
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of Prof. Mitsuhisa Sato and Prof. Satoshi Matsuoka
doi:10.1016/j.procs.2011.04.105

Procedia Computer Science 4 (2011) 994–1003

International Conference on Computational Science, ICCS 2011

Optimization of Multi-Phase Compressible Lattice Boltzmann
Codes on Massively Parallel Multi-Core Systems

Luca Biferalea, Filippo Mantovanib, Marcello Pivantic, Fabio Pozzatic, Mauro Sbragagliaa, Andrea Scagliarinia,
Sebastiano Fabio Schifanoc, Federico Toschid, Raffaele Tripiccionec

aUniversity of Tor Vergata and INFN, Roma, Italy
bDeutsches Elektronen Synchrotron (DESY), D-15738 Zeuthen, Germany

cUniversity and INFN, Ferrara, I-44124 Ferrara, Italy
dEindhoven University of Technology, The Netherlands and CNR-IAC, 00185 Rome, Italy

Abstract

We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel
systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the
performance bottlenecks that we find as we gradually expose a larger fraction of the available parallelism, and derive
appropriate solutions. We obtain a sustained performance for this ready-for-physics code that is a large fraction of
peak. Our results can be easily applied to most present (or planned) HPC architectures, based on latest generation
multi-core Intel processor architectures.

Keywords: Computational fluid-dynamics, Lattice Boltzmann methods, multi-core processors

1. Overview

Fluid-dynamics critically relies on computational techniques to compute reliable solutions to the highly non-
linear equations of motion in regimes interesting for physics or engineering. Over the years, many different numerical
approaches have been theoretically developed and implemented on state-of-the-art massively parallel computers.

The Lattice Boltzmann (LB) method is a flexible approach, able to cope with many different fluid equations (e.g.,
multiphase, multicomponent and thermal fluids) and to consider complex geometries or boundary conditions. LB
builds on the fact that the details of the interaction among the fluid components at microscopic level do not change
the structure of the equations of motion at the macroscopic level, but only modulate the values of their parameters.
LB then describes on the computer some simple synthetic dynamics of fictitious particles that evolve explicitly in
time and, appropriately averaged, provide the correct values of the macroscopic quantities of the flow; see [1] for a
complete introduction.

The main advantage of LB schemes from the point of view of an efficient parallel implementation is that they are
local (that is, they do not require the computation of non local fields, such as pressure). However, in recent years,
the processing nodes themselves have included more and more parallel features, such as many-core structures and/or
vectorized data paths: the challenge now rests in combining effectively inter-node and intra-node parallelism.

In this paper, we report on a high-efficiency implementation of LB on a massively parallel system whose compute
nodes are themselves state-of-the-art multi-core CPUs. This paper builds on previous work that addressed the same

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003 995

problem for a massively parallel architecture based on the IBM PowerXCell8i processor, and has been used for large-
scale simulations of the Rayleigh-Taylor instability [2]. In this note we tailor our codes for state-of-the-art Intel
architectures, and perform extensive tests on a recent massively parallel system (the AuroraScience machine) based
on a large array of these processors connected by a toroidal 3D network. We make sure however that our results can
be quickly ported to most recent parallel machines.

2. Lattice Boltzmann Methods

In this section we briefly describe the Lattice Boltzmann approach to the numerical solution of a class of Navier-
Stokes equations that describe fluid flows. Full details can be found in [3, 4]. This computational method simulates
the behavior of a compressible gas/fluid. The Thermal-Kinetic description of a compressible gas/fluid of variable
density, ρ, local velocity u, internal energy, K and subject to a local body force density, g, is given by the following
equations:

∂tρ + ∂i(ρui) = 0 (1)
∂t(ρuk) + ∂i(Pik) = ρgk (2)

∂tK + 1
2
∂iqi = ρgiui (3)

where Pik and qi are the momentum and energy fluxes.
In the continuum, one shows that it is possible to recover exactly these equations, starting from a continuum

Boltzmann Equations and introducing a suitable shift of the velocity and temperature fields entering in the local
equilibrium [3].

