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We present a comprehensive study of water drops sliding down chemically heterogeneous surfaces

formed by a periodic pattern of alternating hydrophobic and hydrophilic stripes. Drops are found to

undergo a stick-slip motion whose average speed is an order of magnitude smaller than that measured on a

homogeneous surface having the same static contact angle. This motion is the result of the periodic

deformations of the drop interface when crossing the stripes. Numerical simulations confirm this view and

are used to elucidate the principles underlying the experimental observations.
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Controlling and predicting the equilibrium and dynami-
cal properties of drops on chemically heterogeneous sur-
faces is a major scientific challenge, relevant not only for
fundamental research [1–4] but also for an ample variety of
applications, particularly in droplet-based microfluidics
[5–7]. Understanding the liquid dynamics is essential to
design new smart coatings that, for example, guide the
wetting drops along certain directions [8,9]. When drops
are deposited on a surface functionalized with stripes of
alternating wettability, they may assume elongated shapes,
which are characterized by different contact angles in the
directions perpendicular and parallel to the stripes. This
morphological anisotropy has been the object of intense
scrutiny in a variety of situations [10–14]. Studies about
the sliding of drops on striped surfaces also report an
anisotropic behavior: drops slide more easily along the
alternating stripes than across them [12,15], and periodic
variations in the contact angles, possibly accompanied by
fluctuations in the drop velocity, take place along this latter
direction [15]. Theoretical studies employing a long-wave
evolution equation for the drop profile [16–18] provide
evidence for a stick-slip motion when the drop crosses
stripes of different wettability, although they are restricted
to droplets with small contact angles and small wettability
contrasts.

Hereafter, we present the first experimental evidence of
a stick-slip motion of water drops sliding down heteroge-
neous surfaces having parallel hydrophilic and hydropho-
bic stripes with a large wettability contrast of about 70�.
The mean speed of the sliding drops is found to be sys-
tematically affected by the patterning details, with a slow-
ing down that can easily reach up to a factor 10 with respect
to the corresponding homogeneous coating with the same
static angle. The experiments are used in a synergistic
interaction with numerical simulations to reveal how
such a big change in the dynamical evolution is due to a
different balancing between capillary, viscous and body
forces in the presence of stick-slip.

Chemically heterogeneous surfaces are produced
through micro contact printing starting from the realization
of masters with rectangular grooves by photolithography.
Such masters are replicated in polydimethilsiloxane
(PDMS) to obtain the stamp [19] for the printing of a
solution of octadecyltrichlorosilane (OTS) in toluene on a
glass substrate. The result is a surface presenting alternat-
ing hydrophobic (OTS regions) and hydrophilic stripes
(uncoated glass regions). Sample characterization is per-
formed through atomic force microscopy and the conden-
sation figure method as shown in Fig. 1(a). Parallel stripes
of equal width and different wettability can be clearly
evinced having a surface roughness of less than 10 nm
measured over an area of 10 �m� 10 �m. The resulting
pattern has a periodicityW � 200 �m. The printed pattern
is also analyzed in terms of contact angle measurements
through the Cassie-Baxter equation [1]. Figure 1(b) shows
the profile of a drop deposited on the heterogeneous sur-
face. Due to the size of the stripes and the drop volume, the
effects of morphological anisotropies [12,14] are not very
pronounced, yielding an equilibrium contact angle parallel
to the stripes �het;k ¼72��3�, which fits well with the

Cassie prediction �het ¼ 75� � 2� calculated from the
pattern details.
Water drops of the desired volume V (� 30 �l) are

gently deposited on the already inclined surface through
a vertical syringe pump. A setup similar to [20] allows us to
acquire images of the sliding drops [see Fig. 1(c)], which
are analyzed with a custom made program [21].
Figure 1(d) shows the positions of the front and rear

contact points of a drop sliding down the heterogeneous
surface perpendicularly to the stripes. This is more clearly
seen in the top panel of Fig. 2, which shows the drop
dynamics in a time window expanded by a factor � 10
with respect to the time scale of Fig. 1(d). The drop clearly
advances with a stick-slip behavior, with jumps of the order
of the pattern periodicity W (see also [22]). At the begin-
ning of the time frame considered, the rear contact line is
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pinned while the front line slowly advances until around
t � 0:25 s when it suddenly jumps forward. In correspon-
dence, a drop in �A is observed (see the middle panel of
Fig. 2). Subsequently, the front contact line hardly moves,
while the rear line at t � 0:4 s jumps by a distance equal to
W. The process then repeats itself. This peculiar dynamics
has never been observed experimentally on chemically
patterned surfaces. In previous studies this stick-slip mo-
tion has not been seen probably because the sliding
occurred across stripes having a small wettability contrast
[15]. Stick-slip has been found in the movement of water
nano-droplets induced by an electron beam [23]. A stick-
slip has also been reported in the spreading of a drop of
increasing volume along the direction orthogonal to the
stripes while in the other direction the contact line moves at
a constant speed [24].

