
Front propagation in Rayleigh-Taylor systems with reaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Phys.: Conf. Ser. 318 092024

(http://iopscience.iop.org/1742-6596/318/9/092024)

Download details:

IP Address: 94.37.50.146

The article was downloaded on 03/01/2012 at 09:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/318/9
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Front propagation in Rayleigh-Taylor systems with

reaction.

A. Scagliarini1, L. Biferale2,3, F Mantovani4, M. Pivanti5, F. Pozzati6,
M. Sbragaglia2, S.F. Schifano5, F. Toschi3,7,8, R. Tripiccione5

1 Department of Fundamental Physics, University of Barcelona, Barcelona, Spain
2 Dept. Physics and INFN University of Rome, Tor Vergata, Italy
3 Department of Applied Physics Eindhoven University of Technology, The Netherlands
4 Deutsches Elektronen Synchrotron (DESY), Zeuthen, Germany
5 University of Ferrara and INFN, Ferrara, Italy
6 Fondazione Bruno Kessler Trento, Trento, Italy
7 Department of Mathematics and Computer Science and J.M. Burgers Centre for Fluid
Dynamics, Eindhoven University of Technology, The Netherlands
8 CNR, Istituto per le Applicazioni del Calcolo,Rome, Italy

E-mail: ascagliarini@gmail.com

Abstract. A special feature of Rayleigh-Taylor systems with chemical reactions is the
competition between turbulent mixing and the “burning processes”, which leads to a highly
non-trivial dynamics. We studied the problem performing high resolution numerical simulations
of a 2d system, using a thermal lattice Boltzmann (LB) model. We spanned the various regimes
emerging at changing the relative chemical/turbulent time scales, from slow to fast reaction;
in the former case we found numerical evidence of an enhancement of the front propagation
speed (with respect to the laminar case), providing a phenomenological argument to explain
the observed behaviour. When the reaction is very fast, instead, the formation of sharp fronts
separating patches of pure phases, leads to an increase of intermittency in the small scale
statistics of the temperature field.

1. Introduction

Turbulent mixing triggered by a Rayleigh-Taylor (RT) instability has a great relevance in
several natural phenomena and experimental setups (Sharp, 1984; Livescu et al, 2009). A
situation even more complicated occurs when the mixing fluids can undergo chemical reactions
between them, opening the way to a richer phenomenology (Zingale et al, 2005; Khokhlov, 1995;
Gamezo et al, 2003; Freeman et al, 1997). In our setup the two mixing/reacting scalar fields
are the temperatures of the two superposed blobs of fluid under gravity, thus mimicking the
combustion of a cold mixture of actual reactants into a hot mixture of burnt products. In such
reactive RT systems a fundamental issue is the competition between mixing, due to the unstable
configuration, and burning due to the reaction: in particular we will discuss the crossing over
between the different regimes emerging at varying the reaction rate and the effects of turbulence
intensity on the flame propagation speed (Koudella & Neufeld, 2004; Biferale et al, 2011). What
controls such crossing over is the ratio between the turbulence τturb(t) (which depends on time
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since RT turbulence is unsteady (Chertkov et al, 2009)) and reaction τR time scales, that is
called the Damköhler number Da(t) = τturb(t)/τR.

We obtained results (Biferale et al, 2011) concerning the enhancement of the front propagation
speed due to the undelying turbulence (for the slow reaction case, Da� 1), on one hand, and the
signature of the strong feedback of reaction on the fluid, observable in the small scale statistics
of temperature, on the other.

2. Equations of motion and numerical setup

We simulated a 2d system by means of a thermal lattice Boltzmann (LB) algorithm proposed in
(Sbragaglia et al, 2009; Scagliarini et al, 2010), where it was shown that the method integrates,
with good numerical accuracy (Biferale et al, 2010), the following set of macroscopic equations
for the density ρ, velocity ui and temperature T fields:

Dtρ = −ρ∂iiui
ρDtui = −∂iip− ρgδi,z + ν∆ui

ρcvDtT = −p∂iui + k∆T,

(1)

(where p is the pressure, k the thermal conductivity, τR the reaction time, g the gravity and
cv = d/2 the specific heat at constant volume), provided that one applies a suitable shift to
the thermohydrodynamic fields appearing in the Maxwellian equilibria appearing in the LB
equation:

u→ u + τLBg; T → T +
τLB(∆t− τLB)

d
g2.

