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Abstract. We study the static and dynamical behavior of the contact line between two
fluids and a solid plate by means of the Lattice Boltzmann method (LBM). The differ-
ent fluid phases and their contact with the plate are simulated by means of standard
Shan-Chen models. We investigate different regimes and compare the multicompo-
nent vs. the multiphase LBM models near the contact line. A static interface profile
is attained with the multiphase model just by balancing the hydrostatic pressure (due
to gravity) with a pressure jump at the bottom. In order to study the same problem
with the multicomponent case we propose and validate an idea of a body force acting
only on one of the two fluid components. In order to reproduce results matching an
infinite bath, boundary conditions at the bath side play a key role. We quantitatively
compare open and wall boundary conditions and study their influence on the shape of
the meniscus against static and lubrication theory solution.

PACS: 47.55.np, 47.55.N-, 47.11.-j

Key words: Lattice-Boltzmann, multiphase flow, multicomponent flow, plunging plate problem,
Landau-Levich.

1 Introduction

The motion of the contact line, the common borderline between a solid, a liquid, and
its equilibrium vapor, is key to several important applications like coating, painting or
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oil recovery [1–3]. The dynamics of the contact line has stimulated theoretical studies
and experimental investigations [4–9]. The dynamics is controlled by a rather subtle
competition between the interfacial interactions amongst three phases, the dissipation in
the fluid, and the geometrical or chemical patterning and irregularities of the surface. The
first fundamental steps in the field are due to Landau and Levich [10] and to Derjaguin
[11], who studied the problem of liquid film coating on a perfectly wetting substrate; this
problem is referred to as the “LLD problem” hereafter. In the case of perfect wetting, one
observes a film deposition whose thickness is controlled by the balance between viscous
forces and surface tension. The solution of the LLD problem is an example of matched
asymptotic between the static capillary meniscus and the liquid film (LLD film). It is well
known that in a continuum description the viscous forces would diverge at the contact
line [12], a problem commonly referred to as the “viscous singularity”. In nature the
viscous singularity is resolved by the presence of some microscopic cutoff scale, ls, (e.g.
the size of a liquid molecule) while in numerical approaches a cutoff is also invariably
introduced, e.g. the size of the discretization mesh. Far from the contact line, viscous
forces are negligible and the shape of the static capillary meniscus is set by the balance
between gravity and surface tension.

The problem of liquid film entrainment was further investigated by de Gennes [13] for
the case of partial wetting. When the liquid partially wets the plate with a non-vanishing
dynamic contact angle, a steady state is achieved only for plate velocities smaller than a
certain critical value. More recently it was shown that partial wetting substrates allow
for the existence of a second admissible solution for the thickness of the film [8] and
it was shown experimentally that in the case of non-wetting fluids a remarkable ridge-
like structure is produced during the entrainment process [9]. The solution of the LLD
problem has also been generalized to non-Newtonian “power law” fluids by Tallmadge
[14], plastic-viscous fluids by Deryaguin and Levi [15], to include the effects of inertia
by de Ryck and Quere [16], as well as the effects of Marangoni stresses by Ramdane and
Quere [17].

Another case of interest is when the solid plate is plunged into the bath instead of
being pulled; in the present manuscript this problem is referred to as plunging plate
problem. When pulling the plate a liquid film entrainment is easily attained even at
small velocities however, for case of a plunging plate this requires considerably higher
velocities [18].

In the present manuscript we show numerical simulations based on the multiphase
and multicomponent versions of the Lattice Boltzmann method to investigate its appli-
cability to study the dynamics of the three phase contact line. Further, we quantitative
investigate and discuss the role of boundary conditions. In Fig. 1 we report the schematic
of the setup that we consider. The fluids with dynamic viscosities µ1=ρ1ν1 and µ2=ρ2ν2

(µ2 ≤ µ1 and we define R= µ2/µ1) are separated by an interface. At the top and at the
bottom boundaries we mimic an infinite bath by imposing “flux” boundary conditions
(described in Section 4). The flux boundary conditions are used to sustain the hydrostatic
pressure of the liquid column in the domain. At the left boundary we impose a no-slip
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Figure 1: A schematic view of the LLD problem (left panel), interface shape for the static case (middle panel),
and the plunging plate problem (right panel). At top and bottom boundaries we are using flux boundary
condition. At right boundary we impose a no-slip neutral wetting wall or open boundary to mimic the infinite
bath.
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Figure 2: Schematic of the streamlines when a solid plate is vertically pulled out from a liquid bath of density
ρ1 and kinematic viscosity ν1, into a liquid of density ρ2 and kinematic viscosity ν2. (Left panel) Figure shows
case of an infinite bath (LLD problem), and (Right panel) the case of a fictions wall placed in the simulation
instead of the infinite bath. The latter resembles closely the Bretherton problem.

wetting wall which moves with velocity U: this corresponds to the LLD problem for
U>0, and to the plunging plate problem for U<0. At the right boundary we use either
an infinite bath or a no-slip static wall with neutral wetting.