The discretized counterpart of the continuum description (that we use in this paper) uses a set of fields fl(x, t) as-
sociated to the so-called populations; the latter can be visualized as pseudo-particles moving in appropriate directions
on a discrete mesh (see fig. 5). The master evolution equation in the discrete mesh is:

fl(x + clΔt, t + Δt) − fl(x, t) = −Δt
τ

(
fl(x, t) − f (eq)

l

)

where subscript l runs over the discrete set of velocities, cl (see again fig. 5) and equilibrium is expressed in terms
of hydrodynamical fields on the lattice, f (eq)

l = f (eq)
l (x, ρ, ū, T̄). We remark that our code, that uses 37 populations (a

so-called D2Q37 code), requires more memory and more flops than standard LB approaches (e.g., D2Q9 or D3Q19).
To first approximation, the macroscopic fields are defined in terms of the lattice Boltzmann populations: ρ =

∑
l fl,

ρu =
∑

l cl fl, DρT =
∑

l |cl − u|2 fl. When going into all mathematical details, one finds that shifts and renormaliza-
tions have to be applied to the averaged hydrodinamical quantities to correct for lattice discretization effects. After
performing these manipulations, one recovers the correct thermo-hydrodynamical equations [3, 4]:

Dtρ = −ρ∂iu
(H)
i (4)

ρDtu
(H)
i = −∂i p − ρgδi,2 + ν∂ j ju

(H)
i (5)

ρcvDtT (H) + p∂iu
(H)
i = k∂iiT (H) (6)

where we have introduced the material derivative, Dt = ∂t + u(H)
j ∂ j, we have neglected viscous dissipation in the

heat equation (usually small) and the superscript H denotes the lattice-corrected quantities; cv is the specific heat at
constant volume for an ideal gas p = ρT (H), ν and k are the transport coefficients.

3. The AuroraScience Machine

The massively parallel AuroraScience machine [5], that we use for test and performance measurements, adopts
latest generation multi-core processors and interconnects them with a custom 3D-torus network, that supports only
nearest-neighbor data transfers with low communication latency. This system architecture has been recently adopted
by the QPACE project [6, 7], based on the IBM PowerXCell8i processor.

996 Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003

The AuroraScience processing elements have two Intel X5680 CPUs(code-name Westmere), 12 GBytes of DDR3
RAM and a communication processor implemented on a Field Programmable Gate Array (FPGA). The CPUs run at
a frequency of 3.33 GHz, include six cores and 12 MBytes of L3-level shared cache, share the memory and operate
as a Symmetric Multiprocessor, running the Linux operating system. Peak performance is around 160 Gflops, double
precision.

The network processor has 6 links (10 Gbit/sec each, full-duplex) supporting the toroidal mesh. It is based on
an open source design [9], which includes the processor interface, and the logic to send and receive data on the six
communication links. The CPUs send messages by writing one or more 128 Byte data-packet to one of the six queues,
associated to the six directions. As soon as the sending queue is not empty, the associated TX logic starts sending the
packet over the links. On the receiving side the RX logic receives the packets, checks for errors, and if a credit has
been provided by the receiving application, writes the packet to the memory via a DMA operation. For our present
application, only a subset of these features is really needed.

Blocks of 16 processing elements – configured as partitions of 1×1×16 nodes or smaller – are the next hierarchical
level of parallelism, delivering up to 2.5 Tflops, double precision. Several blocks can be connected together, to build
larger systems. The machine is liquid cooled, so a very large computing power can be packed in a small volume: a
standard rack hosts up to 16 blocks, corresponding to a peak performance of ≈ 40 Tflops, double precision.

4. Implementation and Optimization of the LB code

In this section we describe the structure of our LB code, its data-structures, and the implementation and optimiza-
tion details that we have applied to boost performance on the AuroraScience system. Due to the generality of the
techniques used, our approach can be readily used for any system based on commodity Intel multi-core CPUs.

The LB approach to computational fluid-dynamics has a large degree of available parallelism, easily identified
and exploited. Defining y = x + clΔt and rewriting the main evolution equation as:

fl(y, t + Δt) = fl(y − clΔt, t) − Δt
τ

(
fl(y − clΔt, t) − f (eq)

l

)

one easily identifies the overall structure of the computation that evolves the system by one time step Δt; for each point
y in the discrete grid one: i) gathers from neighboring sites the values of the fields fl corresponding to populations that
drift towards y and then ii) performs all mathematical processing needed to compute (on a point-to-point basis) the
quantities appearing in the equation above. The key point is that both steps are completely uncorrelated for different
points of the grid, so they can be parallelized according to any convenient schedule, as long as one makes sure that
step i) is performed before step ii).

