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Abstract 

We study a shell model for the energy cascade in three-dimensional turbulence by varying the coefficients of the non-linear 
terms in such a way that the fundamental symmetries of Navier-Stokes are conserved. When the control parameter • related 
to the strength of backward energy transfer is small enough, the dynamical system has a stable fixed point corresponding to 
the Kolmogorov scaling. By using the bi-orthogonal decomposition, the transition to chaos is shown to follow the Ruelle- 
Takens scenario. For • > 0.3953... there exists a strange attractor which remains close to the Kolmogorov fixed point. 
The intermittency of the chaotic evolution and of the scaling can be described by an intermittent one-dimensional map. We 
introduce a modified shell model which has a good scaling behaviour also in the infrared region. We study the multifractal 
properties of this model for large number of shells and for values of e slightly above the chaotic transition. In this case 
by making a local analysis of the scaling properties in the inertial range we found that the multifractal corrections seem to 
become weaker and weaker approaching the viscous range. 

1. Introduct ion 

Shell models  for the energy cascade in fully devel- 

oped turbulence were introduced to mimic the Navier -  

Stokes equations 

V P  
3tu  + ( u .  XT)u - - - + v A u  + f , .  (1.1) 

P 

The reason is that, in a turbulent regime, the number 

of  degrees of  freedom necessary to describe the flow 

generated by Eqs. ( I. 1 ) is enormous since it roughly 

increases as a power of  the Reynolds number, R e  9/4. 

However, these degrees of  freedom probably are or- 

ganized in a hierarchical way, so that one expects that 

simplified dynamical  systems could be relevant for the 

description of  the scaling invariance. The basic idea of  

shell models is to consider a discre te  set of  wavevec- 

tors ,  ' shel ls ' ,  in k-space, and to construct an ordinary 

differential equation on each shell. The form of  the 

coupling terms among the various shells are chosen ac- 

cording to the main symmetries of  the Navier -Stokes  

equations. 

Standard shell models have a relatively small num- 

ber of  degrees of  freedom, so that they can be analyzed 

as a dynamical system [ 1-5] .  

The set of  ODE are derived under the assumption 

that the most relevant mechanism for the behaviour 

of  the velocity field, u, is given by a cascade transfer 
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from large to small scales. 

Among the huge literature existent nowadays 

on shell models one finds interesting results about 

the properties of  static solutions for the Novikov-  

Desnynasky model [ 3,5 ], or numerical and analytical 

studies of  the GOY (Gladzer, Ohkitani and Yamada) 

model in the strongly chaotic regime [ 1,2,6,8 ]. Amaz- 

ingly enough, there are no detailed studies of  the 

transition to chaos present in each of  these models. 

The aim of  this paper is to fill this gap by study- 

ing this issue in the case of  the GOY model. The 

understanding of  the "route to chaos" is of  primary 

importance to enlighten the intermittent character of  

the dynamics. In fact, we shall see that in the chaotic 

regime immediately above the transition, we can 

study the GOY model through a one-dimensional map 

that captures the main dynamical mechanisms which 

are at the origin of  intermittency. These mechanisms 

are much more difficult to be analyzed in the fully 

chaotic regime which is usually considered. However, 

it is an open problem to understand how much the 

dynamical intermittency of  shell models is a realistic 

approximation of  real turbulence. 

The paper is organized as follows: 

In Section 2 we define the GOY model. In Section 3 

there is a detailed discussion on the relative impor- 

tance of  the forward to backward transfer of  energy. 

In Section 4 we present our numerical results on the 

transition to chaos, analyzed by using a bi-orthogonal 

decomposition [7] ; in Section 5 we introduce an ad- 

hoc modified GOY model which allows us to perform 

a detailed analysis of  the intermittent properties nearby 

the transition. 

All the numerical integrations presented hereafter 
are performed by using a (second-order) slaved 

Adam-Beshforth scheme [6].  Results for the model 

with 19 shells have been obtained by choosing a time 
step of  6t = 3 10 - 4  , ~' = 10 - 6 ,  f = 5 10 - 3  × ( 1 + i) 

and k0 = 0.05, while for the model with 27 shells: 
8t = 10 -5 , u = 10 -9, f = 5 10 -3 × (1 q- i )  and 

k0 = 0.0625. 
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2. The GOY model 

In shell models the Fourier space is divided in N 

shells, each shell k, (n = 1,2 .... N) consisting of  the 

wavenumbers with modulus k such that ko2 n < k < 

k02 n+~. The velocity increments lu(g) - u ( x  + g) l on 

scale g ,-~ k~ -1 are given by the complex variables un. 

