
Computers & Fluids 80 (2013) 55–62
Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
An optimized D2Q37 Lattice Boltzmann code on GP-GPUs
0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.06.003

⇑ Corresponding author. Tel./fax: +39 0532974614.
E-mail address: schifano@fe.infn.it (S.F. Schifano).

1 Now at University of Regensburg, Regensburg, Germany.
2 Now at ‘‘La Sapienza’’ University, Roma, Italy.
Luca Biferale a, Filippo Mantovani b,1, Marcello Pivanti c,2, Fabio Pozzati d, Mauro Sbragaglia a,
Andrea Scagliarini e, Sebastiano Fabio Schifano c,⇑, Federico Toschi f, Raffaele Tripiccione g

a University of Tor Vergata and INFN, I-00173 Roma, Italy
b Deutsches Elektronen Synchrotron (DESY), D-15738 Zeuthen, Germany
c University of Ferrara and INFN, I-44124 Ferrara, Italy
d Fondazione Bruno Kessler Trento, I-38122 Trento, Italy
e University of Barcelona, S-08007 Barcelona, Spain
f Eindhoven University of Technology, Eindhoven, The Netherlands and CNR-IAC, I-00185 Roma, Italy
g University of Ferrara, INFN and CMCS, I-44124 Ferrara, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 September 2011
Received in revised form 1 June 2012
Accepted 4 June 2012
Available online 19 June 2012

Keywords:
Computational fluid-dynamics
Lattice Boltzmann methods
GP-GPU computing
We describe the implementation of a thermal compressible Lattice Boltzmann algorithm on an NVIDIA
Tesla C2050 system based on the Fermi GP-GPU. We consider two different versions, including and not
including reactive effects. We describe the overall organization of the algorithm and give details on its
implementations. Efficiency ranges from 25% to 31% of the double precision peak performance of the
GP-GPU. We compare our results with a different implementation of the same algorithm, developed
and optimized for many-core Intel Westmere CPUs.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Lattice Boltzmann method (LB) is a computational approach
that describes fluid dynamics by lattice discretization in both posi-
tion and momentum space [1]. Key advantages are the relative
ease with which complex physics can be implemented in the mod-
el, as well as good computational efficiency on massively parallel
computer architectures.

Recently, the use of General Purpose Graphics Processing Units
(GP-GPUs) to accelerate non-graphics computations has drawn
much attention, as the computational power delivered by just one
GPU is of the order of several hundreds Gigaflops, exceeding by al-
most one order of magnitude that of a computing system based on
standard CPUs. In general terms, GP-GPUs architectures extensively
exploit internal parallelism to boost their performance level. This
makes it potentially rewarding to use GPU-systems for Lattice
Boltzmann (LB) algorithms. Several groups have recently proposed
GPU-based implementations of a variety of LB algorithms in two
and three dimensions; see for example [2] for a D2Q9 and [3] for
a D3Q13 model (LB algorithms are usually labeled as DnQm, where
n is the number of space dimensions and m is the number of popu-
lations; see the following section for a definition of population).
In the present contribution, we focus on a substantially more
complex D2Q37 LB scheme able to correctly describe a compress-
ible thermal fluids that obeys the equation-of-state of a perfect gas.
From the point of view of a computer implementation, the LB
D2Q37 model that we consider has substantially more severe
requirements than earlier schemes, both for the floating-point
units and the memory interface of the processor. We describe an
efficient implementation of this algorithm on state-of-the-art GP-
GPUs; we also compare performance results on these processors
and on recent many-core CPU architectures.

2. Lattice Boltzmann methods

In this section, we introduce the computational methods that
we adopt, based on an advanced D2Q37 LB scheme, that correctly
reproduces the equation of state of the fluid, regarded as a perfect
gas ðp ¼ qTÞ; full details of the algorithm are given in [4,5].

