashforth time-stepping.
In the statistically stationary turbulent flow, we injected the inertial particles with 16 Stokes
numbers (see table). Once the particles have relaxed onto their stationary state, we start the
productive run which lasted about 5 large-scale eddy turn over times.
In Bec et al. (2010b), it was discussed the stationary statistics of moments of velocity differences,

Sp(r, St) =
〈

|Ṙ|p
∣

∣

∣
R=r

〉

,

between heavy particles in the same DNS at Reλ and also at a higher Reynolds number
Reλ ≃ 400.

3. Scaling properties of velocity increments

At very small separations, r ≪ η, in the viscous range of the Eulerian velocity, it is found that
velocity increments between pairs of particles depend on the relative importance of two types of
statistical realizations: smooth events, where particle velocity is approximately the same of the
fluid velocity, and caustic contributions, when two particles at very close positions exhibit very
different velocities. Inertia tunes the statistical weight of them, varying between the tracers
limit (at St = 0) where a smooth differentiable behavior is observed, to the ballistic limit
at very large Stokes, where velocity differences are independent of the separation. Moreover,
scaling exponents ξp of velocity difference structure functions Sp(r,St) ∝ rξp show a quasi bi-
fractal behavior, see Fig. (1), which is the fingerprint of the quasi-singular velocity realizations or
caustics. In particular, for small p the exponents ξp hardly deviate from the smooth value ξp = p,
while at large orders, they saturate to an asymptotic value ξ∞(St), monotonically decreasing
with increasing inertia, Bec et al. (2010b).
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Figure 1. Leading scaling exponents of velocity increments at changing St and for different
orders. Notice the behavior very close to a bifractal distribution with a superposition of smooth
and singular –discontinuous– contributions. Such behaviors as been recently rigorously proven
for a class of stochastic flows in 1d systems by Gustavsson & Mehlig (2010).Inset value of the
saturation exponent ξp for p → ∞ as a function of Stokes. Here there are also data from a
simulation at larger Reynolds, Bec et al. (2010a)

The signature of such extreme intermittency has to show up also in the probability density
function of the rescaled longitudinal velocity differences, σSt. The interest for this quantity is
because it is clearly better suited to show the appearance of quasi-singularities in the velocity
statistics, i.e., large velocity differences at nearby positions. Moreover, as an effective particle
velocity gradient, it can be also useful for modeling purposes.
In Figure 2, we show the probability density function of the rescaled longitudinal velocity
difference P (σ) for a moderate Stokes number St = 3.3, and at different scale separations
smaller or of the order of the viscous scale η (the behavior is similar for other Stokes numbers
St ≥ 0.6, i.e. as soon as saturation of velocity structure functions scaling exponents is observed).
It appears that the behavior in 3D fully developed turbulence resembles that observed in random,
structures-less flows. For not too large values of σ, the distributions for different separations
R = r collapse onto a single one with a fat, almost algebraic behavior. Such algebraic behavior
can be explained using recent rigorous results obtained for 1d systems by Gustavsson & Mehlig
(2010). In that paper, the probability to observe a caustic with a velocity increment ∆v
conditioned to a small separation R is predicted to go as P (∆v) ∝ (∆v)D2−d−1. Where D2

is the correlation dimension of the fractal set where particles are sitting. Moreover, D2 is also
connected to the saturation value of the scaling exponents by the relation: D2 = d − ξ∞ (see
Bec et al. (2011); Gustavsson & Mehlig (2010)). The slope for the pdf of σ at fixed R
must then go as −1 − ξ∞. This is consistent with the bi-fractal scenario for velocity difference
structure functions Sp(r;St). In conclusion, we have shown that velocity increments between
two inertial particles show very singular statistical properties, reflected in both the saturation
of large order moments and in the quasi algebraic tail of PDF of coarse-scale velocity gradients,
i.e. longitudinal velocity increments normalized with the separation between two particles. Both
issues may have a strong impact in the modelization of extreme events of collisional kernel.
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Figure 2. Probability density function of the (rescaled) longitudinal velocity difference σ for
various values of particles separation R and for St = 3.3. Inset: same for the right tail in log-log
coordinates. The algebraic tails possess a slope −1 − ξ∞, where ξ∞ is the saturation scaling
exponent of velocity increment structure functions.
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