These features are well suited for emerging HPC architectures, that foresee a large number of processing nodes,
each processing node involving many processing cores, the cores themselves often containing SIMD oriented data-
paths. When porting LB algorithms for these architectures, the challenge rests in matching in the most efficient way
algorithm-level parallelism with the available parallel computing resources.

Further help comes from the simple node-to-node communication pattern and timing associated to the LB method.
The easiest approach is that of tiling the physical grid on the set of available processors, so that nearest-neighbor
data moves translate to communications between nearest-neighbor processors assembled in a torus topology, that is
becoming more and more typical in large HPC machines [8]. Finally, note that remote communications can be all
concentrated at just one specific point in the main iteration loop, before population data is gathered for processing.

Each grid point has a data structure with several members. The most important is the array of 37 double-precision
floating point values representing the populations of the D2Q37 LB code. Other members store macroscopic variables,
such as velocity and temperature.

At each point in the loop over time, each grid-point is processed by several computational phases (see figure 1);
we maintain two copies of the grid, each phase reading data from one copy and writing results to the other:

• stream(): this phase gathers for each site the populations according to the scheme of figure 5. This process does
not perform any floating-point computation but only accesses sparse blocks of memory locations. It collects at
each site all the populations that will collide at the next computational phase (collide()). For each site, this step
accesses the populations of the neighbor-cells at distance 1, 2 and 3 in the physical grid.

Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003 997

typedef struct {
double p [3 7] ; / / p o p u l a t i o n a r r a y
double u ; / / v e l o c i t y x
double v ; / / v e l o c i t y y
double rho ; / / d e n s i t y
double temp ; / / t e m p e r a t u r e

} pop_type ;

void LB−Kernel () {
for (step = 0 ; step < MAXSTEP ; step++) {

stream () ;
bc () ;
collide () ;

}
}

Figure 1: Main data-structures and overall organization of the code. Structure pop type collects variables associated to each grid point. Member
p[] is the array of populations (see the text for details). Other members store relevant macroscopic variables.

• bc(): this phase adjusts values of the cells at the top and bottom edges of the grid to enforce appropriate
boundary conditions (e.g., a constant given temperature and zero velocity).
• collide(): this phase performs all the mathematical steps needed to compute the new population values at each

grid site (this is called “collision” in LB jargon). Input data for this phase are the populations gathered by the
previous stream() phase. This is the floating point intensive kernel of the code; it uses only the population
members of the site on which it operates, making the computation completely local.

We now address the strategies that one has to apply to exploit all the parallelism available in the LB algorithm, by
mapping it at all levels available in our target architecture, namely node, core and instruction.

We start with the (relatively straightforward) steps associated to node-level parallelism. We split the grid evenly
over the nodes of the system. Each node handles a portion of it, allocated on its own memory and called a sub-grid. A
grid of size Lx × Ly is split on Np nodes along the X dimension; we allocate on each node a strip of size Lx

Np
× Ly. One

could consider a decomposition Ly

Np
× Lx as well, that reduces communication requirements if Ly ≥ Lx; however, since

we plan to use our code for physics simulations in a wide range of aspect-ratios (both Lx > Ly and Lx < Ly) and the
communication overhead is small (show later for details) we arbitrarily pick up only one of the two decompositions.
This allocation scheme implies an ordering of the processing nodes along a virtual ring, so each node is connected
with a previous and a next node, see figure 2.

Data exchange among nodes is only needed in the stream() phase, as cells close to the right and left edges of the
sub-grid of each node need data allocated on the previous and next node. We exchange all data needed for each time
iteration in just one inter-node communication step, within the comm() phase. Each node sends data items belonging
to the three vertical columns close to the left edge of its sub-grid to the previous node, and receives corresponding
data sent from the next node. In the same way, data belonging to the right edge are sent to the next node and data
belonging to the right edge of the previous node are received; this simple communication pattern is visualized in figure
2. Communication is performed at the beginning of each time step and then followed in sequence by stream(), bc()
and collide(). This communication pattern – supported by a subset of the functions of our 3D-torus network – can be
easily implemented on essentially any communication network. We show later that the associated overhead is small.
Once this step has completed, the rest of the computation is local to the node, so all further optimizations are fully
intra-node.