The evolution equations are obtained according the 

following criteria: 

(a) the linear term for un is given by -pk2un; 
(b) the non-linear terms for un are combination of  

the form knun'Un"; 
(c) the interactions among shells are local in k-space 

(i.e. n ~ and n" are close to n); 

(d) in absence of  forcing and damping one has con- 

servation of  volume in phase space and the con- 

servation of  energy 1 ~ n  lunl z- 

In the GOY model the shells n t and n u are nearest 

and next nearest neighbors of  n so that the evolution 

equations are: 

i k n ( a n  * * + ½bn * * = Un+lUn+ 2 Un--lUn+l 

q'- Icn U* U* n-1 n-2J + f~n,4, (1.2) 

with n = 1 . . . . .  N and boundary conditions 

bl = b N = C l  = c 2 = a N - I  =aN =0.  (1.3) 

The velocity un is a complex variable, ~, is the viscos- 

ity, and f is an external forcing (here on the fourth 

mode).  The coefficients of  the non-linear terms must 

obey the relation 

an + bn+l + cn+2 = 0 (1.4) 

to satisfy the conservation of  ~-]~n I un ]2 (energy) in the 
absence of  forcing and with ~, = 0. Moreover, they 

are defined modulus a multiplicative factor (related 

to a time rescaling), so that one can fix an = 1. As a 
consequence, the respect of  the main symmetries of  the 

Navier-Stokes equations still leaves a free parameter 
e so that 

a n =  1, b n = - e ,  c n = - ( l - e ) .  (1.5) 
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As we will see in the following, the parameter • plays 

an important role in defining both static and dynamical 

properties of the-model. 
It is important to stress that the scaling law of Kol- 

mogorov (u, ~ k,- 1/3 ) is a fixed point of the inviscid 

unforced evolution equations with N --~ cxz and ne- 
glecting the infrared boundary conditions. In the next 

sections we show that the Kolmogorov scaling remains 

a fixed point of the shell model even in the more phys- 

ical case with a finite number N of shells, and with 

forcing and viscosity different from zero. 

3. Static and dynamical properties 

The GOY model has been defined such as to have 

"Kolmogorov 1941" (K41) static-solutions in the in- 

viscid (l, = 0) unforced limit and for the number of 
shells N --~ oo: u ,  ~ k~  1/3. Actually, by studying the 

static properties of the model, it is easy to recognize 

that there are two infinite sets of static solutions. So- 

lutions belonging to the same set are characterized by 
possessing the same scaling exponent. 

For the GOY model we have the following two pos- 

sible static behaviours: 
(11 Kolmogorovlike: .xal = k n l / 3 g l ( n ) ;  with bit7 

gl(n)  being any periodic function of period 

three. 

(2) Fluxless-like: u ft = k~ in2 I,~,l)/3g2(n) ; where 

still g2(n) is any periodic function of period 

three. 
As long as one is interested in scaling laws, the pres- 

ence of superimposed periodic oscillations could seem 

particularly disappointing. Nevertheless, the existence 

in the phase space of an infinite manifold K41-1ike, 
instead of a single point, will turn out to be relevant 

for the dynamical properties of the model. 

In order to focus only on the power law scaling it 

is useful to study the static behaviour of the ratios 

q,, = u,,+ 3 / u , .  (2.1) 

Let us notice that the same set of observables have 
already been used to describe some exotic (chaotic) 
behaviours of the energy cascade in a different class 
of shell models [ 10]. 

In terms of the qn'S, a static and inviscid solution 

of Eqs. ( 1.2) can be generated by the iterations of the 

following one-dimensional complex ratio-map: 

• (1 - • )  
= - -  (2.2) qn z +  

Z 4qn-1 

The map (2.2) has two fixed points qK41, qf!  cor- 

responding to the two possible scaling behaviours for 

the u, 's: 
. K 4 1 .  ( l )  qK41 = 1 / 2  ~ u ,  ~ u ,  , 

( e - l )  ,-~ t t f l .  (2) q f l  = 2 --+ ttn 

The first fixed point is ultraviolet (UV) stable for 

0 < • < 2 and infrared (IR) stable for any other value 

of •. For the second fixed point the stability properties 

are, of course, opposite. For UV (IR) stable we mean 

that the fixed point is asymptotically approached by 

starting from any initial condition and by iterating the 

ratio-map (2.2) forward (backward). From a physical 

point of view, a forward (backward) iteration of the 

map (2.2) means a static cascade of fluctuations from 
small (large) scales to large (small) scales. In the 

GOY model, the UV stability is the relevant one, since 

one has a direct cascade of energy. As far as the main 
dynamical mechanism driving the time evolution of 

Eqs. (1.2) is a forward cascade of energy (like in 3d 

turbulence), that is for 0 < • < 1 we expect that the 

system spends a relevant fraction of total time nearby 

the K41-1ike static solutions. The aim of this paper 

consists in quantifying this statement. 

Let us stress, also, the importance of the parameter 
• from a dynamical point of view. To do this, we 
introduce the total flux of energy, H,,, through the nth 

shell [6], 

- ,  : I m  )1 T b / n _  I 

(2.3) 

Where in (2.3) we have written only the terms coming 
from the nonlinear transfer of energy. From (2.3) it is 
reasonable to expect that by increasing the value of E 
from 0 to 1 leads to a depletion of the forward transfer 
of energy (the coefficient in front to the smaller-scales 
coupling term goes to zero). Indeed, numerical inte- 
gration of GOY models with 0 < • < 1 have shown 
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that the main dynamical effect is a forward transfer of 

energy. 

On the other hand, by setting, for example, • = 5/4, 

the fluxless like point un "~ k~ -1 dominates the dy- 

namics (although it is UV unstable in the static equa- 

tions). Numerically, one observes a reversed (back- 
ward) transfer of energy. In fact, the dynamics of 

GOY models with • = 5/4  is commonly believed to 

describe the direct enstrophy cascade of 2d turbulent 
flows [1,11], since one finds the Kraichnan scaling 

E ( k )  ~ k -3 for the energy spectrum. However, it is 

recently pointed out [ 12] that the observed forward 
flux of enstrophy f~ 2 2 = ~ n  knlu"l and backward flux 
of energy must be described in terms of a formal statis- 

tical mechanics closely similar to the approach of Hopf 
and Lee for inviscid two-dimensional hydrodynamics. 