In order to incorporate the reaction term R(T ), we introduced an extra-shift for the temperature
field (Biferale et al, 2011), that is1

T → T +
τLB(∆t− τLB)

d
g2 +

τLB
τR

R(T ). (2)

A proper reaction term should fulfill R(0) = R(1) = 0, T = 0 and T = 1 being the temperatures
of the pure cold (at the bottom of the simulation box) and hot (at the top, see figure 1) fluids
respectively; moreover it should convert irreversibly the pure cold phase (unstable) into the hot
one (stable). A simple expression for R(T ) with these properties can be R(T ) = T (1− T ), that
gives to the temperature equation the following advection-diffusion-reaction form

ρcvDtT = κ∆T +
1

τR
T (1− T ), (3)

originally proposed (Fisher, 1937; Kolmogorov et al, 1937) as a model for the propagation of an
advantageous gene in a population and as a model for reactions in a Rayleigh–Taylor system in
(Chertkov et al, 2009).

Notice that in equation (3) we have subtracted the compression term p∂iui (compare with
the third of equations (1)), by adding an extra counter-term in the shifted temperature inside
equilibrium, in order to avoid effects due to the adiabatic gradient (Biferale et al, 2011b) or
extra-heating not coming from the reaction itself.

We performed three high resolution sets of runs (on lattices of 4096 × 10000 grid points,
with different reaction times, see table 1 for run parameters) on the QPACE supercomputer, a
massively parallel dedicated machine based on PowerXCell 8i processors (Goldrian et al, 2008).
For each set we have collected O(10) independent runs.

1 This shift represents a kind of implicit equation, sinceR(T ) is a function of the “real” hydrodynamic temperature
T (H), which must be itself shifted (Scagliarini et al, 2010). However, observing that for τR � τLB (always true in
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Figure 1. Initial configuration for the Rayleigh-Taylor system with combustion: cold fluid (fresh
fuel) at T = 0 on top and hot fluid (burnt material) at T = 1 on bottom. The temperature jump
at the interface is smoothed by a hyperbolic tangent profile with a width of the order of 10 grid
points and with a randomly perturbed centre (thus enabling to perform independent runs). We
simulated an ideal gas in a two dimensional box of Lx×Lz lattice points with periodic boundary
conditions applied along the x direction.

At Fr ν g Tu Td τR τ
run A 0.05 7.5× 10−3 0.005 2.67× 10−5 0.95 1.05 5× 103 5.5× 104

run B 0.05 2.4× 10−4 0.005 2.67× 10−5 0.95 1.05 5× 104 5.5× 104

run C 0.05 7.5× 10−6 0.005 2.67× 10−5 0.95 1.05 5× 105 5.5× 104

Table 1. Parameters for the three sets of runs. Size is Lx × Lz = 4096 × 10000 for the three
runs; Atwood number, At = (Td − Tu)/(Td + Tu); (laminar) Froude number Fr = V 2

f /(g Lf ),

where Vf and Lf are the front laminar velocity and thickness (see text), respectively; viscosity
ν; thermal diffusivity κ = ν; gravity g; temperature in the upper half region, Tu; temperature in
the lower half region, Td; reaction characteristic time τR; normalization time, τ =

√
Lx/(g At).

3. Results and discussion

Owing to the fact that in a RT system (as previously pointed out), turbulence slows down
adiabatically τ(t) ∝ t, for any reaction rate (even when τR � 1), one would eventually reach
the “fast reaction limit”, Da � 1, with an active flame propagating. We address, then, in the
following the transition between the various regimes.
For large Da, the mixing is effective only at very small scales (where the characteristic times of
the fluid motion are shorter), while the reaction tends to make uniform the mixed regions, leading
to a topology of the temperature field made of “patches” of pure phases separated by rather
sharp interfaces, which are smoother than the non-reacting RT case (Chertkov et al, 2009); in
addition, the front of the hot phase moves, on average, with a non zero mean propagation velocity
towards the top. In order to better understand these preliminary features, at least on a pictorial
level, we show in figure 2 a snapshot, during the mixing/burning evolution, of various fields,
namely the temperature, kinetic energy, vorticity and magnitude of the temperature gradient
(|∇T |2 = ((∂xT )2 + (∂zT )2)), for the fastest reaction rate that we have studied (for which the

actual situations), and that the other shift is O(g2) (hence O(Kn2) (Scagliarini et al, 2010)) we can safely assume
that R(T (H)) ≈ R(T ).
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Figure 2. Snapshot at t = 5.5τ of (from left to right) temperature, kinetic energy, vorticity
and temperature gradient magnitude fields, for the fastest reaction case τR = 5000 (run A in
table 1).

overall dynamics is strikingly different from the standard non-reacting case). On the other hand,
the larger the reaction time τR the closer is the phenomenology to the standard RT case: to see
this we compare in figure 3 the evolution of the mean temperature profile