We now describe the sequence of intra-node optimizations that we have considered. In short, we have to make
sure that i) all cores within a node work concurrently and with as little interference as possible, and ii) all floating
point (vector) data-paths on each core are kept busy as much as possible. These optimizations are in principle limited
by bandwidth limitations: we have to make sure that each arithmetic unit on each core timely receives from memory
all data it needs: to this end we have several handles: i) reduce data traffic between memory and processor as much as
made possible by the algorithmic structure (that is, re-use data already present in the processor as much as possible);
ii) control memory allocation, so data is as close as possible to the core that uses it; iii) adjust the allocation strategy in
order to optimize cache performance. We now provide details on these attempts, that have produced various versions

998 Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003

of the code; performance results will be analyzed in § 5.
On each node, each phase of the computation is parallelized by splitting the sub-grid over all the cores of the

node, so each one handles a different portion of it. Parallelism at core level is handled through the standard pthread
library, the approach closer to the Linux kernel, to avoid overheads associated to e.g. openMP or MPI. To get the best
performance from the node, we also run one thread per core, minimizing overheads due to the scheduling of threads
among the cores. Picture 4 details the code executed on each node, which is orchestrated in the following way:

1. two threads execute the comm() phase to exchange data with neighbors. After receiving data from the neighbor
node, each thread computes stream() for the three columns of its sub-grid adjacent to the sub-grid edge.

2. while step 1. executes, the remaining threads run stream() in parallel on all columns not handled by the previous
threads.

3. at the end of step 1. and 2. two threads execute bc(), for the top and bottom edges of the grid respectively.
4. All threads start computing collide(), each on a different portion of the sub-grid.

Each step reads data from one copy of the grid and writes results to the other; all steps are synchronized by the use of
pthread barriers.

We introduce a further level of parallelism, processing two grid sites together. Data of two cells at distance Ly/2
have been paired by using vector variables, see figure 3. The gcc compiler allows to define, through the vector size
extension, a new variable-type that packs two primitive types and defines vectors of two doubles. The compiler then
automatically translates operations on vector variables into streaming SSE instructions.

We now focus on specific optimizations for the stream step, associated to different memory allocation options. We
remind that stream() performs scattered accesses in local memory to gather populations at distance 1,2 and 3 in the
grid. Performances of such step may depend on details of cache and memory-allocation policies on multi-processor
Linux system, such as request-for-ownership and first-touch. We expect that the threads collaborating to this task
will have limited access to shared memory locations because those threads handle different lattice sub-partitions.
However we anticipate that performance will depend significantly on how well each thread is able to reuse its cached
data [11, 12]. So in the following we only consider the best memory allocation choices from the point of view of
cache reuse.

stream collects a subset of the populations of several neighbor grid points according to the scheme of figure 5.
For each grid site, populations are allocated at successive memory locations using the ordering of their corresponding
labels. This means that stream performs a sequence of sparse memory accesses. From the algorithmic point of view
the labelling of populations is arbitrary, but it has an impact on performance, as it directly affects the cache hit-rate;
we started with the labelling shown at left in fig. 5, and then we changed to the labelling shown at right. The latter has
better cache re-use: consider e.g. populations 1,2 and 3 at (x − 2, ȳ), needed when handling a grid point at some (x, ȳ)
location (see again figure 5); the corresponding data items – stored in memory at contiguous addresses – are loaded
on one cache line by one memory access. As we sweep the grid, moving to the next site in the y direction, (x, ȳ + 1),
at least populations 2 and 3, which are needed again, are already available in cache. The gain is even larger as we
consider e.g. populations 15 · · · 21.

