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Abstract. Spatial and velocity statistics of heavy point-like particles in incompressible,
homogeneous, and isotropic three-dimensional turbulence is studied by means of direct numerical
simulations at two values of the Taylor-scale Reynolds number Reλ ∼ 200 and Reλ ∼ 400,
corresponding to resolutions of 5123 and 20483 grid points, respectively. Particles Stokes number
values range from St ≈ 0.2 to 70. Stationary small-scale particle distribution is shown to display
a singular –multifractal– measure, characterized by a set of generalized fractal dimensions with
a strong sensitivity on the Stokes number and a possible, small Reynolds number dependency.
Velocity increments between two inertial particles depend on the relative weight between smooth
events - where particle velocity is approximately the same of the fluid velocity-, and caustic
contributions - when two close particles have very different velocities. The latter events lead
to a non-differentiable small-scale behaviour for the relative velocity. The relative weight of
these two contributions changes at varying the importance of inertia. We show that moments
of the velocity difference display a quasi bi-fractal-behavior and that the scaling properties
of velocity increments for not too small Stokes number are in good agreement with a recent
theoretical prediction made by K. Gustavsson and B. Mehlig arXiv:1012.1789v1 [physics.flu-
dyn], connecting the saturation of velocity scaling exponents with the fractal dimension of
particle clustering.

1. Introduction

Particle suspensions of dust, droplets, or bubbles advected by incompressible turbulent flows
are commonly encountered in many natural phenomena (see e.g. [1–6]). The problem is more
complicated than in the case of fluid tracers, i.e. small particles with the same density as
the carrier fluid. Suspended particles with a finite size and/or a density ratio different from
that of the fluid do not follow exactly the flow because of inertial forces. As a consequence, it is
crucial to understand the correlations between particle positions and structures of the underlying
flow. For instance, heavy/light particles are expelled/attracted from/into vortical structures,
a phenomenum that can be exploited to evaluate temporal properties of coherent turbulent
structures [7]. As a result, particle preferentially concentrate in specific regions of the flow, and
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N Reλ η δx ε ν τη tdump δt TL

Run I 512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.0004 2.2
Run II 2048 400 0.0026 0.003 0.88 0.00035 0.02 0.00115 0.000115 2.2

Table 1. Eulerian parameters for the Runs analysed here: Run I and Run II in the text. N is
the number of grid points in each spatial direction; Reλ is the Taylor-scale Reynolds number;
η is the Kolmogorov dissipative scale; δx = L/N is the grid spacing, with L = 2π denoting the

physical size of the numerical domain; τη = (ν/ε)1/2 is the Kolmogorov dissipative time scale;
ε is the average rate of energy injection; ν is the kinematic viscosity; τdump is the time interval
between two successive dumps along particle trajectories; δt is the time step; TL = L/U0 is the
eddy turnover time at the integral scale L = π, and U0 is the typical large-scale velocity. Stokes
number available from the two simulations are: Run I:(0; 0.16; 0.27; 0.37; 0.48; 0.59; 0.69; 0.80;
0.91; 1.01; 1.12; 1.34; 1.60; 2.03; 2.67; 3.31). Run II: (0.0; 0.16; 0.6; 1.0; 3.0; 5.0; 10; 20; 30; 40;
50; 70)

strong inhomogeneities in the particle spatial distribution develop, depending on the relative
importance between inertial forces and turbulent advection.

Recent theoretical [8–10]) and numerical [11–14] work have focused on these aspects.
Advances in the understanding of the statistical characterization of small particle aggregates
have been obtained by studying heavy particles advected by stochastic flows [15–18], and/or
in two-dimensional turbulent flows [19]. Temporal properties along single trajectory have been
addressed both numerically and experimentally for small, heavy particles and light particles
(see, e.g., [20–28]), and for large particles, where inertial effects combine with finite size ones
(see e.g. [29–31]).