The lattice description of the dynamics that we want to study is
given in terms of an LB discretization on a regular lattice, based on
a set of lattice populations ðflðx; tÞÞ; each has a given lattice velocity
cl; populations evolve in (discrete) time according to the following
equation:

flðxþ clDt; t þ DtÞ � flðx; tÞ ¼ �
Dt
s

flðx; tÞ � f ðeqÞ
l

� �
ð1Þ

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2012.06.003&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2012.06.003
mailto:schifano@fe.infn.it
http://dx.doi.org/10.1016/j.compfluid.2012.06.003
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


56 L. Biferale et al. / Computers & Fluids 80 (2013) 55–62
In our case we study a 2-dimensional system (D ¼ 2 in the fol-
lowing); the set of populations has 37 elements (hence the D2Q37
acronym), corresponding to (pseudo-) particle moves up to three
lattice points away, as shown in Fig. 1. Macroscopic density q,
velocity u and temperature T are defined in terms of the flðx; tÞ:

q ¼
X

l

fl; ð2Þ

qu ¼
X

l

clfl; ð3Þ

DqT ¼
X

l

cl � uj j2fl; ð4Þ

and the equilibrium distributions ðf ðeqÞ
l Þ are themselves function of

these macroscopic quantities [1].
In extreme conciseness (full details can be found in [4,5]), one

makes contact between this synthetic dynamics and the true
dynamics of a compressible gas, starting with a kinetic and thermal
description of a system of variable density, velocity and internal
energy K, subject to a local body force g (gravity); one then is able
to show that, after appropriate shift and re-normalization of the
velocity and temperature fields, one recovers, through a Taylor
expansion in Dt, the correct thermo-hydrodynamical equations:

Dtq ¼ �q@iu
ðHÞ
i ð5Þ

qDtu
ðHÞ
i ¼ �@ip� qgdi;2 þ m@jju

ðHÞ
i ð6Þ

qcvDtT
ðHÞ þ p@iu

ðHÞ
i ¼ k@iiT

ðHÞ; ð7Þ

where superscripts H flag renormalized (physical) quantities,
Dt ¼ @t þ uðHÞj @j is the material derivative and we neglect viscous
heating; cv is the specific heat at constant volume for an ideal gas,
p ¼ qT ðHÞ, and m and k are the transport coefficients; g is the accel-
eration of gravity.
3. LB implementation

The LB approach to computational fluid-dynamics offers the
advantage of a huge degree of available parallelism. We discuss
now how it can be easily identified and exploited by emerging
HPC architectures.
Fig. 1. Visualization of the stream phase for the D2Q37 LB scheme. Populations at
distance 1, 2, 3 lattice-points and moving with velocities cl , shown by the arrows,
are gathered at the lattice-point at center.
Defining y = x + clDt and rewriting the main evolution equation
as:

flðy; t þ DtÞ ¼ flðy � clDt; tÞ � Dt
s

flðy � clDt; tÞ � f ðeqÞ
l

� �
ð8Þ

one easily identifies the overall structure of the computation; in or-
der to evolve the system by Dt, one has to perform the following
steps at each point y in the discrete grid:

1. gather the fields fl corresponding to populations that drift
towards y with velocity cl; these data words are stored at neigh-
boring sites in the lattice;

2. perform all mathematical processing needed to compute (in a
completely local fashion) the quantities appearing in Eq. (8).

Step 2 is slightly complicated if one wants to take into account
reactive effects (combustion), as the divergence of the velocity field
has to be explicitly computed. This means that a further gather
operation must be performed midway in this (otherwise local)
compute intensive step.

The key remark is that both steps above are completely uncor-
related for different points of the grid, so we can parallelize accord-
ing to any convenient schedule, as long as we make sure that, for
all grid points, step 1 is performed before step 2.

This approach is well suited for HPC architectures based on a
large number of processing nodes, each one involving a large num-
ber of computing cores, the cores themselves often containing
SIMD data-paths. The challenge then rests in matching data paral-
lelism with available computing resources.