The infinite bath at the right boundary maps the setup to the LLD problem whereas
a no-slip, neutral wetting, right boundary maps the setup onto a problem similar to the
Bretherton problem [19]. The fundamental geometrical difference between the Bretherton
and the LLD problems, a channel instead of a semi-infinite bath, has important implica-
tions on the flow topology, with one stagnation point for the LLD case versus two for the
Bretherton problem (see Fig. 2).
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The manuscript is organized as follows: in Section 2 we provide theoretical back-
ground on the problem, in Section 3 we discuss the numerical methods and the boundary
conditions employed, in Section 4 results are presented and discussed while in Section 5
conclusions are drawn.

2 Theoretical background

In this section we discuss the theoretical background for interface shape with a static and
a moving plate. In the first part we present the interface profile for a static plate (U=0)
and later we show a lubrication theory based model for the moving plate problem (U 6=0).

When a smooth solid plate comes in contract with the interface between two fluids,
the interface close to the plate deforms due to relative interaction strength between the
three phases. The condition of mechanical equilibrium (absence of forces) at the contact
line is translated into the following Young equation [20]:

γw2=γw1+γ21cos(θe),

where γw2 is the surface tension between fluid 2 and plate, γw1 is the surface tension be-
tween fluid 1 and plate, θe is the equilibrium contact angle, and γ21 is the surface tension
between fluid 1 and 2. The equilibrium contact angle θe = 0 corresponds to perfect wet-
ting, while θe =π corresponds to perfect dewetting. When a partial wetting solid plate
(0< θe <π) is put in contact with the surface of a liquid, the capillary force determines
the meniscus shape close to the contact line. The equilibrium interface profile y=h(x) of
the meniscus (see Fig. 1 (middle panel)) can be derived using Laplace’s law. An explicit
relation for profile h(x) and θe is given by [21]:

h(x)= lcarcosh

(

2lc

x

)

−2lc

(

1−
(

x

2lc

)2
)1/2

+h0, (2.1)

with

h0=−lcarcosh(2/(1−sinθe))
1/2+lc(2(1+sinθe))

1/2 , (2.2)

the capillary length lc =
√

γ21/(ρ1g) and θe the equilibrium contact angle. The rise of
the meniscus with respect to the flat interface, ∆, (see Fig. 1) can be obtained from the
solution of the equation h(∆)= 0. When the wall is moving, with constant velocity, the
force balance is altered and the position of the contact line is displaced with respect to the
static one Eq. (2.1).

2.1 The Landau-Levich-Derjaguin problem

The problem of a plate pulled out of a liquid bath has been studied by Landau and
Levich [10] and Derjaguin [11] for the case of perfect wetting. In this case a liquid film of
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thickness hLLD is formed:

hLLD =0.946lcCa2/3,

where Ca=Uµ1/γ21 is the capillary number and U is the magnitude of the plate velocity.
This expression is however only valid at small capillary number (Ca ≪ 1). From the
above expression one can see that a film is always entrained, unless its width becomes
smaller than molecular sizes, in that case the film deposition is stopped. For the case
of partial wetting, the scenario is different and there is a critical value of the capillary
number, Cac, below which no film deposition happens and the meniscus remains static
(dry wetting). The picture is qualitatively similar for the case of a plate pulled out of a
liquid bath or plunged into the bath. The asymmetry between the two cases is due to the
viscosity contrast R, for the LLD problem R>1 whereas for the plunging plate problem
R<1.