A further optimization for stream() implies locking each thread to some core within one of the two processors and
at the same time allocating data most used by that thread on the memory bank directly connected to that processor;
this reduces the latency of memory accesses. We use the NUMA library available for Linux systems, and explicitly
map the grid onto the memory bank close to the CPU of the threads accessing it. The sub-grid allocated onto each
node is split in two segments, the former allocated onto memory attached to CPU0 and the latter to memory attached

Figure 2: Virtual arrangement of the processing nodes for the program. Each node exchanges the borders of its sub-grid with the previous and the
next in the ring.

Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003 999

Figure 3: Cells at distance NY/2 are combined together, and processed by the streaming vector instructions available in the processors.

for (step = 0 ; step < MAXSTEP ; step++) {

if (tid == 0 | | tid == 1) {
comm () ; / / exchange b o r d e r s
stream () ; / / a p p l y s t r e a m t o l e f t − and r i g h t −b o r d e r

} else {
stream () ; / / a p p l y s t r e a m t o t h e i n n e r p a r t

}

pthread_barrier_wait (. . .) ;

if (tid == 0)
bc () ; / / a p p l y bc () t o t h e t h r e e upper row− c e l l s

if (tid == 1)
bc () ; / / a p p l y bc () t o t h e t h r e e lower row− c e l l s

pthread_barrier_wait (. . .) ;

collide () ; / / compute c o l l i d e ()

pthread_barrier_wait (. .) ;
}

Figure 4: Code executed by each core. The various phases are executed by a variable number of threads, and are synchronized through barriers.

to CPU1. This requires an additional copy of the edges of the two portions of the sub-grids, which is performed by a
memory copy routine.

So far, our code moves data from/to memory two times, first during stream, then during collide; this can be im-
proved upon (as suggested in [10]), as the stream and collide phases can be merged in just one computational step
applied in sequence to all cells of the grid. To do this we have to take into account that computation of boundary condi-
tions has to be done after stream but before collide. To fit this constraints, the computation steps have been structured
in a different way. The computation is now organized in three main steps, each followed by a synchronization barrier:

step 1: two threads exchange the Y-borders with neighbor nodes, while two other threads perform stream for the
upper and lower rows of the grid, leaving out the first and the last 3 columns; for these columns stream will be
executed by threads performing communication, as soon as they receive relevant data.

step 2: two threads adjust the boundary conditions for the cells located at the top and bottom rows of the grid. After
one step of synchronization, all threads (in our case 12) start computing collide for the same cells.

step 3: all threads compute stream and collide for the remaining cells of grid (the ones in the bulk).

This new schedule corresponds to another basic version of the code which we then further optimize for cache re-use
and memory allocation, in the same way as described before.

All in all, we have six versions of the code: a base version that we call Ver1.1, a version including cache-
related optimizations (Ver1.2), and a version also including optimized memory allocation (Ver1.3). The corresponding
versions in which stream and collide are merged, are called Ver2.1, Ver2.2 and Ver2.3 respectively.

5. Performance Analysis

In this section we analyze the performance results of our simulation codes. All codes have been tested on a
prototype AuroraScience machine with up to 16 nodes (192 cores). We present our analysis first for just one processing

1000 Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003

Lx × Ly Size of data-set (GB) Ver 1.1 (sec.) Ver 1.2 (sec) Ver 1.3 (sec)
252 × 8000 1.4 0.18 0.12 (+33%) 0.07 (+61%)
480 × 8000 2.8 0.35 0.25 (+28%) 0.13 (+62%)
480 × 16000 5.4 0.72 0.52 (+27%) 0.27 (+62%)
480 × 32000 11.0 1.00 0.71 (+29%) 0.54 (+46%)

Table 1: Execution time of stream for versions 1.x of the code on one node, for several sizes of the grid (and of the corresponding data set).
Numbers in brackets are the improvement with respect to version 1.1.

node, we then move to a typical large scale configuration and then collect all our results in a simple performance model
that exposes the scaling behavior of our implementation.