In our simulations, particles are organised in different families according to the values of
their Stokes number, St. The Stokes number is defined as St = τs/τη, i.e. the ratio between

the particle response time τs and the flow Kolmogorov timescale τη = (ν/ε)1/2, where ν is
the flow kinematic viscosity and ε the average rate of energy injection. The response time
τs = 2a2ρf/(9νρp) depends on the particle radius a, which is assumed to be much smaller than
the Kolmogorov scale η, and the ratio between the fluid ρf and particle density ρp.

In this paper we present a new data analysis concerning a series of high-resolution Direct
Numerical Simulations (DNS). In particular, we intend to discuss (i) non-homogeneous effects in
the particle spatial distribution, characterized by the whole set of generalized fractal dimensions
Dq(St) at changing both the order of the moment q and the Stokes number St; (ii) the
connection between scaling properties of high-order moments of particle-particle relative velocity
increments and the (multi)fractal spatial properties. Concerning the latter point, we show that
our numerical results agree with a recent theoretical prediction [32], at least for not too small
Stokes numbers.

2. Equation of motion and numerical details

We present results from a 3D DNS of a turbulent flows seeded with inertial particles. The flow
phase is described by the Navier-Stokes equations for the velocity field u(x, t)

∂tu + u · ∇u = −
1

ρf
∇p + ν∆u + f , ∇ · u = 0 . (1)

The statistically homogeneous and isotropic external forcing f injects energy in the first low
wave number shells, by keeping constant their spectral content [33]. Kinematic viscosity is
chosen such that the Kolmogorov length scale η ≈ δx, where δx is the grid spacing: this choice
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ensures that small-scale velocity dynamics is well resolved. The numerical domain is cubic and
2π-periodic in the three directions of space. We use a fully dealiased pseudospectral algorithm
with 2nd order Adam-Bashforth time-stepping (for details see [20, 21]). We performed two series
of DNS: Run I with numerical resolution of 5123 grid points, and the Reynolds number at the
Taylor scale Reλ ≈ 200; Run II with 20483 resolution and Reλ ≈ 400. Details of the runs can
be found in Table 1.

The dispersed phase is constituted by millions of heavy particles, with different Stokes number
values. Particle sizes are assumed to be much smaller than the Kolmogorov scale of the flow
and with a negligible Reynolds number relative to the particle size. These assumptions allow us
to consider point particles which evolve according to the dynamics

Ẋ = V , V̇ = −
1

τs
[V − u(X, t)] , (2)

where the dots denote time derivatives. The particle position and velocity are (X(t),V (t)),
respectively, while u(X(t), t) is the Eulerian fluid velocity evaluated at the particle position.

Equation (2) has been derived under the assumption of very dilute suspensions, where
particle-particle interactions (collisions) and hydrodynamic coupling to the flow can be neglected
(see Ref.[34] for a discussion of the complete equation of motion of a small, spherical particle in
a non-uniform flow).

For each Stokes number we follow 7 × 106 (Run I) and 108 (Run II) particles, for 5 and 2
large-scale eddy-turnover times, respectively. Particles are injected uniformly in the box with
initial velocity equal to that of the fluid, and measurements are started only after a steady state
statistics is reached (see, e.g., Ref.[21] for details).

3. Mass Distribution

Preferential concentration is responsible for a highly non trivial spatial distribution of particles
at changing inertia. Due to its connection with collision kernels, much work has been done
to measure and characterize the two-point particle-particle distribution, i.e. the probability to
find a pair of particles at a distance r ≪ η, in an ensemble of inertial particle in homogeneous
turbulence [11, 13]. The dissipative dynamics of particles is responsible for the convergence of
their trajectories towards a dynamically evolving attractor in the position-velocity phase space.
As a consequence, the probability density function (PDF) of the inter-particle distances behaves
at scales smaller than the Kolmogorov dissipative scale η, as a power law, i.e. p2(r) ∼ rD2(St)−1,
where the exponent D2(St) is usually called the correlation dimension. In general, there is no
reason to expect a complete statistical self-similarity of the mass distribution, which would give
equal generalized dimension Dq(St) for any order q. Thus the full characterization of the particle
density field requires the knowledge of the full spectrum of generalized dimensions. This has
already been argued theoretically and found numerically for the case of paticles in random flows
and/or smooth flows [35, 36]. We present here the first measurements of the generalized fractal
dimensions Dq(St) as a function of the Stokes number and give some insight on the large mass
fluctuations.