T̄ (z, t) =
1

Lx

∫
T (x, z; t)dx (4)

for the two extreme cases in our database, runs A and C: while for τR = 5× 105 the evolution is
basically undistinguishable from the usual RT dynamics (Scagliarini et al, 2010; Biferale et al,
2010), in the fast reaction case (τR = 5 × 103) the center of mass of the system clearly moves
upwards, due to the burning processes, inducing a displacement of the mixing region (which
becomes asymmetric, too). Correspondingly, the flame leaves behind it a region of homogenized
(by the burning processes) mean temperature, where, nevertheless, the turbulence is still active,
as one can see from figure 4 where we plot both the mean temperature and mean kinetic energy

Ēkin(z, t) =
1

Lx

∫
1

2
ρ(u2 + v2)(x, z; t)dx (5)

profiles: the latter is significantly non-zero in a belt out of the mixing layer (at strong difference
from what typically happens in standard RT).

3.1. Front propagation speed
Upon integration (and normalization by Lx) of eq. (3) over the whole volume we get an exact
equation for the propagating front speed:

Vf (t) = ∂t

(∫ +Lz/2

−Lz/2
T̄ (z, t)dz

)
=

1

τR
〈T (1− T )〉, (6)
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Figure 3. Mean temperature profiles at various times for run A (left panel) and run C (right
panel). The latter case is almost identical to the non-reacting case.

Figure 4. Mean vertical profiles of temperature and (normalized) kinetic energy at t = 3.5τ .
Turbulence remains active (the kinetic energy being significantly non-zero) in a region where
the mean temperature profile is homogenized by the burning processes.

(where 〈(·)〉 = (1/Lx)
∫ ∫

(·)dxdz) since the boundary terms vanish, owing to the periodic
conditions on the lateral walls and to the adiabatic condition at top and bottom plates
(∇T |z=±Lz/2 = 0). Such integral gives an explicit expression for the speed in the laminar
flame case, that is Vf ∝ Lf/τR, where Lf is the front thickness: as the latter can be estimated
to be Lf ∝

√
κτR, the well known result

Vf ∝
√

κ

τR
(7)

is recovered (that is the front propagates at constant speed).
The natural question is how turbulence may affect such behaviour. In the small Da limit, when
turbulence has the time to mix the fluids before reaction becomes active, we are in the so-called
pre-mixed combustion regime. In this case, it has been conjectured (Koudella & Neufeld, 2004;
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Damkoehler, 1940) that the simplest way to extend the result of the laminar case is to replace
in expression (7) the molecular diffusivity κ with an effective (turbulent) eddy diffusivity κT . In
terms of the mixing layer length, defined as

L(t) = 〈T̄ (1− T̄ )〉,

(directly related to the definition usually used in RT turbulence (Cabot & Cook, 2006)), a
dimensional estimate for the turbulent diffusivity is κT (t) ∼ U(t)L(t), where U is a large scale
characteristic velocity (e.g. the root mean square velocity). Plugging it into (7), we get:

Vf (t) ∼
√
κT
τR
∼

√
U(t)L(t)

τR
∼ U(t)

√
(L(t)/U(t))

τR
, where Vf (t) ∼ U(t)

√
τturb
τR
≡ U(t)Da(t)1/2.

(8)
This prediction, probably valid to describe the evolution of slow flames in stationary turbulent
flows cannot be expected to apply for RT turbulence. The explanation is that the observation
of an eddy-diffusivity driven propagation requires also a scale separation between the turbulent
eddies and the flame tickness, something not realized by the evolving RT system. However, it
is possible to rewrite (6) exactly as:

Vf (t) =
1

τR
[〈T̄ (1− T̄ )〉 − 〈θ2〉]. (9)

where with θ = T − T̄ we denote the fluctuations with respect to the mean vertical profile. It
is clear now that for Da < 1, the front will not have any strong influence on the underlying
RT evolution, thus it is possible to identify the first term on the rhs as the mixing layer length
L(t). Moreover, since in a RT system temperature fluctuations are almost constant in time and
homogeneous inside the mixing layer, the second term on the rhs of (9) is proportional to the
mixing layer extension, too (Chertkov, 2003). A natural prediction for Vf (t), at small Da, can
be therefore (Biferale et al, 2011):

Vf (t) ∝ L(t)

τR
; Vf (t) ∝ U(t)Da(t); (10)

This result can be easily generalized to different types of reaction term: in fact as long as we
may write R(T, τR) = (1/τR)f(T ) (where f is some smooth function of T ), we will have, for the
front speed

Vf (t) =
1

τR
〈f(T )〉;

moreover, it is always possible to use f(T ) = f(T )+fluctuations, and f is non-zero (and positive)
only in the mixing layer (being a reaction term). Then, 〈f(T )〉 ∝ L(t) and the scaling (10) of
Vf with Da is recovered.