Actually, those fluxes are the analogous of drifts pro- 

portional to the gradients of the conjugate quantities 

in a thermodynamic system at local equilibrium with- 

out no need of invoking cascade mechanisms. The 

same statistical mechanics approach should hold for 
2 > • > 1, where besides energy, there also exists an- 

other conserved quantity: ~,,  = ~ k~'lnnl 2 with a = 
- ln2(e - 1) ). The presence of this second integral 

of motion is probably connected to the increasing im- 

portance of its static "flux-less" counterpart in the dy- 
namics of the model. In conclusion, there are strong 

evidences against the presence of a direct cascade of 
generalized enstrophies. However, we do not want to 

enter into this issue, and we will limit ourselves to 

study shell models where there is only one conserved 
quantity (the energy) and a corresponding direct cas- 
cade process toward large wavenumbers. 

Expression (2.3) for the flux of energy also clar- 
ifies why the static solution u ft is called "fluxless". 

Whenever two shells Un+2 and un-i get trapped by 
this static fixed point the flux throughout the shell n is 
completely inhibited, i.e. //n = 0 (a part viscous and 
forcing terms). As we will see in the following, the 
presence of dynamical barriers for the forward cas- 
cade of energy is considered the main cause of the 
intermittent nature of the dynamical evolution. 
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4. The transition to chaos in the shell model 

In this section we present a study of the dynamical 

properties of the GOY model in the "forward-energy 

cascade" range of parameters (0 < e < 1). 

Until now, the model has been studied numerically 
and analytically only for e = 1/2 [1,2,6,8]. In this 

case, the most striking result is that the scaling expo- 

nents (p, of the structure functions ((Inn[ p) ~ kn -#" ), 

are a non-linear function of p, indicating the presence 

of intermittency in the GOY model which can be de- 

scribed by the multifractal approach [ 12]. Moreover, 

the values of srp (for e = 0.5) are very similar to that 

measured in numerical simulations and experiments 

on real fluids. 
It is an open problem to relate the multifractality 

in the 3d real space of the energy dissipation to the 

multifractality of the natural probability measure on 

the attracting set for the dynamics in the 2N phase 

space. 
However, there is no reason to choose the value • = 

1/2 for the coefficients ofEqs. (1.2). A large spectrum 

of different behaviors can arise in the shell model at 

varying •, the control parameter for the backward flow 

of the energy in the cascade. 

It is remarkable that for 0 < • _< 0.3843.., there 
exists a finite-Reynolds number fixed point (with vis- 

cosity and forcing different from zero) which is stable 
and has Kolmogorov-like scaling in the inertial range. 

For example, in Figs. la and lb we have plotted the 
values of the ratios qn at the fixed point obtained from 

a numerical integration with • = 0.05 and • = 0.37. 
Notice, that the numerical solution coincides exactly 

with the result predicted by the "forward" iteration 
of the ratio-map (2.2) in the inertial range (from the 
forced shell to the beginning of the viscous range). 

It is interesting to remark, also, that the scaling at 
the fixed point is not exactly Kolmogorov-like (qn = 
1/2 V n) because of the damped-oscillation introduced 
by the fact that the ratio-map (2.2) does not start ex- 
actly at its fixed point. The oscillations are decreasing 
by increasing • and for small • they mask completely 
the presence of the Kolmogorov scaling unless one 
considers a much larger number of shells. 

This is, obviously, an effect due to the presence of 
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Fig. 1. (a) Values of the ratios qn at the fixed point of Eqs. (1.2) with • = 0.05 and with superimposed the values predicted by the 
ratio-map (2.2). Circles are the outputs from the numerical integration, where squares correspond to the ratio-map values. The straight line 
correspond to the exact K41 scaling (qn = l/2Vn).  (b) The same as in (a) but with • = 0.37. (c) Kolmogorov fixed point ln2 lugalnl 
versus n for • = 0.3 (dashed line) and • = 0.5 (solid line). (d) Topos q$1 versus n for • = 0.3 (dashed line) and • = 0.5 (solid line), 
given by the bi-orthogonal decomposition of a signal obtained from a numerical integration of 307.2 n.u. after a transient of 3900 n.u. 
starting from an initial condition close to the Kolmogorov fixed point. These initial conditions are also used to obtain Figs. 4-7. 

the infrared boundary  condi t ions  (1.3)  at small  n's.  

In the last section we will  c o m e  back on this issue, by 

showing  how to define new infrared boundary condi-  

t ions which  m i n i m i z e  this effect.  

By using the numerical  a lgor i thm descr ibed in ap- 

pendix 1 it is poss ible  to fo l low the fixed point  (wi th  

viscosi ty  and forc ing different  f rom zero)  and to com-  

pute its stabili ty matr ix  even for values o f  • where  it 

is unstable. 

To take into account  the invariance under rotat ions 

o f  the fixed point ,  in the fo l lowing  we analyze the 

modulus  lunl rather than the complex  variable un. 

I" ,  I is In Fig. lc ,  the K o l m o g o r o v  fixed point  " x41 

shown for • = 0.3 (s table)  and • = 0.5 (uns tab le ) .  

