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PACS. 47.27 - i - Turbulent flows, convection, and heat transfer. 
PACS. 47.10+g - Fluid dynamics: general theory. 

Abstract. - In this letter we present numerical and experimental results on the scaling 
properties of velocity turbulent fields in the range of scales where viscous effects are acting. A 
generalized version of extended self-similarity capable of describing scaling laws of the velocity 
structure functions down to the smallest resolvable scales is introduced. Our findings suggest the 
absence of any sharp viscous cut-off in the intermittent transfer of energy. 

The word anomalous scaling (AS) usually refers to scaling laws in a physical system which 
cannot be deduced from naive dimensional arguments. It is always a challenging problem in 
physics to understand the origin of anomalous scaling and to formulate a predictive 
theoretical framework to compute the anomalous-scaling exponents. 

Among the many physical systems showing anomalous scaling, fully developed three- 
dimensional turbulence (FDT) has been widely investigated in the last few years (see [l]  for a 
recent overview of the experimental and theoretical state of the art). According to Kolmogorov 
1941 theory[2], the small-scale statistical properties of FDT obey the relation 

where Sv(r) = v(x + r )  - v(x)  is the difference of velocity a t  scale r, v0 is the r.m.s. velocity at 
the integral scale L,  E is the mean energy dissipation and the Ap's are dimensionless 
constants. Equation (1) is not satisfied both in real experiments and numerical simulation. 
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Indeed, one has to replace it by anomalous (also known as intermittent) scaling 

where &I) is now a non-linear function of its argument. 
At variance with expression (l), the scaling (2) is anomalous in the sense that it cannot be 

deduced by naive dimensional counting. In order to get a more precise measurement of the 
C(p) exponents and to highlight the anomalous scaling, it has been proposed in [3,4] to look at 
the self-sealing properties of the velocity structure functions, namely 

This new way of looking at the scaling properties has been tested in many different 
experimental and numerical instances [5]. In all cases, when small-scale homogeneity and 
isotropy were satisfied, a dramatic improvement in the width of the scaling region was 
observed. This almost universal property of turbulent flows was then called Extended 
Self-similarity (ESS). ESS must be interpreted as the signature of some non-trivial universal 
physics happening at the transition between the inertial and viscous scale. It tells us that, by 
using the appropriate functional form, scaling is present also at scales where in principle 
viscous effects should already be important. 

The aim of this letter is to present a generalized version of ESS (GESS) which turns out 
to be much more universal and allows us to draw a concrete theoretical framework of the 
energy cascade down to the smallest resolvable scale, ie. in a region where no anomalous 
scaling was supposed to  be detected. 

The physical outcome of our findings is that whatever is the mechanism responsible for 
anomalous scaling in FDT, this mechanism is acting also at extremely small scales and, within 
experimental errors, no evidence of a cut-off (due to dissipation) is observed. 

Let us first introduce the dimensionless structure functions 

According to  Kolmogorov theory, Gp ( r )  should be a constant both in the inertial range and in 
the dissipative range, although the two constants are not necessarily thought to be the same. 
Because of the presence of anomalous scaling, G p ( r )  are no longer constants in the inertial 
range. 

Our main point consists in studying the self-sealing properties of the dimensionless 
structure functions, namely for any p and q, we consider the scaling relation 

where we have by definition 

e ( p ,  q )  is given by the ratio between deviations from the K41 scaling. 
Equation (6) is certainly satisfied for all cases where an anomalous scaling is observed for 

the velocity structure functions. In particular, eq. (6) is also satisfied when ESS is observed. 
On the other hand, it is reasonable to imagine that the velocity field becomes laminar in the 
subviscous range, ( I6v(r) I P )  - rp, still preserving some intermittent degree parametrized by 
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Fig. 1. - a) Log-log plot showing ESS scaling for the longitudinal structure functions, I6v(r) 1 11s. 
I 6v(r) I 3. Data are taken from a direct numerical simulation of a shear flow at ReA = 40. Each point 
corresponds to a space separation of a Kolmogorov scale. The computation of structure functions is 
performed at  points where the shear is minimum. The dashed line is the best fit for the slope in the 
scaling region. b)  The same as a) but for points where the shear is maximum. At variance with the 
previous case ESS is not observed. 

the ratio between corrections to K41 theory. If this is the case, one can argue that Q ( p ,  q )  is 
the only quantity that can stay constant along all the cascade process: from the integral to the 
subviscous scales. 