2.1.1 Lubrication theory approximation

Recently an extension of the classical lubrication theory [22,23] was proposed to describe
the shape of the liquid-vapor interface under moving wall conditions [24]. A crucial
assumption there was that the Reynolds number, Re≪ 1, so that the flow in both fluid
components can be obtained from Stokes’ equation. The results shown for lubrication
theory model in this manuscript are obtained from [24]. The viscous singularity at the
moving contact line in the lubrication model is removed by using a slip length parameter,
ls, which is independent of the mechanism of the contact line motion. The interface profile
obtained from the lubrication model depends on the viscosity ratio,R, on the capillary
number, Ca and on the equilibrium contact angle, θe. Thus the steady state interface
profile obtained from the lubrication model and the multicomponent or multiphase LBM
models should be comparable, as long as the viscosity ratio, capillary number and the
equilibrium contact angle are the same.

3 The Lattice Boltzmann method

In this section we present the details of the numerical algorithms based Lattice Boltzmann
method. We employ the Shan-Chen model [25, 26] for multiphase (MP) and multicom-
ponent (MC) simulations. Although this method has been extended to incorporate a
second-neighbour couplings, to improve its isotropy [27, 28]. We simulate multiphase
and multicomponent flows using the D2Q9 LBM model (see Fig. 3) [29, 30]. As this
method is well established, we provide only the key features for the sake of fixing the
notations.

The LBM populations fi,α(x,t) correspond to distribution functions at position x and
time t for the component α and evolve according to the following equation:

fi,α(x+ei,t+1)− fi,α(x,t)=− 1

τα

[

fi,α(x,t)− f
eq
i,α(ρ,u

eq
α )
]

, (3.1)
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Figure 3: (Left panel) Schematic of the D2Q9 lattice showing the 2d spatial discretization (dots) and the nine
velocity vectors ei. (Right panel) Comparison of the contact angle obtained from theory, Eq. (3.6), and from
our multicomponent LBM simulations. The contact angle from the simulations were obtained by depositing a
droplet on a surface with different wetting properties G1

ads and measuring the resulting contact angle.

where the equilibrium distributions, f
eq
i,α, the density, ρα, and the momentum, ραuα, for

the two components are give by:

f
eq,α
i (ρ,u)=ραwi

[

1+
ei ·u
c2

s

+
uu : (eiei−c2

s I)

2c4
s

]

, (3.2a)

ρα(x,t)=∑
i

fi,α(x,t), (3.2b)

ραuα(x,t)=∑
i

fi,α(x,t)ei . (3.2c)

Weight wi in Eq. (3.2), and velocity ei are the lattice Boltzmann weights and the corre-
sponding lattice speeds [29, 30]. These weights are chosen such that it satisfies ∑i wi = 1
and ∑i eiwi = 0 and wi, corresponding to D2Q9 model, are given by w0 = 4/9, w1 =w2 =
w3=w4=1/9, and w5=w6=w7=w8=1/36. The total fluid density is ρ=∑α ρα and the
total hydrodynamic velocity is u=∑α uαρα/ρ. The effective kinematic viscosity is related
to the relaxation time of the different components ν=∑α c2

s (ταcα−0.5) [31], cα = ρα/ρ is
the concentration, and cs = 1/

√
3 is the speed of sound on the lattice. In absence of an

external force, each component satisfies the ideal gas equation of state p= c2
s ρ. For mul-

ticomponent simulation we are using two distribution functions (α = 1,2), whereas for
multiphase simulations we restrict ourselves to only one distribution function (α=1).

3.1 Multicomponent model

The multicomponent algorithm is based on a standard Shan-Chen lattice Boltzmann
method [25, 26, 31]. The non-ideal nature of the fluid is introduced by adding an internal
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force by shifting the lattice Boltzmann equilibrium velocity as [26, 31]:

u
eq
α =u

′+
ταF

α

ρα
, where u

′=
∑
α

ραuα/τα

∑
α

ρα/τα

. (3.3)

For the non-ideal interaction we use a Shan-Chen force [26, 31]:

F
α =−Gρα(x) ∑

i,α 6=α′
wiρα′(x+ei)ei , (3.4)

where {α,α′}= {1,2} indicate the fluid components while the coupling parameter G de-
termines the strength of the interaction and controls the surface tension. This force allows
the formation of interface between the different fluid components and the equation of
state is modified to p= c2

s (ρ1+ρ2)+Gc2
s ρ1ρ2 where the first term correspond to the ideal

gas and the second term is the non-ideal part due to the external Shan-Chen force. The
surface wetting is introduced by adding an additional force at the wall [32, 33]

F
α
ads =−Gα

adsρα(x,t)∑
i

wis(x+ei)ei , (3.5)

where s(x+ei)= 1 for a wall node and is 0 for a fluid node. The parameter Gα
ads can be

varied to control the wetting properties of the wall; in all our simulations we have used
G1

ads =−G2
ads. Huang et al. [32] proposed the following estimate for the contact angle

using Young’s equation:

cos(θe)=
G1

ads−G2
ads

G
. (3.6)

The plot in Fig. 3 (right panel) shows the verification of the Eq. (3.6) in our simulations
for different values of G1

ads=−G2
ads.