The formal definition of generalized dimensions generally relies on box-counting techniques.
For that, let us cover at a fixed time t, for each given St, the particle set with Nr(St) balls of
size r. We define the instantaneous local mass distribution mr(xi, t) inside the ith ball centered
at xi as the fraction of particles inside this ball. Then, one can fully characterize the particle
distribution by studying the behaviour of the moments of order q of mr at changing the ball
radius, r. By definition of Hausdorff dimension we have that 〈Nr(St)〉 ∼ r−D0(St), where 〈·〉
denote ensemble averages (equivalent to time averages when ergodicity is assumed). The whole
spatial particle distribution can then be characterized by the behaviours of the moments of mr
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for different orders:

M (q)
r (St) =

〈Nr(St)
∑

i=1

mq
r(xi, t)

〉

=
〈

mq−1
r

〉

, (3)

where the over-bar average is a Lagrangian average; it is made on the attractor so that it is
locally weighted with the mass of particles itself. For a multifractal distribution we expect for
r ≪ η:

M (q)
r (St) ∼ r(q−1)Dq(St). (4)

The generalized dimensions Dq(St) fully determines the spatial mass distribution for each Stokes
number.

In the stationary regime, for almost all balls centered on the attractor, the local dimension
h = ln mr/ ln r tend to a time-constant, deterministic value D1(St), which is usually called the
information dimension. For finite length scales r, the fluctuations with respect to D1(St) of the
local dimension h on the attractor are described by a large-deviation principle, which implies
that they take the form pr(h;St) ∝ rf(h;St), where the density probability pr is evaluated on balls
centered on the attractor. The function f(h) is generally called the multifractal (or singularity)
spectrum. The generalized dimensions are related to it via

(q − 1)Dq(St) = inf
h

[(q − 1)h + f(h;St)] . (5)

Note that if the particles were to be distributed with a spatial density ρ(x, t), the coarse-
grained mass would simply read

mr(xi, t) =

∫

|y|<r
dy ρ(xi + y, t), (6)

so that its moment of order q would relate to the integral over balls of size r of the q-th order
correlator of the density:

M (q)
r (St) =

∫

|y2|<r
. . .

∫

|yq|<r
dy2 · · · dyq 〈ρ(0, t)ρ(y2, t) · · · ρ(yq, t)〉 . (7)

A measurement and evaluation of the generalized fractal dimensions that is based on one of
their properties described above requires having a good small-scale approximation of the mass
distribution. This is generally not the case in numerical simulations since the finite number of
particles is responsible for very strong effects of discreteness at small scales.
In order to cope with this difficulty, it is much easier to deal with the q-point particle distribution.
The probability Pq(r;St) to observe q particles randomly chosen on the attractor, all lying within

a distance r, behaves at small scales as Pq(r;St) ∝ r(q−1)Dq(St). For the case q = 2, one indeed

gets dP2(r)/dr = p2(r) ∝ rD2(St)−1. We made use of this technique based on the q-point
cumulative probabilities Pq in order to evaluate the fractal dimensions of inertial particles in our
numerical simulations.

Figure 1 (left) represents the generalized fractal dimensions as a function of Stokes from Run
I. The statistics shows a clear signature of multifractality, confirming the results already obtained
in random flows [36]. A straightforward method for evaluating the scaling properties of Pq(r) is
to look at the behavior of its logarithmic derivative (d ln Pq(r))/(d ln r). Such a quantity defines
a local slope, which tends to (q − 1)Dq as r/η → 0. To extract a scaling exponent, a choice is
to average this local slope over an interval where it is reasonably constant; error bars can then
be defined as maximal deviations of the actual local slope from this average. Following such
procedure error bars may become large, order %10 for the highest moment shown in the left
panel of Fig. (1). Here we made use of a different strategy. As seen from the right panel of Fig. 1,