To better understand this motion, we have repeated the
measurement with a glass surface coated with a homoge-
neous OTS layer deposited from the vapor phase, which
presents a static contact angle �eq � 71� � 2� that is close

to the Cassie angle of the heterogeneous surface.
Furthermore, the inclination angle of the OTS surface
and the water drop volume are the same as in the case of
the heterogeneous surface. Statically, then, the two systems
look pretty much the same, but dynamically their behavior
is quite different. On the homogeneous substrate, as
expected, the motion is uniform as shown in the bottom

panel of Fig. 2 and �A practically does not change (see
middle panel). Moreover, the drop velocity on the homo-
geneous surface is about 10 times larger than the average
velocity on the heterogeneous surface (see bottom panel).
This physical picture is corroborated with the use of

numerical simulations based on the lattice Boltzmann
models [25–27]. We shall investigate a two-dimensional
situation to retain the essential features of the stick-slip
dynamics [18,28,29] and, at the same time, achieve a
reasonably large resolution to resolve the hydrodynamic
equations inside the drop. At variance with respect to other
numerical simulations done in the quasistatic limit [28,29]
or referring to single contact line motion [30], wewill show
explicitly how the different terms in the equations of
motion balance in the stick-slip dynamics. The force bal-
ance is reproduced through the Navier-Stokes equation for
a binary mixture with densities �A and �B (� ¼ �A þ �B),
with a body force density, �Ag sin�, applied to the rich
phase inside the droplet (�A) along the x direction,

@tð�uiÞþ@jð�uiujÞ¼�@jPijþ@j�ijþ�Agsin��x;i; (1)

FIG. 2 (color online). Top: time evolution of the position of
the rear and the front contact points of a drop sliding down the
heterogeneous surface tilted by � ¼ 56�. Snapshots show the
different contact angles before and after the jumps. Middle:
variation of the advancing contact angle �A of the same drop
and of a different one sliding down an homogeneous surface with
a �eq ¼ 71� inclined by the same �. Bottom: corresponding

evolution of the frontal and rear contact points on heterogeneous
and homogeneous surfaces.

FIG. 1 (color online). (a) Condensation figure on a heteroge-
neous surface: big (small) water drops form on hydrophilic glass
(hydrophobic OTS). Parallel stripes with periodicity W can be
easily distinguished according to the size and distribution of the
drops. (b) Static profile of a water drop on the heterogeneous
surface. (c) Lateral view (top right) and contact line view
(bottom left) of the sliding drops on inclined substrates.
(d) Typical stick-slip time dependence for the front and rear
contact points of the sliding drop.
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where�ij is the viscous stress tensor�ij ¼ �ð@iuj þ @juiÞ,
with � the dynamic viscosity, and ui the velocity of the
mixture. The pressure tensor Pij accounts for the surface

tension [31] at the interface between the two fluids, as well
as the capillary forces at the contact line via a suitable
imposition of wetting boundary conditions [29]. A detailed
description of the model can be found in other publications
[31–33]. The diffuse interface Navier-Stokes Eq. (1) is
integrated over the drop volume and made dimensionless
with respect to the surface tension force

MaðtÞ ¼ FcapðtÞ þDðtÞ þ Fg; (2)

where aðtÞ is the acceleration of the drop of massM and Fg

is the down-plane component of the gravitational force.
The term Fcap (calculated as the integral of �@jPij in (1))

accounts for the nonuniform pressure and curvature dis-
tortion and also the capillary force at the contact line. The
function DðtÞ (the integral of @j�ij in (1)) quantifies

the drag force due to viscous shear. We have reproduced
the same wettabilities experimentally investigated in Fig. 2
and tuned the gravitational force in Eq. (1) in such a way to
get the stick-slip motion of the droplet with an average
velocity of an order of magnitude smaller than that of the
homogeneous case.

The stick-slip motion is well captured in the numerical
simulations as shown in the top graph of Fig. 3, which
displays the time evolution of the positions of the front and
rear contact points normalized to W, and T indicates the
time period required for a displacement equal to W. From
the density snapshots it is possible to determine precisely
the positions where the contact line pins and depins with a
resolution that is impossible to achieve in an experiment.
The rear contact line gets pinned (snapshots a) before
entering the hydrophobic area (yellow region at the base
of the drop). A sudden jump makes it overcome the local
energy barrier and enter the hydrophilic area (red region at
the base of the drop) (snapshots b). The front contact line,
in turn, stops before entering the hydrophobic regions. As
the drop pins with an increasing advancing angle, it slowly
penetrates through the hydrophobic area (snapshots c),
similarly to what is observed in Fig. 2. A sudden jump
follows when the front enters the hydrophilic area (snap-
shots d). We have also extended the simulations to the
heterogeneous surface investigated in [15], which presents
a lower wettability contrast of 10�, and found only periodic
oscillations in the velocity without the occurrence of a stick
phase in agreement with the experiment.