By  looking  at the e igenvalues  o f  the stabili ty matr ix 

o f  the fixed point,  we have detected a H o p f  bifurcat ion 

at • = 0.3843, since a couple  o f  complex  conjuga te  

e igenvalues  have real part which  passes f rom negat ive 

to posi t ive value. The fixed point  thus becomes  unsta- 

ble and a stable l imit  cycle  appears with a per iod o f  

Tl ~ 90 natural t ime units (n .u . ) .  

This  l imit  cycle loose  stability at • = 0 .3953 and 

for 0.3953 < • < 0.398,  the attracting set is a torus. 

The  two per iods o f  rotat ions are Tl ~ 90 n.u. and 

7"2 ~ 8 n.u.. The  mot ion  on the torus can be analyzed 

by the b i -or thogonai  decompos i t ion  o f  the signal and 
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Fig. 2. (a) Imaginary versus real part of the eigenvalues of the stability matrix of the Kolmogorov fixed point. Circles correspond to 
e = 0.386 (limit cycle) and stars to E = 0.396 (toms). (b) Schematic view of the transition to chaos at varying E. 

one observes that the two rotation periods are incom- 

mensurate with a ratio TI/T2 = 12.05 .... 

To illustrate the bifurcation mechanism, Fig. 2 

shows the eigenvalues of  the stability matrix at e = 

0.396 (immediately after the first transition) where 

there is one couple of  complex conjugate eigenvalues 

with positive real part and at • = 0.396 (after the sec- 

ond transition), where there are two of  such couples. 

At • = 0.398 there is a third transition to an ape- 

riodic attractor with a positive maximum Lyapunov 
exponent. The transition to chaos thus seems well de- 

scribed by the Ruelle-Takens scenario. 

In Fig. 3, we show the bi-orthogonal decomposi- 
tion [7] of  a signal of  307.2 natural time units (n.u.) 

sampled each 0.6 n.u. which has been obtained from a 
numerical integration with a time-step of  3 10 - 4  n.u. .  

In Fig. 3a we show a three-dimensional plot of  the 
torus obtained by the bi-orthogonal decomposition af- 

ter the second Hopf  bifurcation. In Figs 3b and 3c 
we show the oscillating behaviour of  two Cronos of  

the bi-orthogonal decompositions for values of  e cor- 

responding to a limit cycle and to a torus. A Fourier 

spectrum of  the bi-orthogonal decomposition of  the 

signal provides a clear evidence of  the passage from 

one frequency, to two frequencies and then to chaos, 

see Fig. 3d. 

At • > 0.398, the time evolution of  the dissipative 

system (1.2) is chaotic and confined on a strange at- 

tractor in the 2N-dimensional phase space. This fact 

is a strong evidence that the interaction between shells 
plays a fundamental role in determining the strength 

of  the intermittency, and that the correct symmetries 

still leave a large freedom to the system. 
Let us now add some comments about these dif- 

ferent dynamical regimes, as they can be understood 
by the bi-orthogonal analysis. In the present work the 

use of  the bi-orthogonal analysis is threefold. First it 
allows to find the relevant directions in a phase space 

of  large dimension. As a consequence, we were able 
to identify the principal axis of  the dynamics as the 
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Fig. 3. Bi-orthogonal decomposition of a signal obtained from a numerical integration of 307.2 n.u. after a transient of 3900 n.u.. In Figs. 
(a),  (b) and (c) the time unit of the horizontal axis is 0.6 n.u.. (a) Three-dimensional plot of the torus obtained by the Chronos ~Ps, 
~P9 and ~3. (b) Oscillations of Chronos ~P3(t) with period Ti --~ 90 n.u.. (c) Oscillations of Chronos ~P9(t) with period T2 ~ 8 n.u., 
modulated by the first harmonics of  period TI. (d) Semi-log plot of the Fourier power spectrum of Chronos ~Pg. 

Kolmogorov fixed point, even if the latter is unstable, 

showing the important role of  this fixed point for all 

values of  the parameter. Also, as it is clear from Fig. 

3a ,  the bi-orthogonal decomposition was able to se- 

lect the exact phase space section for the identifica- 

tion of  the torus. Finally we used the entropy of  the 

bi-orthogonai decomposition as an order parameter al- 

lowing to locate the bifurcation points very accurately. 

We refer to [7] for details on this method from which 

we recall only some notations for the reader's conve- 

nience. Let us decompose the modulus of  the velocity 

field as 

N 

lu~( t)l = Z Akq~(n) ~Pk( t), 
k=l 

(3.1) 

where A1 >_ A2 _> - . .  >_ AN > 0and the  ~bk, ~bk areor-  

thonormal functions. The first set of  functions, ~bk, the 

so-called Topos, are the active directions in the con- 

figuration space while the ~/'k, the so-called Chronos,  

are the corresponding directions in the space of  time- 

series. The set of  coefficients A~ is the spectrum of 

the kernel operator associated to the signal lu], and is 

called kinetic spectrum, in order to distinguish it from 

the Fourier spectrum. 
First, let us notice that, in all the e-range we have 

studied, the dynamics of  u, (t)  in the 2N-dimensional 
phase space always evolves in the neighbourhood of  

the Kolmogorov fixed point u TM . This can be clearly 

seen in Fig. ld from the fact that the first Topos qSl is 
equal to u TM, for any value of  e and the orbits stay 
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in a narrow band in the normal direction to ¢1 (since 