In our implementation, at each time step, each grid-point is pro-
cessed applying three main phases, stream (), bc () and collide ():

� stream () gathers for each site the populations according to the
scheme of Fig. 1. This process does not make any floating-point
computation but only accesses sparse blocks of memory loca-
tions. It collects at each site all the populations that will interact
at the next computational phase (collide ()). This step has rather
irregular memory access patterns.
� bc () adjusts the values of the cells at the top and bottom edges

of the lattice to enforce appropriate boundary conditions (e.g.,
one might want a constant given temperature and non-slip
boundary conditions for velocity). At the right and left bound-
aries, we apply periodic boundary conditions. This is most easily
done by allocating additional storage where copies of an appro-
priate number (3 in our case) of the rightmost and leftmost col-
umns of the lattice are placed before the stream () step. Points at
the right/left boundaries can then be processed as those in the
bulk. If needed, boundary conditions could of course be
enforced in the same way as we do for the top and bottom
edges.
� collide () performs all the mathematical steps associated to Eq.

(8) and needed to compute the population values at each lattice
site at the new time step (this is called ‘‘collision’’, in LB jargon).
Input data for this phase are the populations gathered by the
previous stream () phase. This step is the most floating point
intensive kernel of the code; it uses only the population mem-
bers of the site on which it operates, making the processing of
different sites fully uncorrelated.

Our first implementation of the code (we call it V1) keeps the
computation of stream and collide as separate kernels. This scheme
is used if reactive dynamics (combustion) are enabled, because in
this case the divergence of the velocity field has to be explicitly
computed; in order to do so, we need a further step in which data
is gathered from memory; this step must be performed at some



L. Biferale et al. / Computers & Fluids 80 (2013) 55–62 57
intermediate point in the (otherwise local) mathematical process-
ing of collide.

So far, our code moves data from/to memory two times, first
during stream and then during collide. If reactive dynamics are not
enabled, we can structure the code in a slightly different way,
improving performance: we can merge the stream and collide

phases in just one computational step applied in sequence to all
cells of the grid (this optimization technique was first suggested
in [6]). Note that we have to take into account that the computa-
tion of the boundary conditions (execution of the bc kernel) has
to be done after stream but before collide. This requires a careful
intertwined scheduling, described in detail later.

In the following sections we describe the implementation of our
code. First we review the implementation on a state-of-the-art HPC
system based on multi-core CPUs. This implementation is used as a
reference for comparing the performance of our GPU code.

4. LB CPU implementation

In this section we summarize the implementation of the LB algo-
rithm for multi-core CPUs described in details in [8,9]. We developed
our code on a commodity system based on dual Intel six-core X5680
CPUs (code-name Westmere). Each CPU operates at 3.3 GHz, and has
12 MB of L3-cache. The system has 6 + 6 GB of RAM. The theoretical
peak double-precision performance of this system is 160 Gflops. We
consider this system a state-of-the-art platform not relying on GP-
GPUs, and we use the performance of this code as a reference-point
for further implementations on massively parallel and multi-core
architectures, relying both on CPUs and GPUs.

Each lattice cell is represented in memory by a structure with
several members as shown in Fig. 2. The array of 37 double-preci-
sion floating point values contains the populations of our D2Q37
LB code. Other members store macroscopic variables, such as veloc-
ity and temperature (and the divergence of velocity, when needed).
We keep in memory two copies of the same lattice. Each step reads
inputs from one copy and writes results to the other. The three com-
putational phases are called inside a loop over time steps, and oper-
ate on the array of the lattice-cell structure, as shown in Fig. 2.

To reach high computational performance, parallelism has to be
exploited at all possible levels: cores and instructions. To do that
we have organized our computation as follows:

1. the lattice allocated into the memory of a single node is split over
the cores, each one working on a portion of it, called sub-lattice,

2. the cores of each node process their sub-lattice in parallel, each
one operating on a different part of it,

3. within each core, two sites of the sub-lattice are handled in
parallel, exploiting data-parallelism through vector SSE
instructions.
Fig. 2. Key data-structures and overall organization of the code. The pop_type

structure is used for the variables describing each lattice-cell. The p[] member is the
array of populations (see the text for details). Other members are used as temporary
storage of macroscopic variables.
Since each node operates as a Symmetric Multiprocessor (SMP)
the two CPUs can be programmed as a single CPU with 12 cores;
they are controlled by a single instance of the Linux operating sys-
tem. Parallelism at core level is handled through the standard
pthread library, the approach closer to the Linux kernel; this avoids
overheads associated to, e.g. openMP or openMPI. To get the best
performance from the node, we also run one thread per core,
avoiding overheads due to the scheduling of threads among the
cores. Fig. 3 details the code executed on the node; it is organized
as follows:

1. Two threads (threads 0 and 1) copy the left and right borders
onto the appropriate frames. In a single node implementation
this step (that we call comm ()) is simply performed by mem-
ory-copies; after receiving data from the neighbors nodes, both
threads apply stream () to the three lattice columns close to the
frame that they have just copied.

