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We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a

novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic

properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean

properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh

number Ra� 107. We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects

develop, themean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations

are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields

are strongly affected by the presence of the buoyant bubble leading to high non-Gaussian profiles in the bulk.
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Thermal convection, the state of a fluid heated from
below and cooled from above, is a ubiquitous phenomena
in nature, present in many industrial and geophysical ap-
plications both at micro- and macroscales [1]. It is also
challenging from theoretical points of view, raising ques-
tions on pattern formations for small temperature jumps
between the bottom and top plates (i.e., moderate Rayleigh
number) or on turbulent behavior where the heat transfer
(i.e., Nusselt number) is dominated by bulk or boundary
layer physics (or by both, see e.g., recent reviews [2]).
Thermal convection is often studied in the Oberbeck-
Boussinesq (OB) approximation, where a single phase—
unstratified—fluid is present with constant material
properties. Compressibility is also neglected except for
buoyancy forces. Needless to say, in many situations
some, or all, of the above assumptions break down and
one speaks of non-Oberbeck-Boussinesq (NOB) convec-
tion. Deviations from OB approximation can arise in many
different ways. One notable case is boiling: when the
parameters’ excursion inside the convective cell allows
for phase coexistence [3,4]. In this Letter we study thermal
convection in a 3D cell in a high turbulent regime where
large bubbles (larger than the turbulent viscous scale) can
nucleate in the layer close to the bottom wall with a non-
negligible heat exchange between liquid and vapor. To do
that, we present and apply a novel numerical scheme based
on a diffuse interface lattice Boltzmann method (LBM) [5].
In such a way, we are not restricted to treat bubbles as
pointlike [6] and we fully resolve the thermohydrodynam-
ical properties of the gas and liquid phases. Besides the
methodological aspects, we also address physical ques-
tions connected to the enhancement or depletion of heat
flux in the presence of bubbles, statistics of mean global
properties, as well as small-scale effects for both velocity
and temperature fluctuations. We present two series of
high-resolution numerical simulations up to 5123

collocation points at Ra� 107 with and without phase
coexistence, such as to be able to directly compare on the
same geometrical setup the effect of boiling on convection.
We also present some data obtained in 2D geometries to
address the important point of heat-flux dependency on the
Rayleigh number. With respect to experimental studies,
numerical simulations offer the unique advantages of al-
lowing access to all quantities without affecting the fluid
dynamics and confining the fluid inside ‘‘ideal’’ surfaces
(i.e., perfect thermal properties at the wall, perfect smooth-
ness of the boundaries, etc.). On the other hand, a limita-
tion consists in the difficulty to reach high Rayleigh
numbers and to push the physical parameters such as
density contrast, interface thickness, viscosity, and thermal
diffusivity to realistic situations. The equations of motion
describing a nonideal fluid in the presence of thermal
fluctuations are:

@t�ui þ @jð�uiujÞ ¼ �@iPþ @j½�ð@iuj þ @juiÞ� þ g�ẑ

(1)

where � ¼ �� is the molecular viscosity, g is the gravity,
� is the local fluid density, and Pð�; TÞ ¼ P0ð�; TÞ þ
PNIð�Þ is the nonideal pressure. Pressure is fixed by the
equation of state and it is made of the ideal part P0ð�; TÞ ¼
�T and the nonideal part which in our LBM system reads:
PNIð�Þ ¼ G expð�2=�Þ (see below). The equation for the
internal energy, U ¼ cvT þ R

d�PNI=�
2 is given by one

of the two following equivalent expressions:

cp�DtT � �TDtP ¼ �@jjT

cv�DtT þ P0@juj ¼ �@jjT
(2)

where � is the thermal conductivity, Dt stands for the mate-
rial derivative, cv is the specific heat at constant
volume, and cp and � ¼ �ð@T�Þ=� are the specific heat

and compressibility at constant pressure, respectively. The
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above equations tend to the usualOB systemwhen the fluid is
single phase, incompressible, and both�, � are constant [7].
In Table I we report the characteristic values for all relevant
parameters for two typical runs, with and without boiling.