A, < <  A1 for n 4:1  ). All the shell structures that are 

present are surprisingly stable at varying e. As the first 

nine Topos are almost independent of e, only some re- 

ordering occurs in our • range, we may thus conclude 

that the system essentially lives in a elongated ellipsoid 
inside a space of reduced dimension for most of the 

time. In [7] one can find an explicit estimation of the 

time spent in that part of the phase space. Nevertheless, 

the short time spent in the remaining directions of the 

configuration space is important for the mechanism 
of energy transfer from large scales to the viscous 

small scales. This is shown by the fact that only the 

last Topos, when the latter are ordered by decreasing 

energy, have support in the direction of the last shells 

19 > n > 16. 
Concerning the inertial range, the most impor- 

tant feature of the dynamics is that it always takes 

place along the fixed global structures of these shells 
("coherent structures"). It never separates the larger 

Fourier modes from the small ones, that is to say 

that, during the energy transfer, the inertial shells 
are simultaneously and coherently excited. It is also 

easily seen from the shape of the Topos, that the 

periodicity three in n plays an important role in the 

organization of the energy transfer, thus supporting 

the analysis made in Section 3. More specifically, 
for 0.384 _< • _< 0.394, all the dynamics, included 

the velocity on the forced shell u4, is locked by the 

fundamental frequency of the circle. For larger e- 

values, up to • = 0.395, the shape of the circle is so 

deformed that a set of new frequencies appears, for 
which the linear approximation around the fixed point 
is no longer valid. In this case, the transfer of energy 
takes the form of a saw-teeth, a phenomenon which is 

reminiscent of heat transfer observed in experiments 
of plasma physics [7]. However, due to the lack of 
smoothness of the orbit, it is possible that the long 
range simulation is affected by numerical instabilities 
appearing for these particular values of • close but 
smaller than the second bifurcation point • = 0.3953. 
For • > 0.3953, thanks to the bifurcation to a torus, 
the energy transfer is re-organized by the birth of a 
new frequency, which is able to lock on the harmon- 
ics of the old circle. Indeed, the projection of the 
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dynamics onto the planes spanned by one of the topos 
¢ supported in the infrared region (the first shells) 

and each of the ¢ supported in the inertial range, are 

circles of quasi-periodic motion, as shown in Fig. 

3. Notice that the slopes of in Ak, as function of k, 
computed in the "kinetic inertial range" (the part of 
the kinetic spectrum which is linear in a log-linear 

plot) varies according the bifurcations. It grows after 

each bifurcation, leading to a concentration of energy 

in the first structures of the kinetic inertial range and 
then falls at the new bifurcation, showing a new ar- 

rangement for the distribution of the energy inside 

the kinetic spectrum. 

After each of the bifurcations, we also observe a 

re-ordering of the structures ek, ~bk, and the energy 

of the structures with support in the inertial range of 
the Fourier spectrum always increases. Finally, after 

the torus become unstable, the slope continuously de- 

creases. This tendency is compatible with the route 
to chaos followed by the system at increasing • (also 

observed in turbulent flows [7]) .  As shown in [7], 
bifurcations take place when certain crossing of the 

eigenvalues are present (degeneracy), giving rise to 
rotations of the space and time eigendirections in the 

degenerate eigenspaces. 
This is the reason why the entropy of the bi- 

orthogonal decomposition, defined as 

1 
Z p ~  lnpk, (3.2) 

InN 
k 

H(lu.[) - 

where 

Iakl 2 
P ~  - E k  lAd: 

(3.3) 

is a powerful tool for detecting the bifurcations, as one 

can see in Fig. 4. In order to get a good bifurcation 
diagram, as it essentially concerns the kinetic inertial 
range, we restrict the sum in (3.2) to the shell range 
nl _< k < n2. Depending of E, nl = 2 or 3 whereas n2 
varies from 10 to 16 in the GOY model with N = 19 
shells. The difference n2 - nj grows at increasing e. 

The variation of the entropy as function of • is well 
understood from the simultaneous occurrence of de- 
generacy (increasing the degree of equidistribution of 
the weights pk) and from the exponential decay of the 
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Fig. 4. Entropy of the bi-orthogonal decomposition versus ~ where 
n l = 3 and n2 -- N = 19. For each point, the entropy is obtained 
from a numerical integration of 307.2 n.u. after a transient of 6000 
n.u. starting at the corresponding Kolmogorov fixed point u K41 (E). 
These initial conditions are also used to obtain Figs. ld, 5-7. 

Ak in the inertial kinetic range. These two phenomena 

explain the tendency of  the entropy to grow and the 

occurrence of  its local maxima or minima. 

When • increases we observe crossings of  the eigen- 

values at each bifurcation, which is consistent with 

the general result [7] .  On continued increase of  •, 

through a set of  degeneracies of  the eigenvalues, each 

bifurcation rearranges the BOD spectrum by concen- 

trating energy in the first structures and taking it from 

the less energetic ones. In a sense each bifurcation 

corresponds to the fact that the old frame is unable to 

follow the increase of  energy transfer. Therefore sub- 

sequent to each bifurcation, the spectrum drops so that 

its slope decreases. For this reason the entropy has 

a local maximum followed by a corresponding mini- 

mum at each bifurcation, as is shown in Fig. 4. 

