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Abstract. The breakup of droplets in a turbulent flow is key to many natural and industrial
applications. Here we present and validate a computationally efficient numerical method that
allows to study turbulent emulsion for very long times. The numerical method is based on a
multi-component Lattice Boltzmann method based on the Shan-Chen model and supplemented
with a large scale force to stir turbulence. A special treatment to limit mobility between different
fluid components is introduced and validated. We demonstrate the potential of our approach
in sustaining a turbulent emulsion over extremely long integration times (necessary to collect
firm turbulence statistics) and we present first results on the probability distribution function
of droplets’ accelerations.

1. Introduction

The breakup of fluid droplets in turbulent flows is relevant to many natural and industrial
application because turbulence is an ubiquitous state of fluid motion. Control of turbulent
emulsions is relevant to application in chemical engineering, pharmaceutical, food, and oil
industries.

In recent years there has been a large effort in understanding the properties of particles and
small droplets with different physical properties transported by turbulent flows field. These
studies involved both experimental and numerical investigations and mostly focused on the
effects of particles density and size (Toschi & Bodenschatz, 2009). Most of the studies were
conducted in the context of the so called one-way coupling, where the particles are transported
by the turbulence velocity field but do not react back on it or interact with each other. This
assumption is a good approximation for particles that are not too big (Calzavarini et al., 2009)
and allows for the collection of extraordinary high statistics.

In order to investigate the behavior of droplets in turbulent flows in regimes where
deformation and breakup are important, one needs a method capable of fully resolving
droplets evolution. In this study we use the Lattice Boltzmann Method (LBM) as an efficient
computational tool to collect stationary statistical information.

In the past the Lattice Boltzmann Method (LBM) has been successfully applied to the study
of droplets breakup in laminar shear flows (Xi & Duncan, 1998), as well to the study of turbulent
flows of single-phase single-component fluids (Benzi & Succi, 1990; Kareem et al., 2009; Yu et al.,
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2005). The LBM was able to successfully reproduce Taylor’s prediction for the small droplet
deformation regime and also to capture their breakup (Xi & Duncan, 1998). Some work has
also been done to apply the LBM to turbulent emulsions but studies here were limited only to
the earlier stages of the emulsion evolution (Benzi & Succi, 1990; Derksen & Akker, 2007; Qian
et al., 2006). The breakup of bubbles in homogeneous and isotropic turbulence reported the
formation of stretched liquid bridges connecting the satellite droplets just before the breakup
occurs (Qian et al., 2006).

In this paper we show that a multicomponent LBM can be effectively used to study the long
time statistically steady dispersion of droplets in a homogeneous and isotropic turbulent velocity
flow. For the sake of simplicity we focus only on the case of droplets with the same density and
viscosity of the turbulent fluid environment. While the numerical method does not have this
restriction, this allows considering only one additional physical feature, namely the presence of
droplet surface tensions. We are interested in investigating the regime of droplets larger than the
dissipative scale of turbulence that get largely deformed and eventually broken by the turbulent
pressure fluctuations.

The classical phenomenological picture for droplets breakup in homogeneous and isotropic
turbulence velocity fields follows the argument proposed by Hinze in 1955 (Hinze, 1955).
Whenever the energy associated to the surface tension is larger than the kinetic energy of fluid
fluctuations at the scale of the droplet, then the droplet is stable else the droplet breaks. This
argument can also be rephrased in terms of a scale dependent Weber number:

We(d) =
ρm〈δu2(d)〉d

σ
, (1)

where ρm is the density of the fluid medium around the droplet, σ is the surface tension, d is the
diameter of the droplet, δu(d) is the velocity difference across the diameter of the droplet, and
〈〉 indicates statistical averaging of the velocity fluctuations over the droplet diameter. Here we
consider the viscosity ratio λ = µd/µm, and the density ratio κ = ρd/ρm to be unity (superscript
d denotes droplet, m denotes the medium).