Particles in Turbulence 2011 IOP Publishing
Journal of Physics: Conference Series 333 (2011) 012003 doi:10.1088/1742-6596/333/1/012003

4



0 0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

St

D
q

 

 

q=2
q=3
q=4
q=5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2.4

2.5

2.6

2.7

2.8

2.9

3

r / η

(d
 ln

 P
2) 

/ (
d 

ln
 r)

Figure 1. Left: generalized fractal dimensions Dq(St) measured from Run I, as a function
of the Stokes number for moment of order q = 2 to q = 5. Results from Run II do not
show any significative dependency (not shown). Right: local slope of the two-point cumulative
probability P2(r;St) as a function of scale for two different values of the Stokes number (lower
blue: St = 0.48 and upper black: St = 3.31); the two solid lines represent the fit obtained from
accounting for expected subleading terms.

there is no clear scaling range larger than a fraction of a decade where the local slope observed
from our numerical data is decently constant. However, there is a sufficient statistical accuracy
for resolving a smooth behaviour of the local slope over more than two decades. Making use of
this requires accounting for subleading terms and thus formulating the following Ansatz for the
small-scale behaviour of Pq(r):

Pq(r) ≈ r(q−1)D′

q

[

α0 + α1r + α2r
2 + · · ·

]

+ r3(q−1)
[

β0 + β1r + β2r
2 + · · ·

]

, (8)

The decomposition in two separate contributions follows from [37]. The first term involves the
phase-space dimension D′

q, which describes the particle distribution in the full position-velocity
space. The second term comes from the projection of this set onto the position space and relates
to the development of caustics (i.e. of spatial locations with more than one particle velocity that
become singular upon projection). This Ansatz suggests that Dq = min(D′

q, 3). The form of the
first-order subleading term at a given scale r strongly depends on the values of the coefficients
αi and βi. At small values of the Stokes number, D′

q < 3 and the βi’s are very close to 0. This
relates the particle clustering properties, and to a very small probability to observe caustics,
which is expected to be of the form ∝ exp(−c/St) (see [38] and next section). At larger Stokes
numbers, the caustics give the main subleading contribution.
Hence, two different possible fits for the q-point probability can be considered

Pq(r) ≈ α0 r(q−1)D′

q + α1 r(q−1)D′

q+1 for St ≤ St⋆, (9)

Pq(r) ≈ α0 r(q−1)D′

q + β0 r3(q−1) for St ≥ St⋆, (10)

where St⋆ approximately corresponds to the value of the Stokes number where the minimum
of the dimension Dq is attained, and small-scale clustering is maximal. When applied to the
logarithmic derivative, such forms allow one to fit the data with two parameters (D′

q and the
ratio of the two constants) over more than two decades, as seen from Fig. 1 (right).

The measurement of fractal dimensions obtained from this technique are shown on Fig. 1
(left). They show two very different behaviours at very small and moderate Stokes. On the
left-hand side of the minimum, the dimensions Dq seem to saturate very quickly to a fixed limit
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D∞ when q increases. The saturation is much slower at larger values of the Stokes number.
This suggests that, eventhough two particle sets with different Stokes numbers located below
and above St⋆ can display the same correlation dimension D2, the fluctuations of their mass
at the same scale will be of very different nature. Such a consideration, which still requires to
be understood in a quantitative way, might be very important when evaluating instantaneous
collision rates between heavy particles.

4. Statistical Properties of the Relative Velocity

In this section, we discuss the statistics of the relative velocity between heavy particle pairs,
having the same Stokes number, conditioned on their separation. This is an important subject
relevant to the build up of models for particle collisions [3, 17, 39]. We define the relative velocity
between a particle pair as

δRVSt(t) = |V1(X1(t), t) − V2(X2(t), t)|, (11)

with R = |X1 − X2|, the pair distance vector. The statistical properties of δRVSt can be
characterized in terms of the conditional moments

Sp(r;St) = 〈 |δRVSt|
p | R=r〉 . (12)

Since we work in stationarity conditions, with an homogeneous and isotropic velocity field, the
dependence of Sp on time, space and direction of R drops out. In the following, we will discuss
the scaling behaviour of moments of relative velocity at varying the degree of inertia and the
distance between the particles.