2. While step 1 is executed, the remaining threads compute in
parallel the stream () phase on all columns far enough from their
Y-edges.

3. As soon as 1 and 2 complete, two threads compute the bc ()

phase on the three rows of cells close to the top and the bottom
of the lattice.

4. After step 3, if reactive dynamics is enabled, we have to com-
pute the divergence of the velocity field at all lattice points; this
requires an additional step, similar to stream () and referred to
as comm2 (), to propagate velocities to neighbor nodes. After this
is done, all threads start computing collide (), each on a different
portion of the sub-lattice.

All the above steps are synchronized by the use of pthread

barriers.
A further level of parallelism entails processing two sites at a

time. We pair the data of two cells at distance NY=2 by using vec-

tor variables, see Fig. 4. The gcc compiler, through the custom vec-

torsize extension, allows the definition of a new variable type where
two primitive types can be packed together; we use this feature to
define vectors of two doubles. Operations on vector variables are
then translated by the compiler, generating code that uses stream-
ing SSE instructions.

We also apply a simple optimization step that significantly im-
proves memory and cache efficiency for stream. Remember that
stream () performs scattered accesses in local memory to gather
populations with distances of 1, 2 and 3 in the grid; one expects that
performance may depend on details of cache and memory-alloca-
tion policies, as analyzed in details in [7]. To improve cache perfor-
mance, we have chosen an appropriate relabeling of the population
set; this forces a memory allocation order of the population ele-
ments that maximizes the number of population elements brought
to cache when handling point ðx; yÞ in the grid that remain available
in the cache when considering points ðx; yþ 1Þ and ðx; yþ 2Þ. We
also manage allocation of memory using the Linux NUMA library:
we explicitly map lattice points onto the memory bank close to
the CPU of the thread that accesses them. This avoids conflicts
due to a thread running on a CPU and accessing memory physically
attached to the other CPU. For more details on this points, see [8,9].
5. LB GPU implementation

In this section we move onto the implementation of our LB
algorithm on an NVIDIA Tesla C2050 system, powered by the Fermi
General Purpose Graphics Processing Unit (GP-GPU).

The Fermi chip has 14 cores that operate at 1.15 GHz. Each core
is named Streaming Multiprocessor (SM) in NVIDIA jargon; it sup-
ports the execution of up to 32 CUDA-threads, for a total of 448



Fig. 3. Code executed by each core of the node. The various phases of the code are executed by a variable number of threads, and are synchronized through barriers.

Fig. 4. Cells at distance NY=2 are paired together, in order to exploit the streaming
vector instructions available in the processors.

58 L. Biferale et al. / Computers & Fluids 80 (2013) 55–62
CUDA-threads per device. Unlike CPU-threads, CUDA-threads are
extremely lightweight, meaning that context switch between two
threads is not a costly operation; typically one thread processes
one element of the data-set of the program. At each clock cycle
the SM schedules and executes a warp, a bunch of 32 instructions
processed in SIMD fashion. In case all the operations of the warp
are fused-multiply–add (FMA), the device delivers �1 TFlops of
peak-performance. For double-precision operands, an FMA takes
two cycles, and peak-performance is �500 GFlops. For more details
see [10].