The manuscript is organized as follows. In section 2 we detail the multiphase LBM and the
turbulent forcing that we use. In section 3 we validate the method for droplets deformation in
laminar shear flows. In section 4 we improve our method to reduce the mobility between the two
components. In section 5 we discuss results from turbulent simulations and finally conclusions
are drawn.

2. The numerical method

The multicomponent algorithm that we use is based on a standard Shan-Chen Lattice Boltzmann
Method (Shan & Chen, 1993, 1994; Shan & Doolen, 1995). This is a standard method and here
we provide only the key details. In order to stir turbulence we supplement the method with a
large scale forcing in order to keep the system in a stationary turbulent state.

The lattice Boltzmann equations for the Shan-Chen multicomponent D3Q19 model are:

fα
i (x + ei, t + 1) = fα

i (x) − 1

τα
[fα

i (x, t) − f eq,α
i (ρ,u)] (2)

f eq,α
i = ραwi

[

1 +
ei · u

c2
s

+
uu : (eiei − c2

sI)

2c4
s

]

(3)

ρα =
∑

i

fα
i ; u

α(x, t) =
∑

i

cif
α
i (x, t). (4)

Here fα
i (x, t) is the lattice Boltzmann distribution function at position x and time t describing

the component α = {1, 2}.The fluid densities and the velocities of the individual components are
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ρα and u
α. wi, ei are the lattice Boltzmann weights and the corresponding lattice speeds with

i = {0, . . . , 18} (Succi, 2001; Wolf-Galdrow, 2000). The total fluid density is ρ =
∑

α ρα, and the
total hydrodynamic velocity is u =

∑

α uαρα/ρ. The effective kinematic viscosity is related to
the relaxation time of the different components ν =

∑

α c2
s(τ

αcα − 0.5) (Shan & Doolen, 1995),

cα = ρα/ρ is the concentration, and cs = 1/
√

3 is the speed of sound on the lattice.
The non-ideal nature of the fluid is introduced by adding an extra force to the lattice

Boltzmann equilibrium velocity field as (Shan & Chen, 1994):

u
α,eq = u

′ +
τα

F
α

ρα
where u

′ =

∑

α

ρα
u

α/τα

∑

α

ρα/τα
. (5)

In the present paper we only study the case of a binary mixture. For the non-ideal interaction
we use a Shan-Chen force that has the form (Shan & Chen, 1994):

Fα = −Gρα(x)
∑

i,α6=α′

ρα′

(x + ei) (6)

where {α,α′} = {1, 2} indicate the components and the coupling parameter G determines the
strength of the interaction and controls the surface tension and the diffusivity (Benzi et al.,
2009). Under appropriate conditions this force allows the formation of interface between the
different fluid components.

In order to stir turbulence we apply a real space forcing at each position and at each time
step modulated by means of a sum of sine waves with small wavenumbers. In order to produce
a homogeneous and isotropic turbulence, the phases of the sine waves are evolved in time by
means of a stochastic process. The forcing has the following expression:

Fα
x (x, y, z, t) = Aρα

∑

kx,ky;k≤
√

2

[

sin(kyy + φ2
k(t)) + sin(kzz + φ3

k(t))
]

(7)

Fα
y (x, y, z, t) = Aρα

∑

kx,kz;k≤
√

2

[

sin(kxx + φ1
k(t)) + sin(kzz + φ3

k(t))
]

(8)

Fα
z (x, y, z, t) = Aρα

∑

kx,ky;k≤
√

2

[

sin(kxx + φ1
k(t)) + sin(kyy + φ2

k(t))
]

(9)

where A is an overall forcing amplitude, kx, ky , and kz are the wave-vector components and are
limited to k2 = k2

x + k2
y + k2

z ≤ 2. The phases φi
k are evolved in time according to independent

Ornstein-Uhlenbeck processes with the same relaxation time T = um/N , where N is the size
of the domain along any of the directions and um ≡ 0.1 is taken as a representative large scale
velocity.