We first derive a simple estimate of the performance that we may expect on one processing node. All together, the
workload W associated to mathematical processing for each grid point amounts to ≈ 7800 floating-point operations,
consuming 37 data elements, and producing 37 updated population variables. To very first approximation, computing
time T

T ≥ max(W/F,D/B) (7)

where F ≈ 160 Gflops is the peak performance of each node, D is the amount of data that must be retrieved from or
written to memory, D = 37 × 2 × 8 Byte (neglecting any read-for-ownership overhead), and B is the overall memory
bandwidth (≈ 64 GB/sec peak, in our case). Inserting our values, we have that T ≥ max(48.75, 9.25) ns. In other
word, if peak values for performance and bandwidth apply, our application is strongly compute bound (as opposed
to memory bound), so one can hope for very high efficiency. This estimate is a crude upper bound, implying that i)
all vector data paths in all cores are used sustainedly, ii) data is not moved from memory to processor and vice-versa
more often than needed, iii) read-for-ownership (RFO) overheads are neglected and iv) the complex addressing pattern
associated to sparse memory gather operations does not degrade memory bandwidth too much (this is probably the
most questionable assumption); still we should be able to reach very high efficiency for this code.

To quantify the optimization steps of the stream code, as discussed in section 4, we first run the various versions
of the code on just one node with several typical grid sizes. In table 1 we show the results of this benchmarks for code
versions 1.x, comparing versions 1.2 and 1.3 w.r.t. the version 1.1. For each grid size we have an improvement of
about 30% with version 1.2, using a data allocation which exploits a better data cache re-use, and an improvement of
about 60% if we also use the NUMA library to specify data allocation onto the two memory banks (Ver 1.3).

If we look at the column corresponding to e.g. version 1.1 (or equivalently, version 1.2) we observe a peculiar
feature: as expected, the execution time of stream grows proportionally with the size of the data-base it operates upon
for the smaller grids, but we observe an unexpectedly low figure when the grid size becomes very large (480×32000).

Figure 5: Visualization of the stream phase. The populations of grid points at the edges of the arrows, are gathered to the grid point at the center,
at a distance 1, 2, 3 grid points. At left the original labelling of populations, at right the new labelling that, as explained in the text, improves cache
performance.

Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003 1001

dummy array size (GB) 0 3 5.5
Tstream (sec) 0.72 0.50 0.67

Table 2: Execution time for stream as a function of the size of the dummy array allocated by the code. 3 GB corresponds to ≈ 50% of the size of
each memory bank, 5.5 GB corresponds to ≈ 90%.

Ver. 1.1 Ver. 1.2 Ver. 1.3
Tpbc 0.34 s 0.25 s 0.12 s
Tstream 0.36 s 0.26 s 0.14 s
Tbc 0.9 ms 0.5 ms 0.2 ms
Tcollide 0.39 s 0.39 s 0.39 s
Ttime/site 12.5 ns 11.2 ns 8.7 ns
MLUps 78 89 115
Rmax 23.8 % 27.0 % 35.2 %

Ver. 2.1 Ver. 2.3 Ver. 2.3
STEP 1 0.06 s 0.06 s 0.06 s
STEP 2 1.36 ms 1.32 ms 0.64 ms
STEP 3 0.53 s 0.47 s 0.43 s

Ttime/site 9.3 ns 8.7 ns 7.5 ns
MLUps 103 113 130
Rmax 31.5 % 34.4 % 39.6 %

Table 3: Break-up of the execution time for various version of the code using 16 processing elements (192 cores). The grid size is Lx × Ly =

4032 × 16000. We also show performance (Rmax) as a fraction of peak, and two related performance metrics: T/site (the execution time for one
grid site) and its inverse (MLups, the number of grid sites updated per second).

We observe that the size of the data set in this case corresponds to almost all memory available on the node, so memory
allocation is almost equally distributed among the two banks. Our guess is that in the other cases (when the size of the
data set is much smaller than available memory) the operating system allocates data in an unbalanced way onto the
two banks; this causes an overhead as one of the two CPUs accesses memory physically attached to the other CPU.
To verify and quantify this assumption, we have modified the code, forcing the program to allocate a dummy array in
memory “before” the data words actually used by the program. What we do with this trick is that we force the system
to shift the allocation of data used by the program from one bank to the other; we control this shift by adjusting the
size of the dummy array. Table 2 shows the execution time for stream, for a grid of size 480 × 16000 (corresponding
to 5.4 GB of memory), as a function of the size of the dummy-array. Performance has a peak when the size of the
dummy array is 3GB, that is when the system is forced to allocate our data evenly on the two banks; performance is
lower (and almost equal) when the size of the dummy array is 0 GB or 5.5 GB, that is when we force allocation of
our data all on either of the two banks. This experiment explains the improvements of Ver. 1.3, where we apply a
very fine control of the allocation of the grid variables, so the performance of stream is constant (and high) for all grid
sizes. Analogous results apply also for versions 2.x of the code.