Our physical interpretation is that when the prob- 

ability of  having a backward energy transfer is not 

large enough, the system is able to transfer energy 

in the most efficient way via a non-intermittent cas- 

cade. Above the threshold • = 0.398 for the transi- 

tion to chaos, backward transfers are so efficient that 
they are able to stop this type of  transfer. As a con- 

sequence the system may charge energy on the first 

shells. During a charge, one observes a time varying 
scaling, i.e. the velocity lun] , - ~  k n  h(t) has an 'instan- 

taneous' scaling exponent h( t )  which increases from 

1/3 toward larger, and more laminar, values. At a cer- 

tain instant, the variables !u, I (with n in the inertial 

range) become so small that viscosity is comparable 

to non-linear transfer and dissipate energy directly in 

the inertial range. Then there is a sudden burst which 

corresponds to a discharge of  the energy accumulated 

in the first modes. This is a completely different way 

of  dissipating energy, which could give origin to mul- 

tifractality. 

The charge-discharge scenario for intermittency has 

a counterpart in the Lyapunov analysis of  the shell 

model, where only few degrees of  freedom seem to 

be relevant for the chaotic properties of  the system. 

Although the Lyapunov dimension of  the attractor (at 

least at • = 0.5) is proportional to the total number 

of  shells of  the GOY model [ 1 ], only few Lyapunov 

exponents are positive and there is a large fraction of  

almost zero Lyapunov exponents. By an analysis of  

the Lyapunov eigenvectors, it can be shown that they 

correspond to marginal degrees of  freedom which con- 

centrate on the inertial range of  wavenumbers. There 

are only few degrees of  freedom which are chaotic 

in a very intermittent way. In fact, during the charge, 

the energy dissipation stays very low, and the instan- 

taneous maximum Lyapunov exponent is almost zero. 

When there is an energy burst, there is also a large 

chaoticity burst, i.e. a very large value of  the instanta- 

neous maximum Lyapunov exponent, with a localiza- 

tion of  the corresponding eigenvector on the dissipa- 

tive wavenumbers at the end of  the inertial range [ 2].  

These results have important physical implications on 

the predictability problem which have been discussed 

in Ref. [9].  

The existence of  few active degrees of  freedom, in 

a sea of  marginal ones, suggests that, at least for the 

dynamics of  some global observables, an appropriate 

one-dimensional map could capture the essence of  the 

dynamics. To verify this idea, we choose a variable 

which can be interpreted as the local singularity, or 

instantaneous scaling exponent of  velocity, that is 

1 1 t/ma~ 

h ( t )  = -~ (nmax - nmin 4- l)  ~ l n 2  lu , /u~+31,  (3.4) 
nmm 

where nmin = 7 and nn,,,x = 12 such as to evaluate the 
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eDs = 0.396 (a) 

2. 

ei)s = 0.420 

100 200 300 400 500 
time 

Fig. 5. Instantaneous scaling exponent s ( t )  = 3 h( t )  as function 
of time at e = 0.396 (torus). The Kolmogorov scaling corresponds 
t o s = l .  

slope only in the inertial range. 
The Kolmogorov scaling corresponds to h = 1/3,  

and a laminar signal has h = 1. The choice of  the 

ratio q, = u,+3/un is intended to minimize the effect 

of  period three oscillation proper of  the fixed point 

structures, taking into account the results of  Section 3. 
Due to the structure of  (3.4) only the first and last 

three u,'s of  the inertial range contribute to the instan- 

taneous value of  h (t) .  

We numerically find that for • < 0.385 the local 

singularity has the constant value h = 1/3 up to an 
error smaller than 10 -2 , as expected. 

In Fig. 5, one sees that at • = 0.396 (the dynamics 

evolves on a torus) the scaling exponent h (t) has very 

small oscillations with two characteristic frequencies 
around h = 1/3.  

At increasing •,  the signal h(t) becomes less and 
less regular, with a broadening of  the probability dis- 

tribution of  h, as shown respectively in Figs. 6a and 

6b for • = 0.42 and Figs. 7a and 7b for • = 0.5 
The maximum scaling exponent hmax ~ 1 in both 

cases, while the minimum one, hmi#, decreases with •. 
Note that a value h(t) < 1/3 corresponds to a veloc- 
ity field more singular than the one given by the Kol- 
mogorov scaling. Such a instantaneous scaling expo- 
nent is realized during the fast energy burst due to the 
discharge, while during the charge the h-value slowly 
fluctuates in an almost regular way around h ~ 1/3 
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Fig. 6,  ( a )  Instantaneous scaling exponent s(t)  = 3 h( t )  as func- 
tion of time, at ~ = 0 . 4 2 .  Note that a laminar velocity field has 
s = 3 ,  and the Kolmogorov fixed point s = 1. ( b )  Probability dis- 
tribution of  the instantaneous scaling exponent s = 3 h a t  ~ = 0 . 4 2 .  

( c )  One-dimensional map obtained by plotting s(t  + &t) venus 
s ( t )  with s ( t )  = 3 h ( t ) ,  8 t  = 0 . 6  n .u .  f o r  ~ = 0 . 4 2 .  
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Fig. 7. (a )  Instantaneous singularity s( t )  = 3 h( t )  as function of 

time at • = 0.5. (b )  Probability distribution of  the instantaneous 

singularity s = 3 h at e = 0.5. ( c )  One-dimensional  map obtained 

by plotting s ( t  + &)  versus s( t )  = 3 h( t )  with ~t = 0.6 n.u. for 

e = 0.5. 

and eventually increases from h ,,~ 1/3 up to h ~ 1. 