We want to support our previous discussion by analysing a data set obtained from a direct 
numerical simulation of 3-dimensional Navier-Stokes equations for a Kolmogorov flow 
(see [6] for technical details). 

The flow is forced such that the stationary solution has a non-zero spatial-dependent mean 
velocity (U(.)) = G sin (( 8n/L)x), where x̂  is the versor in the direction E ,  and L is the integral 
scale. 

In fig. la)  and b )  we show the standard ESS analysis by plotting ( I 6v(r) I ) vs. ( I 6v(r) I ) 
for two specific levels x, and x b ,  where 2, was chosen at minimum shear and x b  at maximum 
shear (in this case ( ...) must be interpreted as averages over time integration at  fixed 
x-level). The ReA number of the simulation was 40 and no scaling laws were present if 
examined as a function of the physical scale r. Nevertheless, it is clear from fig. la) that ESS 
is observed for the case of minimum shear and it is not observed for the case of maximum 
shear (fig. lb)). Violations of ESS have already been reported in other cases where strong 
shear effects were argued to be relevant [7,4]. 

On the other hand, the self-sealing (6) (hereafter referred to as G-ESS) works perfectly 
well at  all resolvable scales, as can be seen in fig. 2. 

The analysis done for the Kolmogorov flow has been repeated for many different 
experimental set-ups [3,8,9], done at different Reynolds number, and for some direct 
numerical simulation, with and without large-scale shear. In fig. 3 we have plotted the scaling 
of G6 ( r )  2)s. G5 ( r )  for all cases previously cited. As one can see the straight-line behaviour is 
very well supported. Within experimental errors (of the order of 3%) no deviations from the 
scaling regime are detected. Similar results are obtained, using different G,(r) and 
G, (r). 

Finally, let us remark a possible theoretical interpretation of GESS based on a recent 
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model proposed in [lo]. According to [lo], the anomalous exponents I;@) are well fitted by the 
formula 

where ho and do are free parameters describing the geometric nature of the coherent 
structures in turbulent flows, and j3 is defined such that g(3) = 1. Using (7) and (6), one gets 

The interpretation of G-ESS within the model proposed by [lo] can be easily obtained by (8). 
Indeed, one can think that the geometric characteristic of the coherent structures (defined in 
terms of ho and do)  can be scale dependent while the non-linear intermittent energy transfer 
(parametrized i n [ l O ]  by #?) is scale independent. The possible outcomes or failures of this 
interpretation are left for future works. 

In a more detailed version of this study [ll] we will discuss how it is possible to reconcile 
the idea of multiplicative cascades with this continuous energy transfer from the inertial 
range to the viscous range. We will present also numerical evidences that this new scaling 
behaviour is in disagreement with previously proposed ideas of a statistical-dependent 
viscous cut-off as predicted in all the standard multiplicative multifractal models [12]. 

Our results may have theoretical and applied implication. For instance, the presence of 
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Fig. 2. - Log-log plot of G6(r )  vs. G5 ( T )  for the shear flow for both cases of maximum shear (circles) and 
minimum shear (triangels). At variance with the standard ESS analysis, we can now observe a clean 
scaling behaviour which extends down to the smallest resolvable scale. 

Fig. 3. - Log-log plot of G6 ( T )  vs. GS ( T )  for different laboratory and numerical experiments. Data taken 
in a wake behind a cylinder, where standard ESS was not observed [3] (crosses). Data taken from the 
region with log-profle of a boundary layer (courtesy of G. Ruiz Chavarria) where standard ESS was not 
observed (circles). Data taken from a direct numerical simulation of thermal convection[S] where 
standard ESS was observed (squares). Data from a direct numerical simulation of a channel flow where 
standard ESS was not observed[91 (triangles). 
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intermittent fluctuations at all scales might cast serious doubts on the validity of 
renormalized perturbative expansion of the NS equations which are usually based on 
perturbative expansion around the linearized equations. 
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