The qualitative behavior of δRVSt can be readily understood as follows. If the particle
response time τs is much smaller than the characteristic time τ(R) of fluid velocity fluctuations
on scale R, particle velocities will be very close to fluid velocities at particle position so that
δRV (St) ≈ δRu. On the other hand, if the particle response time is larger than τ(R), particle
velocities will be uncorrelated with the fluid and among each other, thus one expects that
δRV (St) ≈ const. This leads to introduce the notion of scale dependent Stokes number [40–42]
St(r) = τs/τ(R), where τ(R) ≈ ǫ−1/3R2/3 if R > η, i.e. for inertial range scales, and τ(R) = τη

for R ≤ η, i.e. for scales belonging to the dissipative range.
Hence, for what concerns the statistics of relative velocity, at a given scale R particle inertia
is small or large depending on St(R). In Fig. 2, we observe that such a qualitative behavior is
well reproduced by the second order structure function S2(r, St), as a function of the scale and
for different values of St = τs/τη . For larger scales, S2(r, St) tends to recover the fluid behavior

characterized by a Kolmogorov like r2/3 scaling [42]. For larger Stokes values, the scale R at
which the fluid velocities are recovered becomes larger (see Fig.5 in [43]). However, at scales
within the dissipative range, we observe a strong dependence of S2(r;St) on the Stokes number
suggesting that

Sp(r, St) ∼ rξp(St) (13)

i.e. within the available scale range accessible by our DNS, we observe a scaling behavior with an
exponent ξp(St) which non-trivially depends both on the order of the statistics and on the Stokes
number. it is interesting to discuss such dependency and to connect it with particle statistical
dynamics. In Figure 3, we show the behavior of the fitted exponent ξp(St) at varying both the
order p and the Stokes number St [43]. Two features can be readily identified. First we note that,
at fixed St, for increasing the order p, the exponent ξp(St) changes from a linear dependence on
p (ξp(St) = p) to a p-independent value ξ∞(St), showing a tendency to saturation, similarly to
what happens in Burgers turbulence [44]. In particular, the scaling exponents are rather well
approximated by a bi-fractal behavior:

ξp(St) = min{p, ξ∞(St)} . (14)
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Note that to disentangle a pure bi-fractal behavior from a multifractal one in presence of a
saturation of scaling exponents is not simple, and requires a statistical convergence not easily
achievable for 3D flows. However, as discussed below, there are good reasons to favor the former
type of scaling behavior.
Second we note that the saturation exponent ξ∞(St) dramatically depends on St. In particular,
it decreases from values larger than 1, for St < 1, to values smaller and smaller at increasing St.
Data suggest that ξ∞(St) ≈ 0 when St reaches values ≈ 7 − 8. Therefore, velocity increments
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become rougher as St increases, departing more and more from the smooth differentiable
behaviour.

These observations can be interpreted in terms of caustic contributions [38, 45], or sling effect

[3, 10]. The physical observation is that, due to inertia, relative velocity differences δRVSt may
not go smoothly to zero when the particle separations decreases. Indeed, particle dynamics in
phase space is dissipative and the set where particle trajectories evolve may fold in the velocity
direction leading to the formation of such caustics [17]. This effect becomes dramatic when
inertia is such that particle response time is larger than any turbulent flow time scale: in such
case, nearby particles will move with uncorrelated velocities [37, 46], and caustics are dense in
space. The statistical importance of caustics does change with the Stokes number.