Henceforth, we will denote the physical quantities in droplet phase by superscript d and
those of the medium by superscript m. In the following discussions we have chosen τd = τm = τ
which implies νd = νm = ν, i.e. the viscosities of the two phases are the same. Also the total
density ρd +ρm is the same over the entire domain except for the small variations at the droplet
interface.

3. Validation

We start by validating the code for the case of a single droplet in a laminar shear flow. Here
we compare our measurements against analytical results from Taylor (Taylor, 1932, 1934) and
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Figure 1. The 2d slice cutting a 3d droplet through its mid-plane. The black curve indicates
the position of the droplet interface separating the two components. (left) Droplet in absence
of any flow, notice the spurious currents present at the droplet interface. The magnitude of the
maximum velocity in the plane is 1.5 × 10−3. (right) Deformed droplet in presence of shear for
our run R2 (see Table 1). The velocity has its maximum magnitude at the walls and is equal
to 0.006. In both the panel arrows have been magnified by a factor of 8 × 103 to make them
visible. The parameters of the simulation are the same as described in Table 1.

we discuss the effects due to the finite interface width as well as related to the mobility between
the two components.

We start by considering the case of a droplet in a fluid at rest. The Shan-Chen method (Benzi
et al., 2009; Shan & Chen, 1993, 1994; Shan & Doolen, 1995) that we use is a diffused interface
numerical method and as such it produces some finite mobility between the two fluid components.
Similar to other diffused interface models, the static droplet is surrounded by a complex pattern
of unphysical “spurious” velocity between the two components (Sbragaglia et al., 2007). The
actual magnitude of the spurious velocity depends on several details, including e.g. the degree of
isotropy of the discretization of the gradient in the expression of the Shan-Chen force (Sbragaglia
et al., 2007). In Figure 1 we report a two dimensional cut of the velocity field passing through
the center of a three dimensional static droplet. Spurious currents are visible in the left panel
(Fig. 1) but becomes negligible in a sheared droplet (see right panel of Fig. 1).

In this section we present the benchmark results for the droplet deformation in a shear flow.
Our simulation domain consists of a three dimensional box of size Nx, Ny and Nz, with a droplet
placed at the center of the box and the other parameters of our simulations as given in Table 1.
The shear flow is u = (2Uy/Ny , 0, 0) where U is magnitude of the velocity of the top wall, with a
corresponding strain rate γ̇ = 2U/Ny. Depending on the magnitude of the shear and the surface
tension of the droplet, the droplet will either deform or break. The relevant non-dimensional
parameter here is the capillary number Ca ≡ µγ̇R/σ, where γ̇ is the strain rate, the radius of
the undeformed droplet R, and the surface tension σ. For small values of Ca, we observe that
the droplet deformation D agrees with the prediction made by Taylor D = 35/32 · Ca (Taylor,
1932, 1934) for small deformations. Deviations are observed for large Ca (Xi & Duncan, 1998),
see Figure 2.

The droplet deformation is measured by constructing the symmetric matrix (Xi & Duncan,
1998)

Aij =

∫

H(ρd − ρT )xixjdxdydz
∫

H(ρd − ρT )dxdydz
, and, H(ρd − ρT ) =

{

0 if ρd < ρT

1 if ρd > ρT

.

where, ρT = (ρd,max + ρd,min)/2 is a threshold density. The origin of the coordinate system is
at the center of the droplet and xi, i = 1, 2, 3 are the three cartesian coordinate directions. By
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Figure 2. Plot of the capillary number, Ca, versus the droplet deformation, D (see text
for details). For small values of Capillary number the droplet deformation follows the Taylor
prediction D = 35/32 · Ca (red line). Data in the plots refer to runs R1− R10 (simulation
parameters are reported in Table 1). An errorbar of around 10% is reported on our data and is
attributed to the finite size of the interface.