Because of bubble nucleation and evaporation, a key
role is played by the DtP term in (2). Take, for example, a
convective cell of size L with imposed temperature, Td, at
the bottom wall and Tu at the top wall. Then, the heat
balance across a horizontal layer at distance z from the
bottom wall is:

@t�Ujz þ @z�Uuz � �@zTjz ¼ �P@jujjz (3)

where with ð� � �Þjz we intend a spatial average at fixed z. In
a stationary situation, we can define a z-dependent dimen-
sional Nusselt number NuðzÞ ¼ �Uuz � �@zTjz which
satisfies an integral constraint

Nu ðzÞ � Nuð0Þ ¼ �
Z z

0
dz0P@jujjz0 : (4)

With the above definition, the Nusselt number is not any-
more constant throughout the cell, we may exchange heat
by nucleating and evaporating bubbles or by simple
compressible effects inside each phase.

Algorithm.—The numerical algorithm used is based on
discrete kinetic models [5]. The starting point is a standard
coupled mesoscopic dynamics described by [5,8]:

flðxþ cl; tþ 1Þ � flðx; tÞ ¼ � 1

��
ðfl � f

ðeqÞ
l Þðx; tÞ; (5)

glðxþ cl; tþ 1Þ � glðx; tÞ ¼ � 1

��
ðgl � g

ðeqÞ
l Þðx; tÞ; (6)

where flðu; tÞ, glðx; tÞ stand for the probability density
functions to find at (x, t) a particle whose kinetic velocity
belongs to a discrete and limited set cl (with l ¼ 1, 19 in
the D3Q19 LBM adopted here [5]). Density, momentum,
and temperature are defined as coarse-grained (in velocity
space) fields of the distribution functions

� ¼ X
l

fl �u ¼ X
l

clfl T ¼ X
l

gl: (7)

The local kinetic equilibria fðeqÞl ðu0; �Þ and gðeqÞl ðu;F; TÞ
are expanded in a polynomial basis [9] such that a
Chapman-Enskog expansion [8] leads to the equations
for density, momentum, and temperature (1) and (2): the
streaming step on the left-hand side of (5) reproduces the
inertial terms in the hydrodynamical equations, whereas
dissipation and thermal diffusion are connected to the
relaxation (towards equilibrium) properties in the right-
hand side, with � and � related to the relaxation times
��, �� [5]. Nonideal thermodynamics is obtained by a well
controlled procedure shifting the velocity in the equilib-
rium distribution, u0 ¼ uþ ��F=�, with a forcing term
mimicking the effect of an internal pseudopotential [8,9].
We adopt the standard form:

F ¼ �G
XN
l¼1

wðjclj2Þclc ½�ðxÞ�c ½�ðxþ clÞ� (8)

where G is the strength of the nonideal interactions. The
weights wðjclj2Þ are used to enforce isotropy up to the 4th
order in the velocity tensors [10]. The pseudopotential,
c ½��, encompasses the macroscopic effects of both long-
range attraction and short-range repulsion. Although vari-
ous choices have been presented for the choice of c ½��
[11,12], here it is crucial to set it to c ½�� ¼ expð�1=�Þ, in
such a way to reproduce the thermodynamic consistency
on the lattice [13] (see Fig. 1). The ideal part of the
pressure, P0 ¼ �T, is obtained via a coupling between fl
and gl populations by plugging the dynamical temperature

TABLE I. Typical values for boiling and nonboiling runs in
3D.�~T, �~cp,� ~� are values of temperature, liquid heat capacity,

and the liquid compressibility jump between the two walls (all
normalized with their values at the center of the cell, zc). �l;g ¼
�=ðcpðzcÞ�l;gðzcÞÞ is the thermal diffusivity of liquid (l) and gas

(g). � is the kinematic viscosity. Rayleigh (Ra) and Prandtl (Pr)

numbers are evaluated at zc and in the liquid phase. Ra ¼
g�ðzcÞL4ð�T=L��adðzcÞÞ

k=ð�ðzcÞcPðzcÞÞ� and Pr ¼ �
�ðlÞðzcÞ where L ¼ 512 is the cell

height (in grid units) and �ad ¼ �Tg=cp is the adiabatic gra-

dient. The Jacob number quantifying the ratio between the
sensible heat and the latent heat [6] is Ja� 3.