Recently, theoretical arguments have been put forward about the scaling behaviour for
conditioned structure functions Sp(r;St) in the dissipative range of the 3D turbulence, based
on results obtained in stochastic flows [32, 47]. In particular, for scales r/η → 0, it is expected
that,

Sp(r;St) ∼ Ap(St)(r/η)p + Bp(St)(r/η)3−D2(St) . (15)

The first term in (15) corresponds to the smooth (differentiable) part of the particles’ velocity
distribution where Ap(St) is a O(1) constant. The second term represents the contribution from
caustics. Notice that the exponent D2(St) is the correlation dimension of the set in position
space where particles concentrate (see previous section). The above prediction was obtained
by solving in the limit r → 0, the equation that rules the joint probability to find a particle
pair at separation R = r with a relative velocity δRVSt. Such equation can be solved for a one
dimensional stochastic flow. Extending the same ideas to flows in two and three dimensions,
one gets to (15) as shown recently in [32]. In equation 15, the constant in front of the caustic
contribution is suggested to be

Bp(St) ∼ exp(−Cp/St) , (16)

and it is related to the rate at which caustics are formed [38, 48]. Note that while Ap(St) is an
O(1) constant, possibly dependent on St, the activation factor Bp goes extremely fast at zero
when St → 0.

 1.5

 2

 2.5

 3

 0.1  1  10

St

Rλ≈ 185

Rλ≈ 400

D2
3-ξ∞

D2
3-ξ∞

Figure 4. Comparison of the exponents D2(St) and 3 − ξ∞(St) vs St for Run I (red data,
circles) and Run II (blue data, squares).

From equation (15) a simple bi-fractal behaviour is predicted for asymptotically small
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distances i.e., Sp(r, St) ∼ rξp(St) with

ξp(St) = min{p, 3 − D2(St)}. (17)

Comparing eq. (17) with eq. (14), obtained on the basis of the observed behavior (Fig. 3), we
get a prediction for the saturation exponent

ξ∞(St) = 3 − D2(St) , (18)

that can be checked with the DNS data. Figure 4 shows in the same plot D2(St) and 3−ξ∞(St)
as measured in both Runs.
For Stokes numbers larger than that for which D2(St) is minimal (St ≃ 0.7), the prediction (18)
is rather well verified by our numerical data. While for smaller Stokes values, a discrepancy is
observed between the value od the correlation dimension and the saturation exponent.

Two different comments can be made. By matching the statistical weigh of the two terms
in (15), we observe that the asymptotic regime is expected only for scales r < rc(p, St) ∼
Bp(St)1/(p−3+D2), which become exponentially small when St ∼ 0. In our numerics, the range
of scales allowing to fit the scaling properties is limited to an interval [rmin, η]. Clearly, the
bifractal behavior (17) can be observed only if rmin ≪ rc(p, St), otherwise only the smooth
scaling would be observed ξp(St) = p. Hence, in general, it may be very difficult to test the
prediction (18) for small Stokes number. On the other hand, we notice that for small Stokes
values our data do not suggest a pure smooth scaling ξp(St) = p, but are compatible with a
saturation of high order scaling exponents ξp to a value different from that predicted by eq. (18).
In conclusion, it is fair to say that while for St > 1 the picture derived from (15) works rather
well, for St ≪ 1 there is still some difficulty to validate it. Either the saturation we observe is
the result of some spurious effect due to the limited range of avalaible scales, or there is still
something to understand in the limit of very small inertia.

5. Conclusions

We studied the spatial and velocity statistics of point-like heavy particles in stationary, incom-
pressible, homogeneous and isotropic three-dimensional turbulence at two values of the Reynolds
number, Reλ ∼ 200 and Reλ ∼ 400. We considered the behavior of tracers (St = 0), and heavy
particles with Stokes number from St = 0.16 to 70.
Stationary small-scale particle distribution display a singular –multifractal– measure, character-
ized by a set of generalized fractal dimensions with a strong sensitivity on the Stokes number and
a small –if any– Reynolds number dependency. Velocity increments between a pair of particles
conditioned to be at a given distance depend on the relative weight of smooth events, where the
particle velocity difference is approximately the equal to the fluid velocity difference, and caustics

contributions, i.e. associted to close particles having very different velocities. The latter events
lead to a non-differentiable small-scale behaviour for the relative velocity. The relative weight
of these two mechanisms changes at varying Stokes number. We showed that moments of the
velocity difference enjoy a quasi bi-fractal-behavior, and that the scaling properties of velocity
increments for not too small Stokes numbers are in good agreement with a recent theoretical
prediction made by K. Gustavsson and B. Mehlig [32].
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