We can thus hope to describe the most relevant features 

of  lhe dynamics by looking at the one-dimensional 

map h(t  + &) versus h(t)  with an appropriate time 

delay 6t, which is shown in Figs. 6c and 7c for e = 

0.42 and e = 0.5 It has the typical form of  a map 

of  the Pomeau-Manneville type. The channel close to 

the diagonal is due to the charge periods while the re- 

laminarization corresponds to a fast energy burst (the 

discharge process) when a small h(t  + &) follows a 

rather large h (t) .  

A further complication arises since we are dealing 

with a dynamical system with many degrees of  free- 

dom. Roughly speaking, the majority of  them acts as 

a noisy term which induces vertical (temporal) oscil- 

lation on on the one-dimensional map. A picture close 

to the real mechanisms that are present in the model, 

seems therefore to be a "l.5"-dimensional map. This 

will permit to include, more accurately, the shell-time 

structure of  the symmetries that govern the dynam- 

ics of  the energy transfer. However it is reasonable to 

expect that their statistical effect on the mean quanti- 

ties is not very important, at least near the transition 

to chaos. Therefore, we have studied the two cases 

e = 0.42 (slightly above the transition) and e = 0.5 

(the usual value for the shell model).  One sees that 

the laminar channel of  the l d map becomes fatter at 

increasing e, but the relaminarization mechanism is 

robust. As it is well known, the dynamical behavior of  

h(t)  may be very well affected by "random" oscilla- 

tions of  the one-dimensional map y = h ( t + 6t) versus 

x = h(t) ,  close to the diagonal x = y. In particular, 

this mechanism may also be responsible for the broad- 

ening of  the probability distribution of  the instanta- 

neous scaling exponent h at increasing e. In practice, 

the presence of  many marginal degrees of  freedom is 

revealed by "random" oscillations in the form of  the 

one-dimensional map, without consequences for the 

qualitative picture. 

It is an open issue to decide whether such a dynam- 
ical mechanism is relevant to describe the intermit- 

tency of  real turbulent flow. 
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5. A m o d i f i e d  G O Y  m o d e l  

To quantify the effect of the intermittent "charge- 

discharge" mechanism on the scaling exponents (p 

it is essential to have an inertial range as huge as 

possible and to minimize non-universal effects due 

to the infrared and ultraviolet boundary conditions. 

In order to have "ideal" IR boundary conditions we 

have to slightly modify the equations of motion for 

the first two shells. In this way, it is possible to oblige 
the system to develop a scaling behavior also in the 

infrared region (the first shells) in order to avoid small 

deviations of the structure functions with respect to the 

Koimogorov prediction (p = p/3, which could arise 
as an artefact of the forcing imposed on the fourth 

shells and of the infrared boundary conditions (1.3). 

To show it, let us define a new GOY model which 
is exactly equal to the old one but for the following 

two facts: 

(1) the forcing is moved to the first shell, 
(2) the parameters of the two equations for ul and 

u2 are changed in the followings: 

al ~ 2 - e; instead of al = 1 (old GOY), 

b2 ~ - 1 ;  instead of b2 = - e  (old GOY). 

By this choice the requirement of energy conser- 

vation (1.4) is satisfied, since al + b2 + c3 = 0, 

and the first two equations of (1.2) become 

/ d  \ 
~ t + v k 2 1 )  Ul = i ( 2 - e ) k l U ~ U ~  + f,  

(4.1) 

-~ +z,~ u2 =ikz(U~U~ - ~u3ul).  
(4.2/ 

The rationale for the first request is obvious, while 

the second change allows us to have an inviscid static 
fixed point which is at the fixed point of the map 
(2.2) for any n's, and therefore the scaling of the static 
solutions is exactly un+3/un =- 1/2, Vn. 

For example, an inviscid static solutions will have 
- (2 - e)kl  u~u~ = - i f  from the first equation, 
- u4 = 1/2Ul ---+ ql = 1/2 from the second equation. 

Therefore qn = 1/2 V n, because the first iteration is 
already at the UV stable fixed point of the map (2.2). 

For such a class of modified GOY model the static 
solutions have exactly (p = p/3. The dynamical prop- 

erties are not modified (energy is still conserved if v = 

f = 0) and the transition to chaos follows the same 
route described above. The advantage is that now we 

have a scaling behaviour which is not affected from 
non-universal infrared boundary effect. 

If  the intermittent mechanism described in the pre- 

vious section affects the scaling laws we expect that 

the beginning of the infrared range should be much 

more sensible to the presence of charging process than 
the final zone of the inertial range. Indeed, the proba- 

bility for a shell nearby the viscous range to be uphill 

with respect to a barrier of energy is evidently mi- 
nor than that one of a shell nearby the forcing zone. 

Therefore, small scales are most of the time laminar 

or Kolmogorov-like, while large scales are most of the 
time in a charging highly-unstable status. 

Looking at the scaling laws immediately after the 

chaotic transition (e = 0.42), we have found an in- 
teresting trend of the structure functions to be dom- 

inated by the Kolmogorov scaling by going toward 

small scales. 
To detect a possible changing of slope along the 

inertial range we have used "local scaling exponents": 
(p(n)  [13]. Local scaling exponents are defined by 

choosing a fixed length, say 9 shells, over which fitting 

the scaling behavior of structure functions and then by 

moving the analyzed range of shells from the infrared 

region to the dissipation range. With this definition 
(p(n)  means the results of the fit performed on the 

structure functions of order p in the range of 9 shells 

centered at shell m: n - 4 < m < n + 4. 