We now come to analyze performance for a typical state-of-the-art configuration, that uses 192 cores to simulate
a physical system on a grid of 4032 × 16000 points. In table 3 we report the time break-up of the various routine for
each version of the code that we have developed. On the left we show results for code versions 1.x and on the right
for code versions 2.x.

Looking at the numbers for code versions 1.x, we find the following results:

• optimizing for cache reuse improves the computation time of the stream by ≈ 30%, and using the NUMA
library has a further improvement of about 50%; this results does not apply to grid sizes using around 90% of
the memory of the node, for which the performance of the version 1.1 was forced to be balanced, and the impact
of using NUMA allocation is smaller.
• memory optimization steps have no impact on computation of the collide phase for which the time is strongly

dominated by computation, uses data allocated to contiguous memory address, and easily exploits cache reuse.
• considering that collide also needs to read and write data from memory, we can further break up the time of

collide in one part associated to memory access, of the order of 0.11 sec., assuming that full memory bandwidth
can be sustained, plus a proper computational time of the order of 0.28 sec. One can therefore obtain a rough
estimate of the floating-point efficiency in the inner core of the computation of 70% of the peak, that we only
quote as a crude estimate of the efficiency of the floating-point engine of the processor.

For versions 2.x, in which stream and collide are merged together, we note the following:

1002 Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003

Figure 6: Plots of our measured performance data for the quantities used in equation 9, for a wide range of grid sizes and processors. The lines are
fits to equation 9 for Ver1.3 (left) and Ver2.3 (right)

• as in the previous case the impact for performance of routines included in steps 1 and 2 is completely negligible
• as in the previous version memory related optimizations have an impact in step 3, which includes computation

of stream and collide, and is now the only relevant routine for performance
• at global level the result performance is extremely good. In fact if we compare the stream and collide with the

un-merged collide of the previous case we see that almost all the time associated to stream has been hidden in
collide
• obviously the relative gain is less important because the computational pipeline is used in the same way in all

cases, still we are able to increase relative performance by ≈ 20%

Globally, we reached a performance level in the range of ≈ 35 · · · 40% of peak for the various versions, for a
production-grade code.

We now try to put together all our performance results for several grid sizes and numbers of used processor in
a compact form, that also exhibits the overall scaling properties of our sequence of codes (this is studied in details
e.g. in [13]). In principle, the complexity of our algorithm is proportional to the number of grid sites and – at the
same time – the computation can be fully parallelized on any number of collaborating processors. This is true for all
steps of the program, except for the comm phase, that, in our case, has to move onto each processor a data amount
proportional to the Ly size of the grid. We write a very crude performance model – based on these assumptions – that
estimates the wall-clock running time Ttot for a grid of size Lx × Ly using Np nodes as follows:

Ttot = c1Ly + c2
LxLy

Np
(8)

where c1 and c2 can be fitted from measured performance data. We rewrite the previous equation as

Ttot/Ly = c1 + c2
Lx

Np
(9)

deriving a simple linear equation that should match all our performance data.
We present our results in figure 6, where we collect our data-points for the function defined by 9, and in table 4,

that shows values of the fitted parameters. Data refers to several different grid sizes, ranging from 2112 × 3600 to
7680 × 32000, and using from 4 to 16 processing nodes (48 to 192 cores). Inspection of the graphs shows that the
very simple model of equation 9 correctly reproduces measured performance results. We also notice that fluctuations
around the predicted value are somewhat larger for versions 1.1 and 2.1, that is in cases where no user-control on
memory allocation makes performance more sensible to the automatic allocation choices made by the operating
system. Looking at the table, we are able to quantify the ”asymptotic” improvements (characterized by the decreasing
values of c2) associated to the various optimization steps. We can also quantify violations to scaling, to be expected
when the two terms appearing in eq. 9 become of comparable size, that is for Lx/Np ≈ c1/c2 ≈ 100, a range not
relevant for state-of-the-art simulations on large grids.