�~T �~cp �g �l � Ra � ~� Pr

Boiling 0.226 1.2 0.008 0.0018 0.0165 3� 107 1.6 9

No boil 0.230 0.2 � � � 0.0018 0.0165 2� 107 0.1 9

FIG. 1 (color). Mechanical-thermal coupling in our LBM
(Clausius-Clapeyron relation): @P=@T ¼ �s=�v at varying
T=Tc. P is the equilibrium pressure at coexistence temperature
T, v ¼ 1=� is the specific volume, Tc is the critical temperature,
and sðT; �Þ is the specific entropy. Bottom inset: Latent heat,
	 ¼ T�s vs T. Top inset: Bubbles are in blue. Regions with high
temperature are in red. The system has no-slip velocity at the
bottom and top walls and it is periodic on the horizontal
directions.
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T in the equilibrium distribution of (6) (see [14]). In the
limit of vanishing interaction, this is equivalent to

imposing a second order momentum of fðeqÞl equal toP
lf

ðeqÞ
l cilc

j
l ¼ �T
ij þ �uiuj. Finally, in order to get the

divergence term, P0@juj, in (2), we added a counterterm to

the evolution of gl populations in (6), as proposed in [15].
As a result, neglecting extra viscous contributions at the
interface [16], we ended with a LBM for the Navier-Stokes
(NS) Eqs. (1) and (2) with a nonideal pressure tensor and a
consistent definition of latent heat (see Fig. 1).

Single point quantities.—In Fig. 2 we show a scatter plot
of Tðx; tÞ vs �ðx; tÞ for a boiling cell. Superposing with the
equilibrium curves in the T-� phase space, we see that
most of the volume is at thermodynamical equilibrium. The
presence of bubbles is clearly detected by the spots con-
centrating along the vapor branch. It is interesting to notice
that the corresponding bubble temperature is always larger
than the mean temperature in the cell, indicating that
bubbles are transferring temperature upwards very effi-
ciently. Moreover, the temperature profile across the cell,

TðzÞ, becomes slightly asymmetric in the presence of
bubbles, a phenomenon also observed in other liquidlike
NOB systems [17]. Breaking of the top-down symmetry
should not be a surprise. In particular, � is not constant
across the cell (i.e., density and temperature fluctuations
are not strictly proportional as in the OB system) and cP
decreases going from bottom to top. Both effects may have
an impact on the averaged profiles as discussed and ob-
served also in [17]. Here, the temperature mismatch be-
tween the values at the center and the mean temperature is

1% (inset of top panel in Fig. 2). Notice also that TðzÞ
agrees with the expected profile given by the adiabatic
gradient, due to the presence of a small stratification. In
the bulk, the heat flux (4) is dominated by the convective
term �Uuz. In the bottom panel of Fig. 2 we compare the
Nusselt number for the boiling and nonboiling cell at
similar Rayleigh numbers. Two effects show up. First,
heat flux is enhanced. Second, fluctuations around its
mean profile are larger in the presence of bubbles. We
interpret this as a clear signature of the importance of the
bubble dynamics in transporting heat between the two
walls. This is the combined effect of temperature entrain-
ment inside bubbles leveraged with the upward buoyancy
of a bubble. Because bubbles are rare in our system, this
also implies an increase in heat-flux fluctuations, as can be
seen in the inset of the bottom panel in Fig. 2 where we
show the probability density function (PDF) of the heat
flux measured only in the bulk cell. Clearly, the right tails
are enhanced, due to bubble buoyancy. The residual small
oscillation in the bulk-heat-flux profile for the boiling case
would probably vanish with a longer integration time and/
or by removing the bubble layer forming at the top plate. In
Fig. 3 we show the trend in Nusselt vs Rayleigh numbers
obtained by combining both simulations in the 3D and 2D
setup (the latter to increase the Rayleigh number). As one