In Figs. 8a and 8b we have plotted the results for 
( l ( n )  and (8(n).  We have used a modified GOY 

model with 27 shells in order to increase the total 
length of the inertial range. 

From Fig. 8 is possible to see that these "local scal- 
ing exponents" become more and more Kolmogorov- 
like by going toward the viscous range. In order to im- 
prove the quality of our fit we have used a technique 
introduced by Benzi et al. [ 14] called Extended-Self- 
Similarity (ESS). ESS has proved to be efficient in 
minimizing finite-size effect and non-universal char- 
acter in structure functions. The main idea consists in 
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of analyzed scales in the inertial range. (b) The same as in (a) but for the structure functions of order 8 (here the k41 value corresponds 
to srs = 8/3 = 2.666...). 

choosing one structure functions as reference and then 

studying the scaling properties of  all other structure 

functions versus the reference-ones. 

This trend toward K41 scaling seems to us in agree- 

ment with the previous intermittent picture, small 

scales are dominated by laminar or Kolmogorov scal- 

ing, while large scales are most of  the time more 

turbulent then a K41 solutions due to the charging 

process. 

From preliminary data, the same effect seems to be 

absent for larger values of  • (such as the standard 

value • = 0.5) which lead to more chaotic systems. It 

is an open question whether the same trend would be 

present, by taking a number of  shells large enough. 

6. Conclusions 

We have studied the transition to chaos in the GOY 

shell model, at varying the parameter • related to the 
strength of  backward energy flow. We thus observe 

the passage from a stable fixed point (corresponding 

to the Kolmogorov non-intermittent energy cascade) 

toward a chaotic attractor (corresponding to the inter- 
mittent cascade) through the Ruelle-Takens scenario. 

We provide a numerical evidence that the strange at- 
tractor which has a large fractal dimension remains 

close to the (now unstable) manifold possessing Kol- 

mogorov scaling. 

Immediately above the threshold for chaos, we are 

able to show that the physical mechanism of  the in- 

termittency of  energy dissipation, is due to a charge- 

discharge mechanism which can be described by a 

one-dimensional map. This is a consequence of  the 

presence of  few 'active' degrees of  freedom while the 

remaining marginal degrees of  freedom (responsible 

for the high dimensionality of  the attractor) have a sort 

of  noisy effect on the one-dimensional map. The map 

is of  the Pomeau-Manneville type where the channel 

close to the diagonal is related to the charge periods 

while the relaminarization corresponds to a fast en- 

ergy burst (the discharge process). 

We have also introduced a modified shell model 

where there is a good scaling behavior even in the in- 

frared (small wave-number) range. The presence of  a 

huge range of  scaling shells allows us to study in detail 

the possible presence of  deviations to the usual power 

law scaling. We find that for the GOY model in the 

"weak" chaotic region (e = 0.42) the structure func- 

tions tend to become Kolmogorov-like by decreasing 

the analyzed scales. This could be an indication that 

multifractal corrections disappear in the limit of  large 
Reynolds number, at least for e slightly above the tran- 
sition to chaos. It is very difficult to decide by numeri- 
cal experiments if such an effect is present at the usual 
value e = 0.5, because one should consider very high 
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Reynolds that is a very large number of  shells. It still 

remains an open problem to understand whether the 

charge-discharge intermittency described in this pa- 

per might  be compat ible  with the Kolmogorov scaling 

laws, or it brakes a global scaling invariance leading 

to multifractality, as commonly believed on the basis 

of  numerical experiments [ 2 -6 ]  and analytic calcula- 

tions [ 8]. 
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Appendix A 

In this appendix we show the numerical algorithm 

for the search of  the Kolmogorov fixed point at e > 

0.3843 where it is unstable. Let us denote by 

+sEOF(E, U K41 (E ÷ t~e) ) 
~E 

By assuming that 

= 0 .  (A.3)  

U K41 (E ÷ t~E) ---- U K41 (E) ÷ V(e)(~E, 

and using the fact that F(E, U K41 (E) ) = 0, one obtains 

from (A.3)  

OF(E, U K41 (e )  ) 
DF(E, Ur41(E)) V ~ + = 0 ,  (A.4)  

0e 

where DF(E, U K41 ( 6 ) )  is the the stabili ty matrix of  

the system (1.2) calculated at U K41 ( e ) .  this equation 

can be solved in V and reads 

U K41 (E ÷ 6E) -~ U K41 (e )  - 8E [DF(E, U K41 ( e ) )  ] -1 

OF(e, U r41 ( e ) )  
x (A.5)  

Oe 

The two matrices DF and OF/OE are obtained by a 

direct numerical calculation. In this paper we have 

iterated (A.5)  with 8e = 10 -4, starting from a stable 

fixed point U r41e0 = 0.2 which has been obtained by 

a long numerical integration of  the shell model. The 

stability matrix DF is then found and diagonalized at 

the e ' s  of  interest (see Fig. 2 for e = 0.386 and e = 

0.396).  

dU 
- F ( E , U ) ,  (A.1) 

dt 
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