diagonalizing the matrix Aij , we calculate the eigenvalues (λi, i = 1, 2, 3, arranged in decreasing
order of magnitude) of the matrix . The eigenvalues λi are proportional to the three axis of the
ellipsoid. We denote the major axis by L and the minor axis by B. The droplet deformation
parameter D is then defined as:

D ≡ L − B

L + B
. (10)

We define as mass of the droplet M ≡
∫

ρ>ρT
ρddx . The plot in Figure 3 shows the droplet

mass for different values of shear S. In these experiments, we allow the droplet to relax for a time
TS, after which we switch on the shear. For smaller values of the shear (e.g. S = 1.6× 10−4, see
run R1 in Table 1) the droplet mass remains at its thermalized value while on increasing the shear
the mass inside the droplets decreases until a new steady state is reached. The most dramatic
change occurs for the largest value of the shear attained in our simulations, S = 3.3 × 10−3,
where the droplet loses nearly 18% of its original mass after the initialization of shear. We notice
that the mass leakage, at least for our closed system, is reversible. This can be seen from the
right panel of Figure 3: the mass in the droplet decreases after a shear flow is turned on, and
gets back to the no-shear value once the shear is switched off.

4. Control of mass leakage and validation

From Figure 3 it is clear that the mass leakage happens during the transient period when the
droplet relaxes towards the new equilibrium after the application of a shear. This mass-leakage
is proportional to the mobility which roughly varies as c2

s(τ −0.5) in the Shan-Chen model. One
simple and effective way to fix the droplet mass leakage is to reinflate them, while at the same
time removing the same amount of fluid from the ambient. As we expect the mass leakage to
be proportional to the droplets surface, we apply the re-inflation procedure only at the droplets
interface. Here we provide details of the algorithm. In Lattice-Boltzmann the mass can be easily
added to the system by locally modifying the populations as fα

i = fα
i + wiρ

α
s , where ρs is the

density that needs to be added to the component α. The mass cure algorithm is applied after
the streaming and collision steps of the LBM using the procedure given below.

(i) We first focus on the distribution function fd. The regions where the density ρd is higher
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Nx Ny Nz U R0 σ Ca D

R1 128 60 60 0.005 15 0.01 0.014 0.0191
R2 128 60 60 0.006 15 0.01 0.017 0.0219
R3 128 60 60 0.007 15 0.01 0.019 0.0238
R4 128 60 60 0.008 15 0.01 0.022 0.0267
R5 128 60 60 0.009 15 0.01 0.025 0.0293
R6 128 60 60 0.01 15 0.01 0.028 0.0324
R7 128 60 60 0.02 15 0.01 0.055 0.0697
R8 128 60 60 0.04 15 0.01 0.083 0.1430
R9 128 60 60 0.06 15 0.01 0.11 0.2372
R10 128 60 60 0.08 15 0.01 0.138 0.3623

Table 1. Parameters for the different runs with a single droplet in a shear flow. Nx, Ny, and
Nz denote the size of the domain along the x, y, and z directions (in lattice sites), U is the
absolute value of the velocity at the wall, R0 is the initial droplet radius, ν = c2

s(τ − 0.5) = 1/6
is the viscosity, τ the Lattice Boltzmann relaxation time which we kept the same for the two
components, σ = 2∆pR0 is the surface tension, ∆p = pin − pout is the pressure jump across the
droplet interface, Ca = 2URνρ/(Nzσ) is the capillary number, D is the droplet deformation
parameter. In all the runs we kept τ = 1 and G = −4.5 fixed.

than the threshold ρT = (ρd,max + ρd,min)/2 are considered as droplet interior (indicated as
“in”), the rest is considered as droplet exterior (indicated as “out”).
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Figure 3. Left panel: droplet mass M versus time for different values of shear S = 1.6 × 10−4