Our code has been written using CUDA [11], the NVIDIA pro-
gramming language for GP-GPUs. CUDA supports data-parallelism
through the Single Instruction Multiple Thread (SIMT) programming
paradigm. A CUDA program consists of one or more functions that
are executed on either the host, a standard CPU, or on a GPU. The
functions that exhibits no (or limited) parallelism stay on the host,
while those exhibiting a large degree of parallelism run on the GPU.
A CUDA program is a relatively standard C program including key-
word extensions for executing data-parallel functions, called ker-
nels, on the GPU device. Kernel functions typically generate a
large number of threads, i.e. a large number of independent opera-
tions, to exploit data parallelism. For example, we generate a thread
for each lattice-site, and process them in parallel. All the threads
generated by a kernel are collectively called a grid. The grid can
be configured as a 1- or 2-dimensional array of blocks, each one
executed independently on each SM processor. Each block can be
configured as a 1-, 2- or 3-dimensional array of threads; they exe-
cute on the same SM in lock-step, and cooperate by sharing data
through a fast shared memory. In our program we often use the
possibility to define dynamically the configuration of the CUDA
grid. When all threads of a kernel complete their execution, the cor-
responding grid terminates and execution continues on the hosts.

Codes running on GP-GPUs approach the peak performance of
the system if:

� the execution of the program generates many blocks; this
allows to keep active as long as possible each SM processor,
and hide external memory access latencies,
� a large number of warps – a group of 32 instructions in the case
of Fermi – per SM processor can be activated to exploit memory
coalescing; this improves the bandwidth between the SM pro-
cessor and external memory.

Our LB D2Q37 algorithm requires far more floating-point oper-
ations per lattice point than simpler models, so it is a good candi-
date for GPU processing; on the other hand, its populations move
up to three grid points for each time step, which implies rather
sparse memory access patterns, that may make memory coalescing
not so efficient as in simpler models.

As already remarked, each lattice point is described by a set of
37 double-precision floating point values representing the popula-
tions of the D2Q37 model. On GP-GPU, this data structure becomes
a structure of arrays, as shown in Fig. 5. Each CUDA thread executes
the same code and processes one lattice site. Threads processing
adjacent lattice-sites address the same population-array at the



L. Biferale et al. / Computers & Fluids 80 (2013) 55–62 59
same time. This arrangement has been chosen to help the hard-
ware coalesce memory accesses by the threads into one single
memory transaction, so efficient access to external memory is pos-
sible. Note that, in the CPU-optimized version described in the pre-
vious section, we used a different strategy for memory allocation
(the data structure was an array of structure), that better suited
the cache structure of those machines.

As we did in the case of the CPU implementation, for easy pro-
gramming, we duplicate each population array on the GPU mem-
ory. Each step of the algorithm reads values from one copy and
write results to the other.

At each iteration of the loop over time steps, the host executes
the main four steps described in Section 3, as shown in Fig. 6. First
it executes a device-to-device copy operation to exchange data cor-
responding to the border frames, and then calls the three kernels,
stream, bc and collide, passing to them pointers to the input and out-
put lattices. Each phase of the algorithm is implemented by a sep-
arate CUDA kernel:

� The comm phase is a copy operation. This is performed by a CUDA
memory-copy function invoked by the host; it moves data from
locations corresponding to the right border to locations corre-
sponding to the left border and vice versa. We use the device-

to-device flag which allows to make an internal copy of data with-
out involving the host, substantially increasing performance.
� In the computation of the move and collide kernels for a lattice

size of NX � NY, the layout of each block is (1 � NTHREAD �
1) and the grid of blocks is defined as (NY/N_THREAD, NX) (N
_THREAD is the number of thread per block), see Fig. 7 left-side.
In our case we adopt N_THREAD = 128; this allows to fit the
number of registers required by threads on a single SM core,
and allows to overlap memory accesses and computation.
� during the computation of the bc kernel the layout of each block

is changed into (NX � 1 � 1) and the grid of blocks is (1 � NY),
see Fig. 7 right-side. The bc kernel runs only on the threads cor-
responding to lattice-sites with coordinate y = 0,1,2 and y = NY-

1,NY-2,NY-3.

As we explained earlier for the CPU-optimized version, even in
this case, if reactive dynamics are not enabled, we can structure the
code in such a way that the computation of stream and collide

phases are merged in one computational step. In this case the com-
putation of the bc kernel has to be done after stream but before
collide. To fit this constraint, the program organization has been
structured in a different way. As in the previous case the host per-
forms a loop over time steps, and, at each iterations, it does the
following:

step 1: exchanges the Y frames through a cudaMemCopy

operation;
step 2: executes the stream kernel for the three topmost and low-

ermost rows of the grid;
step 3: adjusts the boundary conditions for the cells located at the

top and bottom rows of the grid. It then runs collide for the
same cells;
Fig. 5. The main data structure of the GPU code for lattice variables.
step 4: executes a kernel that jointly computes stream and collide

for the bulk cells of the lattice.