3.2 Multiphase model

For the case of a multiphase fluid we have only one fluid component, and only one dis-
tribution function i.e. α= 1. The non-ideal nature of the fluid is introduced by adding a
self-interaction Shan-Chen force of the form

F=−G11ψ(x)∑
i

wiψ(x+ei)ei , (3.7)

where, the pseudo-potential ψ = [1−exp(−ρ)], see [25]. The equation of state in this
case reads p = c2

s ρ+G11c2
s [ψ(ρ)

2]/2, and high (liquid) and low (vapour) density phase
separation is obtained by varying G11 [25]. The wetting properties of the surface can be
introduced by setting the density at the wall to a value ρw (ρ2<ρw <ρ1). This introduces
a modified Shan-Chen force at the wall that leads to a equilibrium contact angle [33, 34].
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3.3 Limitations and applicability

In this section we discuss some of the issues that emerge when using the LBM to study
the problem of a plate dynamically pushed or pulled into a liquid bath. We consider both
the multiphase and multicomponent models. To study the problem in all regimes, from
the static meniscus to the study of the liquid/gas entrainment, one is interested in small
as well as in large values of the capillary number. There are constrains on the possibility
to increase the capillary number within LBM: the increase of the wall velocity cannot be
pushed too close to the lattice sound speed, the viscosity cannot be increased too much
(otherwise the LBM becomes collisionless), the surface tension cannot be decreased too
much. For some of these issues partial solutions have been proposed, e.g., the use of
multirange models can provide an independent, and thus more flexible, control on the
density ratio and surface tension [27], but this involves reverting to more complex LBM
methods than the usual first-neighbor Shan-Chen model. Here we show that the multi-
component LBM method is the most suitable tool to investigate the case of small viscosity
ratios, while the multiphase is the most suited tool to investigate the case of high viscos-
ity ratio fluids. Our study shows that a single component multiphase model is ideally
suited to study film dynamics for high viscosity contrast. Whereas a multicomponent
model works better for nearly identical viscosity ratio.

Reducing the surface tension in the multiphase LBM models corresponds to very
small density contrast and causes important condensation/evaporation effects [35] at the
contact line (see Fig. 4). Partial-wetting conditions may also produce spurious checker-
board oscillations of important amplitude, these oscillations may be controlled by revert-
ing to a Lax-Wendroff streaming scheme [36]. The presence of an open boundary poses
important issues for what concerns the stability, the convergence and thus the usability
of the method.

490 495 500 505 510 515 520
0

2

4

6

8

10

12

14

16

18

20

x

y

445 450 455 460 465 470
0

2

4

6

8

10

12

14

16

18

20

x

y

Figure 4: The velocity field (black arrows) and interface position (solid red curve) close to the contact line,
for multicomponent LBM simulation (left panel, with R = 1), and multiphase LBM simulation (right panel,
with R=0.17). In both cases the plate is moving with velocity U=−0.01. The equilibrium contact angle and
capillary length for LBM simulations are 62.9o and 114 lu, respectively. Multiphase LBM simulation shows an
important mass flux across the interface (right panel), which is absent in the case of the multicomponent LBM
simulation (left panel). Base solid blue line is the plate position.
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Figure 5: Comparison of velocity ux(x,10) (left panel), and uy(x,10) (right panel) between multicomponent
LBM, and Huh-Scriven (HS) solution for wedge angle 82o. The plate velocity and viscosity ratio for both cases
are U=−0.01, R=1 respectively.

A common inconvenience with the Shan-Chen LBM model [25, 26] (as well as Cahn-
Hilliard models [37]) is the spurious velocity in the vicinity of the interface. These spu-
rious velocities arise due to insufficient isotropy in the calculation of density gradient.
Despite these spurious velocities at the interface, the Shan-Chen multiphase and mul-
ticomponent LBM models have shown a very good agreement with the sharp interface
models [38]. Fig. 5 shows that despite the discontinuity at the interface the velocity field
in multicomponent SC LBM is in good agreement with the Huh-Scriven model [12]. The
wedge angle in Huh-Scriven model [12] is the angle mage by the straight interface with
the plate in the fluid 1.