Luca Biferale et al. / Procedia Computer Science 4 (2011) 994–1003 1003

Ver. 1.1 Ver. 1.2 Ver. 1.3 Ver. 2.1 Ver. 2.2 Ver. 2.3
c1(μ sec) 21 9.8 1.5 8.4 5.3 6.4
c2(μ sec) 0.159 0.143 0.131 0.124 0.118 0.112

Table 4: Results of the fit of our data to equation 9, for all code versions.

6. Conclusions

In this paper we have described the implementation of a multi-phase LB code in 2D and its optimization for state-
of-the-art massively parallel processing systems. Our work has been tested and benchmarked on one specific HPC
architectures, our results can be readily moved to most HPC system available today (or planned for the near future).
Our main results are the following:

• for this class of applications/codes, inter-node parallelization is straightforward, while a carefully optimization
is necessary to enable intra-node parallelism.
• relatively simple techniques are effective to obtain a good processing performance for the compute intensive

part of the code, that effectively uses all the cores and data-paths available in the processors.
• memory-related optimization steps are very critical to help remove the memory bandwidth bottlenecks that arise

when sparse memory accesses are necessary.
• in this direction, a cache-aware data allocation in memory is useful; even more useful is a strategy that maps

data close to the processor (in our multi-CPU environment) that uses those data items most. This not surprising
because the algorithm schedule forces the whole data-base to be read and written at each time step, so any cache
optimization can only have a limited temporal effect.
• in conclusion, we obtain a remarkably large fraction of peak performance for a complete production code.

We plan to use this code to continue our high statistics study of convective turbulence. On the computational side,
another obvious option to consider is whether GP-GPUs are an equal (or better) alternative for the problem at hand.
Work is in progress in this direction.

Acknowledgments: We would like to warmly thank all members of the AuroraScience team for their efforts in bringing
the AuroraScience machine on-line and making it available for our tests. The AuroraScience project is financially supported by
Provincia Autonoma di Trento and Istituto Nazionale di Fisica Nucleare (Italy), and operated in collaboration with ETHlab.

References

[1] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press (2001)
[2] L. Biferale et al., High resolution numerical study of Rayleigh-Taylor turbulence using a thermal lattice Boltzmann scheme, Physics of Fluids

22 (2010) 115112
[3] M. Sbragaglia et al., Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria, J. Fluid Mech. 628, (2009) 299
[4] A. Scagliarini et al., Lattice Boltzmann Methods for thermal flows: continuum limit and applications to compressible Rayleigh-Taylor systems,

Phys. Fluids 22 (2010) 055101
[5] L. Scorzato, AuroraScience, Proceedings of Science, PoS(Lattice 2010)
[6] H. Baier, et al., QPACE: Quantum Chromodynamics Parallel Computing on the Cell Boadband Engine, Computing in Science and Engineer-

ing, 10 (2008) 46:54
[7] H. Baier, et al., QPACE: power-efficient parallel architecture based on IBM PowerXCell 8i, Computer Science - Research and Development

25 (2010) 149:154
[8] P. A. Boyle et al., Overview of the QCDSP and QCDOC computers, IBM J. Res. Dev. 49 (2005) 351:365
[9] M. Pivanti, S. F. Schifano and H. Simma, The Torus Network Project, Proceedings of Science, PoS(Lattice 2010)038.

[10] T. Pohl, et al., Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes Parallel Processing Letters, 13
4(2003) 549:560.

[11] T. Zeiser Investigations of flow and species transport in packed beds by lattice Boltzmann simulations, In: W. E. Nagel, W. Jäger, M. Resch
(editors), High Performance Computing in Science and Engineering ’06, Springer (2006) 343-354.

[12] G. Wellein, T. Zeiser, G. Hager, S. Donath On the Single Processor Performance of Simple Lattice Boltzmann Kernels Computers & Fluids,
35 (2006) 910:919.

[13] L. Axner, et al., Performance evaluation of a parallel sparse lattice Boltzmann solver Journal of Computational Physics, 227 10(2008)
4895:4911.