can see, the trend respects the well known Nu / Ra1=3 for
all cases, with a consistent systematic enhancement of heat
transfer for boiling systems.
Small-scale properties.—Buoyant bubbles bring infor-

mation from the physics of the bottom boundary layer in
the bulk of the system. We then expect also in the bulk an
increase of small-scale velocity and temperature fluctua-
tions. In Fig. 4 we show the structure functions for vertical
velocity and temperature:

FIG. 2. Top panel: Phase space T-� equilibrium curves (solid
lines) superposed with a scatter plot of temperature and density
values at boiling (both made dimensionless using the critical
values, Tc and �c). Notice the presence of bubbles with different
temperatures inside the volume. Different symbols correspond to
measurements taken in the top, bottom, or bulk region. The
horizontal dashed lines correspond to top, Tu, bottom, Td, and
mean, Tm, temperatures. Inset: Mean temperature profile,

TðzÞ=Tc vs z (in lattice units) for boiling and nonboiling con-
ditions. The straight line corresponds to the adiabatic slope.
Bottom panel: Bulk contribution to the heat flux normalized to
its diffusive value, �Uuz=½�ðTd � TuÞ=L�, (Nusselt) for boiling
and nonboiling cases at comparable Rayleigh numbers. Inset:
PDF of �Uuz normalized to have mean area and mean variance
for both boiling and nonboiling cases.
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SðpÞuz ðrÞ ¼ h½uzðxþ rÞ � uzðxÞ � r̂�pibulk
SðpÞT ðrÞ ¼ h½Tðxþ rÞ � TðxÞ � r̂�pibulk

(9)

where the average is restricted on points x in the bulk of the
cell and the increment r is always taken in horizontal
directions. In the two panels of Fig. 4 we show the results
for both quantities for p ¼ 2. For both fields we have a
viscous range very well resolved, where the structure
functions are/ r2. Therefore, the presence of large bubbles
does not destroy the differentiability at small scales, an-
other signature that the numerical setup is under control.
Second, a boiling system has an enhanced signal at small
scales, meaning that energy dissipation is globally in-
creased. Third, for the boiling case we start to see an

inertial range with scaling / r2=3, similar to the
Kologorov 1941concept of turbulence. In the inset of
both panels we measure the flatness (or kurtosis) of each

field Kuz;TðrÞ ¼ Sð4Þuz;T
ðrÞ=½Sð2Þuz;T

ðrÞ�2 at different scales, e.g.,
is a way to quantify how much the PDF is close or different
from a Gaussian. Intermittency, as measured by the devia-
tion of the flatness from its Gaussian value, K ¼ 3, be-
comes more and more important at decreasing the scale, in
agreement with the general observation that bubbles in-
duce an increase of fluctuations in the system. For tem-
perature (top panel Fig. 4) the inertial range behavior is
much more singular than the case for velocity, due to the
enhancement of temperature jumps between inside and
outside bubbles. In contrast to the case for velocity, where
large scale PDF is indistinguishable from a Gaussian
(Kuz � 3 for r� L), here temperature is more sensitive

to the presence of bubbles also at large scale.
In conclusion, we have proposed a novel LBM to attack

multiphase flows with a full consistent definition of heat
exchange in the system (latent heat). We have applied this
scheme to study convection under a boiling condition and
we have studied the effects of nucleating large bubbles at
the bottom boundary layer on both single-point observable
(temperature profile and heat-flux) and two-point

correlation functions (structure functions). The latter,
allowed us to assess also the importance of bubbles on
small-scale velocity and temperature fluctuations, indicat-
ing an enhancement of the deviations from Gaussian
statistics with respect to the nonboiling case.
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