4 Results

In this section, we present results from both multiphase and multicomponent LBM sim-
ulations. For the static case, when the plate velocity U = 0, we use the Landau solu-
tion Eq. (2.1) to benchmark the results from the LBM simulations at varying the channel
width, H, and the equilibrium contact angle, θe. For this case we also compare the static
interface profile for two different boundary conditions and for multiphase and multicom-
ponent simulations.

The numerical study for the moving plate problem is divided into two parts: i.e.,
U> 0, the LLD problem, and U< 0, the plunging plate problem. The steady state inter-
face profile obtained from the multicomponent LBM simulations are compared with the
interface profile obtained from lubrication theory [24].

The complete list of LBM simulations for plunging plate problem are reported in Ta-
ble 1 while the parameters corresponding to the LLD problem are shown in Table 2. The
capillary length and the domain length, L, have been kept fixed for all the results pre-
sented here.

The capillary length for multicomponent simulations is obtained using lc=
√

γ12/(ρ1g),
whereas for the multiphase simulations the capillary length has been obtained using
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Table 1: List of multicomponent LBM simulations for the plunging plate problem. For these tests following
parameters remains unchanged: Length of the channel L = 640, interaction parameter G =−0.9, ρ1 = 0.06,
ρ2=2.00 are the low and high densities, respectively, for both fluid components, relaxation parameters τ1=τ2=1,

body force g=6.82×10−6 and the density difference at bottom boundary ∆ρ=0.02. The physical parameters
for these simulations are: lc = 114.73, γ21 = 0.183, dynamic viscosities µ1 = µ2 = 0.34, and the viscosity ratio
R=µ2/µ1=1.

H θe (degree) U

PP0-128 128 62.2 0.0

PP0-256 256 62.2 0.0

PP0-384 384 62.2 0.0

PP0-512 512 41.3, 52.3, 62.2, 70.3, 77.5, 102.5, 109.7, 117.8 0.0

PP0-1024 1024 62.2 0.0

PP1-128 128 62.2 -0.005

PP1-256 256 62.2 -0.005

PP1-384 384 62.2 -0.005

PP1-512 512 62.2 -0.005

PP1-1024 1024 62.2 -0.005

PP2-128 128 62.2 -0.01

PP2-256 256 62.2 -0.01

PP2-384 384 62.2 -0.01

PP2-512 512 62.2 -0.01

PP2-1024 1024 62.2 -0.01

Table 2: List of multicomponent LBM simulation for the LLD problem. We choose the parameters L, ρ1, ρ2,
G, τ1, τ2, g, lc, γ21, µ1, µ2, and R same as given in Table 1, except ∆ρ for these test is 0.008.

H θe (degree) U

LL0-128 128 62.2 0.001

LL0-256 256 62.2 0.001

LL0-384 384 62.2 0.001

LL0-512 512 62.2 0.001

LL1-128 128 62.2 0.005

LL1-256 256 62.2 0.005

LL1-384 384 62.2 0.005

LL1-512 512 62.2 0.005

lc =
√

γ12/((ρ1−ρ2)g). The surface tension values for both multiphase and multicom-
ponent simulations are obtained using the Laplace test [25], the relaxation parameter for
the multiphase LBM simulations presented in this manuscript is one (τ = 1). The two
relaxation parameters in the multicomponent LBM simulation are identical and equal to
one (τ1 =τ2 =1). A detailed study of LBM results based on different values of relaxation
parameters is beyond the scope of this paper.
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4.1 Static meniscus

As a first step we proceed with the validation of the LBM for the static case. We focus
on both open and wall bounded baths and on both the multiphase and multicomponent
methods. In the case of the multiphase model a body force g applied everywhere. A
side effect of the multiphase LBM is that the dynamic viscosity is proportional to the
density and therefore the method is restricted to compute film dynamics between two
fluids with high density ratio (e.g. water in air). For a multicomponent fluid, instead,
the density ratio cannot be easily pushed to large values, while the viscosity ratio can be
taken easily to be of order unity. Thus it is necessary to devise a different procedure to
give rise to the static meniscus.