The bottom graph of Fig. 3 presents the analysis of the
balance Eq. (2) for a time frame of a period T of the stick-
slip dynamics and compares it to the homogeneous case,
for the same inclination angle. The gravitational force Fg is

constant in time. When the drop is pinned, Fg is almost

balanced by Fcap (snapshots c). Immediately after, the front

contact line jumps forward and the drop depins (Fcap ! 0):

the drop experiences a localized acceleration aðtÞ with a

consistent dip in the drag force. The drop gets pinned again
until the rear contact line jumps forward. The homogene-
ous case is instead steady: the energy provided by Fg is

almost entirely transferred into dissipation, apart from the
deformation of the interface which causes a term Fcap

smaller by a factor �10 with respect to the heterogeneous
case. Overall, we see that the effective dissipation in the
heterogeneous case is strongly suppressed as compared
with the stationary homogeneous case. This is because
the large wettability contrast causes additional energy to
be stored in the nonequilibrium configuration of the drop
which can pin before the contact lines jump forward.
Our next goal is to quantify the dependence of the drop

average speed on the inclination angle. Again, this will be
achieved by comparing the homogeneous and heteroge-
neous cases. We have performed measurements with dif-
ferent coatings of glass slides produced with different
molecules and methods, obtaining contact angles ranging

FIG. 3 (color online). Top graph: time evolution in dimension-
less units (see text for details) of the front (left axis) and rear
(right axis) contact points of a 2D drop on the heterogeneous
substrate. The horizontal sequence of snapshots, extracted from
numerical animations [22], shows the whole drop motion. Color
map on top is the density in Lattice Boltzmann units. Low
density regions appear dark (blue) while high density regions
are light (red). The vertical sequence (on the right) reports the
corresponding enlargements to better appreciate the position of
the contact line. Consistently, light (yellow) areas at the drop
base represent hydrophobic regions, while red (dark) stripes
represent hydrophilic regions. Bottom: time evolution of the
various terms in the balance Eq. (2) for the heterogeneous
and the homogeneous case chosen to display the same static
morphology.
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from �eq ¼ 71� � 2� to �eq ¼ 115� � 2�. The sliding of

water drops of volume V down these surfaces has been
studied at different inclinations �. For angles above the
sliding angle, the drop moves at the constant speed U,
which increases with the inclination angle. Such motion
is the result of a balance between the down-plane compo-
nent of the drop weight and the viscous resistance,
plus a capillary force related to the nonuniformity of the
contact angle along the drop perimeter [2,20]. For small
drops, this leads to the following scaling law between the
capillary number Ca ¼ �U=�, where � is the surface

tension and � the viscosity, and the Bond number Bo ¼
ð3V=4	Þ2=3�g sin�=�, � being the density [34]:

Ca � ðBo� BocÞ=cð�Þ; (3)

where the function cð�Þ is related to the solution of the
hydrodynamic flow [35] in the wedge. In principle, the
angle � is the dynamical contact angle. Nevertheless, it is

plausible to approximate � � �eq either when dynamic

contact angles do not deviate severely from the equilibrium
contact angle or when the mean of the advancing and
receding contact angles is close to �eq [34]. We therefore

get cð�Þ ¼ ð1� cos2�eqÞ=ð�eq � sin�eq cos�eqÞ multiplied

by an angular function relating the radius of the bottom
contact area to the volume [34]. Data displayed in the inset
of Fig. 4 refer to drops of V � 30 �l sliding on both the
heterogeneous and the homogeneous surfaces with the
same static contact angle. The Boc value is deduced by
extrapolating the linear fit of the sliding points to Ca ¼ 0.
It is evident that the two surfaces display a different
dynamic behavior, the heterogeneous one being character-
ized by a larger pinning. To better compare the sliding on
the various surfaces, in the top panel of Fig. 4 we plot all
the data in terms of (Bo� Boc). In this way, the points lie
on straight lines passing through the origin, whose slopes
depend on the surface wettability. The slopes as a function
of �eq are displayed in the bottom panel of Fig. 4: the

agreement between the angular dependent prefactor of
Eq. (3) and the experimental data are quite reasonable for
all the investigated surfaces, including the heterogeneous
one. This indicates that the effects of the heterogeneous
patterning can be readsorbed in a renormalized value of the
Boc, representing the increase of the static energetic barrier
that must be overwhelmed by gravity before the drop starts
to move, an observation that bears similarities with the
results discussed in [28].
In summary, we have observed both experimentally and

numerically that a water drop, sliding across alternating
stripes having a large wettability contrast, undergoes a
characteristic stick-slip motion. The average speed of this
nonlinear motion is an order of magnitude smaller than that
measured on a homogeneous surface having the same static
contact angle. The slow down is the result of the pinning-
depinning transition of the contact line which causes en-
ergy dissipation to be localized in time and large part of the
driving energy to be stored in the periodic deformations of
the contact lines when crossing the stripes. This suggests
that the motion of drops can be passively controlled by a
suitable tailoring of the chemical pattern. Experiments
are under way to see how the shape of the tiles forming
the periodic, heterogeneous patterns affects the drop
dynamics.
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