(for run R1), S = 3.0 × 10−4 (for run R5), S = 1.3 × 10−3 (for run R8), and S = 3.3 × 10−3 (for
run R10). Parameters of the different runs are reported in Table 1. The vertical arrow indicates
the time TS after which the shear was applied. Note that for the largest shear the droplet looses
nearly 18% of its mass. Right panel: droplet mass after a shear-noshear cycle. The droplet is
allowed to relax for around 15000 time steps, after which the mass is about 12000. The shear
is applied around time step 20000 and a dramatic mass leakage is observed until a new steady
state is attained. Switching off the shear around time step 500000 one observe that the droplet
reverts back to its old equilibrium. It should be noted that the time it takes for the droplet to
get back to the older equilibrium is much longer than the time for mass leakage.
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(ii) The cure for the droplet is defined at the droplets interface only, as:

fd
i = fd

i + A1|∇ρd|wi(ρ
d − ρT ), (inside the droplet)

fd
i = fd

i + A2|∇ρd|wi(ρ
d − ρT ) (outside the droplet)

and where the gradient term |∇ρd| =
√

(∂xρd)2 + (∂yρd)2 + (∂zρd)2 weights more the points
within the interface.

(iii) The unknowns A1 and A2 are determined by enforcing that after the cure, the mass of the
droplet should be md,in =

∫

ρd>ρT
ρddx (md,out =

∫

ρd<ρT
ρddx) inside (outside) the droplet.

This choice guarantees that the total mass of the component md = md,in + md,out remains
the same before and after the cure. The coefficients A1 and A2 are therefore:

A1 =
md,in(0) − md,in(t)

|∇ρd|[md,in(t) − min
T (t)]

, A2 =
md,out(0) − md,out(t)

|∇ρd|[md,out(t) − mout
T (t)]

.

where, min
T = ρT

∫

ρd>ρT
dx and mout

T = ρT

∫

ρd<ρT
dx.

(iv) Finally we cure the distribution function fm in the symmetric way:

fm
i = fm

i − A1|∇ρd|wi(ρ
d − ρT ), (inside the droplet)

fm
i = fm

i − A2|∇ρd|wi(ρ
d − ρT ) (outside the droplet)

with the same A1 and A2 as for fd. In this way the total mass ρd + ρm is conserved. The
above procedure adds the lost mass to each droplet weighted by the droplet surface area
and and it does not effect the physical processes like Ostwald ripening where there is a mass
transfer between two droplets because it is the sum of the mass inside all the droplets which
is always conserved (no global leakage).

5. Results for droplets in turbulent flows

Here we discuss the case of droplets in turbulent simulations, whose parameters are given in
Table 2. The plot in Figure 4(left panel) shows the time evolution of the total kinetic energy
E = 1/2

∫

u
2dx and of the enstrophy Ω =

∫

(∇u)2dx from run N128B. As it can be seen a clear
time lag between the peaks of the energy and those of the dissipation demonstrates the presence
of an energy cascade and hence of a turbulent flux in the simulation. Figure 4 (right panel)
shows the time evolution of the total mass inside droplets from run N128A with and without the
curing procedure. We observe that because of the multiple breakups and strong deformations in
presence of turbulence the droplet, if not cured, can leak mass rather strongly into the ambient
phase.

The calculation of the acceleration of the droplet requires the tracking of the center of mass
of the droplet along its trajectory, to avoid complications because of multiple breakup and
coagulation events we concentrate on the run N128A. For this run we produced long, single
droplet, trajectories. Here droplet trajectories are extracted at the post-processing stage. To
have reasonable droplet tracks we record every 0.05teddy the density and the velocity fields.
From the density field, using a threshold ρT , we find the regions on the domain occupied by the
droplet. We then reconstruct the droplet surface using the GTS surface reconstruction software
(http://gts.sourceforge.net/) that reconstructs surface and also provides the information
about the volume, surface area, and the center of mass of the droplet. A snapshot of the droplet
trajectory is shown in Figure 5(a). From the droplet trajectory we can obtain the acceleration
by calculating the second derivative of the position along the droplet trajectory. This procedure
turns out to be rather noisy due to the errors in the center of mass position of the droplet during
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Figure 4. (Left) The time behaviour of the energy and enstrophy integrated over the full
simulation domain. The simulation was started with the fluid at rest. After one eddy turnover
time teddy the flow is turbulent as it can be seen from the delay between peaks in the total