For the multicomponent LBM simulation our approach consists in keeping the den-
sities of the two component equal, therefore we apply pressure and gravity only on one
fluid component, ρ1. In this test we validate this assumption by comparing the multicom-
ponent simulation with the multiphase LBM simulation where we apply pressure and
gravity on both phases. This approach has been validated against the multiphase case,
see Fig. 6 (left panel). The simulation parameters for multiphase simulation were: system
size L×H=640×256, G11=−6.0, ρl =2.65, ρv=0.075, τ=1, ν=0.1666, γ21=0.1444, body
force g=4.271×10−6, density difference at bottom boundary ∆ρ=0.027, lc =114.73, and
the static contact angle θe=62.2o. We use multicomponent simulation PP0-256 to compare
the static interface profile. The result for this test (see Fig. (6) (left panel)), shows a very
good agreement between the two approaches. This indicates that the both multiphase
and multicomponent LBM can be employed to study capillarity effects. We stress here
that the combined possibility to use either a multiphase or a multicomponent LBM is key
to investigate the meniscus dynamics at both large or small values for the viscosity ratios.

In order to investigate the effect of boundary conditions at the right boundary (see
Fig. 1), we are using open and wall boundary conditions on right boundary. In order to
implement the open boundary condition, we initialize the unknown incoming the popu-
lations to the equilibrium distribution f

eq
i,α(ρ,u). Since the calculation of the equilibrium

distribution function requires the information of the density and velocity, we use the val-
ues of density and velocity from the lattice nodes adjacent to the right boundary. The wall
boundary condition on right boundary is the standard mid-grid bounce back boundary
condition [29]. The Shan-Chen force which has been used to model the contact angle on
the wall (left boundary) has been switched off the for right boundary.

The first observation, using open boundaries, is that this boundary condition is very
sensitive to the initialization and its convergence times are extremely long, probably
due a minor dissipation, as compared to no-slip boundary condition. Once the inter-
face reaches a stationary state we compare the profiles obtained with the two boundary
conditions. As shown in Fig. 6 (right panel) the result from the two simulations are in
good agreement with each other as well as with Landau’s solution, at least close enough
to the contact line.

To further validate the multicomponent LBM for the study of the static meniscus, we
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Figure 6: A comparison of interface profiles for plate velocity U=0. (Left panel) Comparison of the analytical
solution Eq. (2.1), and multicomponent and multiphase simulations for the no-slip boundary conditions at the
right boundary. (Right panel) Comparison of analytical solution Eq. (2.1) and multicomponent LBM simulations
for two different boundary conditions on the right boundary.
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Figure 7: (Left panel) Comparison of the analytical solution Eq. (2.1) (solid red curve), and LBM solution for
different channel width H for U = 0. (Right panel) Validation of the LBM solution for different static contact
angles against the analytical solution Eq. (2.1) (solid red curve).

investigate systems with different bath width, H (with respect to the capillary length, lc)
and with different wall wettability. We compare all these cases against Landau’s solution
Eq. (2.1). The parameters employed for the multicomponent LBM are reported in Table 1
(PP0-128,··· ,PP0-1024). As already explained the body force g and the pressure jump
counteracting the hydrostatic pressure are only applied on one fluid component (ρ1).
These simulations are done using mid-grid bounce back boundary conditions [29] at both
left and right walls; the wetting condition is used on the plate wall. The result for the test
with different bath widths H are shown in Fig. 7 (left panel), where lengths are expressed
in units of the lc and the contact line position is shifted to pass through the origin. We
notice that close to the contact line the solution is always in good agreement with the
analytical one, but only for larger system sizes the accuracy extends up to well outside
the static meniscus. In particular the reference simulation with width as large as H=1024
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is matching the analytic solution till well inside the bath. The second validation involves
the multicomponent LBM simulation (PP0-512) with different static contact angles θe =
41.3o,··· ,117.8o and is reported in Fig. 7 (right panel). The LBM results for these tests are
in good agreement with Landau’s solution Eq. (2.1).

4.2 Results for moving plate (dry regime)

In this section we discuss the case when the plate is either pulled (U > 0) or plunged
(U<0) into a liquid bath of density ρ1. For small plate velocity, as already discussed, one
does not expect the formation of a liquid or gas film, we refer to this regime as to the dry
regime. We report two sets of simulations for the study of interface profile for the case of
moving plate.