To check this prediction at varying the reaction/turbulence relative intensity, we can exploit
RT non-stationarity and, hence, the Damköhler number time dependence Da = Da(t). In
figure 5 front speed (normalized with the root mean square velocity) is reported as a function
of Da (which is itself a function of the simulation time) for the three runs. As one can see,
our prediction (10) works satisfactorily in a wide range of Da(t), showing deviations only for
very small times, where turbulence is not yet developed and the front evolution is strongly
influenced by the initial configuration, and, of course, for Da(t) > 1, a regime out of the range
of validity of the underlying assumptions. In this latter case, data point flatten. The feedback
of the flame on the turbulent mixing shows up with a sort of synchronization between front
propagation and evolution of the turbulent kinetic energy toward a value where Vf (t) ∼ U(t).
Such a behaviour turns out to be in agreement with recent theoretical results obtained through
a mean-field approach (Brandenburg et al, 2011).
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Figure 5. Front speed normalized by the root mean square (vertical) fluid velocity for the three
runs as a function of the Damköhler number Da(t). The solid line represents the theoretically
predicted behaviour Vf/U ∝ Da, obtained on the basis that for Da < 1 flame propagates inside

the well mixed mixing layer. The prediction Vf/U ∝ Da1/2, obtained from the assumption that
in the pre-mixed combustion (slow reaction) regime one can simply substitute the molecular
diffusivity with the turbulent one κ→ κT in the expression for the laminar front speed, is also
plotted (dashed line).

3.2. Small scale intermittency
For high reaction rate (Da� 1), there are no extended regions which are well mixed, since the
cold material is rapidly burnt. As a result, the temperature field organizes in patches of pure
reactants/products separated by sharp interfaces (being in the so called “segregated regime”),
and, consequently, it has been conjectured that an increased intermittency should develop at
the small scales (Chertkov et al, 2009). According to a phenomenological prediction (Chertkov
et al, 2009), in the asymptotics of Da� 1, the scaling laws of fluid temperature (and velocity)
structure functions should obey the following relation

S
(p)
T (R, t) ≡ 〈|δRT |p〉 ∼

(
R

L(t)

)2/3

, (11)

(where L(t) is the mixing length), irrespective of the order p. From Eqn. (11) the expression
for the flatness reads:

F
(p)
T (R, t) =

〈|δRT |p〉
〈|δRT |p/2〉2

∼ R−2/3L(t)2/3 (12)

and so it increases with decreasing R for all orders, a clear indication of strong small scales

intermittency. In figure 6 we show the growth of F
(4)
T (R = 1, t) as function of the mixing length

L(t), for the three runs: the flatness for run A, corresponding to the smallest reaction time, is in

good agreement, within error bars, with the prediction of equation (12), F
(4)
T ∼ L2/3; instead, at

increasing τR, intermittency is depleted and the flatness grows more slowly, at a rate comparable
(within error bars) with the non-reacting RT case, whose data are also reported for comparison.
Equation (11) was derived in (Chertkov et al, 2009) under the assumption of a K41 scaling for
structure functions, as it should be in 3D; actually we show in figure 7 that this is also our case:

at increasing Da (that is going from slower to faster reactions) the scaling of S
(2)
T (R, t) is closer

to K41 than to a Bolgiano-Obukhov-like behaviour (as one would expect for a 2D system).
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Figure 6. The 4-th order (τR →∞). Data from run A (Da� 1) agree well, within error bars,

with the prediction given by equation (12) F
(4)
T ∼ L2/3.

Figure 7. 2-th order structure functions S
(2)
T (R, t = 5.5τ) for the three reaction rates (the

three curves are vertically shifted for the sake of clarity): at increasing Da one goes from a
Bolgiano-Obhukov scaling (dashed line) to a behaviour much closer to the K41 prediction (solid
line).

4. Conclusions

We simulated a 2d Rayleigh-Taylor system with a reaction term (of Fisher type) by means
of a thermal lattice Boltzmann algorithm. We presented results on the enhancement of the
reaction front propagation speed Vf in the “pre-mixed combustion” regime Da � 1, giving
a phenomenological argument to explain the dependence of Vf on Da. On the other way
round, we showd that when Da � 1, the feedback of the flame on turbulence is that of
strongly increasing small scales intermittency in the temperature field (finding nice agreement
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with previous theoretical results (Chertkov et al, 2009)) and that the statistics of temperature
fluctuations is closer to a K41 phenomenology rather than to a Bolgiano-Obhukov one, typical
for two-dimensional standard convective systems.
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