energy E and enstrophy Ω, demonstrating the presence of an energy cascade. Data refers to
run N128B. (Right) Plot of the total mass inside the droplet component M for our turbulence
run N128A versus time for cured versus uncured. We start the cure around teddy = 1. The cure
is applied every 0.016 times the large scale eddy turnover time. The inset (left to right) shows
the initial and later time snapshot of the droplet configuration. At the initial time the droplet
is spherical but at later time, under the effect of turbulence, the droplet deforms and extends.

N τ G Reλ ν σ φ(in%)

N128A 128 0.515 0.3 15 5 × 10−3 0.0016 0.07
N128B 128 0.515 0.3 15 5 × 10−3 0.0016 0.67

Table 2. Parameter for our simulations for a droplet in a homogeneous, isotropic, turbulent flow.
N is the size of the tri-periodic domain, Reλ ≡ urmsλ/νm is the Taylor’s microscale Reynolds
number, λ =

√

E/Ω is the Taylor’s microscale, E =
∫

u
2dx is the energy, Ω =

∫

|∇u|2 is the
enstrophy, φ is the percentage volume fraction of the droplet phase, σ is the surface tension.

the surface reconstruction. To get a better signal we calculate the variance of acceleration after
application of a low pass filter. The plot of the variance of acceleration as a function of filter
cutoff frequency is shown in Figure 5(b). The frequency where the variance changes the slope is
the critical frequency fc, above which the signal is strongly affected by the noise. We take the
acceleration signal filtered with fc to do the analysis of acceleration pdf (Voth et al., 2002, 1998).
We show in Figure 5(a) the filtered and unfiltered acceleration along the droplet trajectory. In
Figure 5(right) we plot the droplet acceleration for all droplet trajectories. The comparison of
the acceleration with the acceleration evaluated in a single component flow (no droplet) shows
that: (a) the level of intermittency of droplet acceleration is lower; and (b) the acceleration
of the fluid evaluated over a volume equal to the size of the droplet is similar to the droplet
acceleration Figure 5(right).

6. Conclusions

We presented and validated a numerically efficient method for the study of droplets deformation
and breakup in turbulent flows. The method is suitable to the study of turbulent emulsion from
very small to large volume loading. We demonstrated that by means of a simple numerical aid
one can effectively and inexpensively control the diffusivity between the two fluid components
allowing for extremely long turbulent simulations. We detailed the algorithm for droplet
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Figure 5. Left panel: Plot showing the root-mean-squared acceleration values as obtained
from trajectories low-pass filtered with different cutoff frequencies fc. At increasing the cutoff
frequency more and more high-frequency noise remains in the tracks producing a sharp increase
of the arms. This analysis allow for the choice of the optima filter frequency. (Inset) The
time evolution of the droplet acceleration obtained from an unfiltered and from a low-pass
filtered droplet trajectory. Right panel: Probability distribution function, pdf, of the droplet
acceleration (red triangle), as compared to the pdf of the acceleration for a single component
fluid (green line with squares) and the pdf of the acceleration for the single component fluid
averaged over a volume of the same size of the droplet (blue line with dots). A reference Gaussian
distribution with the same variance is also plotted as reference (black line).

tracking and for the reconstruction of droplets trajectory and acceleration. We measured the
probability distribution function and found that this is less intermittent than the one of the
advecting velocity field but not distinguishable (within our statistical accuracy) from the one
of a rigid droplet of the same finite size. We consider this method promising for the study of
droplets emulsions in more complicated regimes, for example in the case of different density
or viscosity contrast between the two components. Experimental investigation of deformable
droplets tracking would be extremely helpful in exploring how the deformability affects the
dynamics of droplets as compared to the one of rigid particles.
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