In first set of simulations we show the multicomponent LBM for simulations for the
LLD problem (U> 0), and compare these results against the lubrication theory approx-
imation [24]. Parameters corresponding to this set of LBM simulations are shown in the
Table 2. Fig. 8 (left panel) shows the result for Ca = 0.0187 and different H, and Fig. 8
(right panel) shows the result for Ca=0.0938 and different H. The multicomponent LBM
results are in good agreement, for higher H, with the corresponding result from lubrica-
tion theory based model using a value ls = 10−3 for the slip length. We are using wall
boundary condition on right boundary for these simulations.
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Figure 8: (Left panel) Comparison of the steady state interface profile for plate velocity U = 0.001 between
lubrication theory (solid red curve) and the multicomponent LBM simulations for different H. (Right panel)
Comparison of the steady state interface profiles for the case of plate velocity U=0.005 between the lubrication
theory (solid red curve) and the multicomponent LBM simulations. For these simulation R=1, and θe =62.9o.
A detailed list of parameters for these simulations is shown in Table 2.

One can estimate a-priory that the slip length, ls, for LBM will be in the order of one
grid point(in lattice units). For a quantitative comparison between LBM and LT one need
to tune the definition of the slip length in the two cases. This was done for one particular
wall velocity (see Fig. 9, left panel). This value of ls for LT was then used for quantitative
matching for all Ca values.

In Fig. 9 (left panel) we report the steady state interface profile for the case of a plung-
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lubrication theory for different ls and multicomponent LBM simulation (solid red curve). (Right panel) Com-
parison of steady state interface profile at plate velocity U=−0.005 for different boundary conditions. For these
simulation R=1, and θe =62.9o.
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Figure 10: (Left panel) Comparison between lubrication theory (solid red curve) and multicomponent LBM
simulations at U=−0.005 for varying H. (Right panel) Same as in the left panel but for U=−0.01. For these
simulation R=1, and θe =62.9o.

ing plate problem (U<0) (see Fig. 1(right panel)) for a small capillary number Ca=0.0187.
To compare against the solution from lubrication theory we need to estimate the slip
length. In the case of the LBM we can estimate this as being in the order of one lattice
site; the agreement with lubrication theory is quite good once the slip length is better
tuned (roughly a factor 3 with respect to our estimate). In Fig. 9 (right panel) we show
that for this particular capillary number the shape of the interface does not seems to be
sensitive to the boundary conditions used on the right boundary of bath (see Fig. 1). In
Fig. 10 (left panel) it is further shown that the solution obtained converges quite rapidly
to the solution for an infinite bath, similar to what was found for the case of a static wall.
When the capillary numbers is increased, see Fig. 10 (right panel), we not only observe
important deviations from the lubrication theory solution but also important dependence
on the H.
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5 Conclusions

The behavior of a fluid at the three-phases contact, e.g. amongst a solid a liquid and
its vapor, has been studied at length and still poses many interesting and fundamental
scientific questions. Here we discussed the possibility to employ simple and standard
implementations of the Lattice Boltzmann method for multiple phases or components in
order to study the problem under both static and dynamic (i.e. moving wall) conditions.
We showed that the multicomponent LBM can effectively replace the multiphase mod-
eling by applying the gravitational field, along with balancing hydrostatic pressure at
the bottom, on only one fluid component. The multicomponent LBM is less sensitive to
condensation and evaporation phenomena at the contact line and thus outperforms the
multiphase method for the case of small viscosity ratio between the two fluids.

Outlook on entrainment regime

For the static meniscus case we observe a rather fast convergence towards the analytic so-
lution at increasing the ratio between the bath width and the capillary length; capillarity
effects due to change in the contact angle were quantitatively reproduced. In the case of
moving wall we observe agreement with lubrication theory solutions only at small cap-
illary numbers. For larger capillary numbers we observe a rather strong dependency on
the capillary length, presumably due to a stronger influence of the large scale flow which
can occur due to presence of the confining bath wall.

Though this was out of the scope of the present study, it may be possible to extend
and improve on these results by reverting to more sophisticated (and computationally ex-
pensive) implementation of the LBM. As an example multirange interaction can provide
extended flexibility in the control of the physical parameters.

The proposed LBM can be used to study more complex boundary conditions, tran-
sient flow regime and film entrainment. Results in this direction will be reported else-
where [39].
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