This new schedule corresponds to another version of the code
that we call V2.

6. Performance results

In this section we present performance results and compare our
GPU-code, running on a Tesla C2050 board, with that of the CPU-
code running on the commodity system described in Section 4.

We start with a simple estimate of the performance that we
may expect; this may help us assess the quality of our results.
All together, the workload W associated to mathematical process-
ing for each lattice point amounts to W � 7800 double-precision
floating-point operations. Processing one site requires 37 data ele-
ments, and produces 37 updated population variables. To very first
approximation, we can estimate the computing time T as:

T P maxðW=F;D=BÞ ð9Þ

where F is the peak performance of the processor,
D ¼ 37� 2� 8 ¼ 592 Bytes is the amount of data exchanged with
memory, and B is the peak memory bandwidth. Remember that
F � 500 Gflops and B � 144 GBytes/s for the GPU that we use, while
the corresponding values for the Intel Westmere processor are
F � 160 Gflops and B � 64 GBytes/s; we then obtain:

TCPU P max
7800
160

;
592
64

� �
ns ¼maxð48:8;9:25Þns: ð10Þ

TGPU P max
7800
500

;
592
144

� �
ns ¼maxð15:6;4:1Þns: ð11Þ

In other words, if peak values for performance and bandwidth
apply, our application is strongly compute bound (as opposed to
bandwidth bound) for processors, so one can hope to reach high
efficiency. This estimate is a crude upper bound, implying that still
we should be able to reach high efficiency for this code if:

� all vector data paths in all SMs are used sustainedly,
� data is not moved from memory to processor and vice versa

more often than needed,
� the complex addressing pattern associated to sparse memory

gather operations generated by stream, does not degrade mem-
ory bandwidth too much (this is probably the most question-
able assumption).

Table 1 shows the performance results for a lattice of
252�16,000 cells, the largest lattice we can allocate on our GPU.
We have used NVIDIA CUDA version 3.2, and the GCC compiler ver-
sion 4.1.2. In this case, stream () and collide () kernels are configured
as a grid of 125 blocks of 128 threads each. The bc () kernel is a grid
of 16,000 blocks of 252 threads each, but, as already underlined,
only the three topmost and lowermost blocks perform the compu-
tation. Some remarks are in order:

� Table 1 refers to the best choice for some available optimization
choices: in the GPU code we can configure the 64 KBytes on-
chip memory either as 48 KBytes of shared-memory and
16 KBytes of L1-cache or as 16 KBytes of shared-memory and
48 KBytes of L1-cache; the latter option is approximately 15%
better than the former;
� similarly for CPUs, one can let the compiler auto-vectorize the

code, or explicitly pair data items and use intrinsic function to
introduce in the code SSE assembly instructions, as explained
in Section 4. In the latter case the GCC and ICC compiler give



Fig. 6. Main loop executed by the host. At each iteration it calls four kernel functions which run on the GPU. Parameters (grid and threads) specify the configuration of the
CUDA grid which is different for each kernel.

Fig. 7. Left: grid configuration used for the stream and collide kernels on a physical lattice of 8� 32 points; the grid is configured as 8� 4 blocks, and each block is a grid of
1� 4� 1 threads (N_THREAD is 4). Right: grid configuration for the same physical lattice for the bc kernel.

Table 1
Performance comparison for the GPU and CPU codes, for versions V1 and V2 (defined
in the text). Tests have been performed on a grid of 252� 16;000 lattice-points. We
show the performance in GFlops and as a fraction of peak (Rmax); we also present two
performance metrics relevant to the user, that is T/site (the execution time spent on
each lattice site) and its inverse (MLups, e.g. the number of lattice sites updated per
second).

GPU code V1 CPU code V1

Comm 0.20 ms 10.00 ms
Stream 47.85 ms 140.00 ms
bc 0.60 ms 0.20 ms
Collide 194.69 ms 360.00 ms
GFLOps 129.23 60.17
Rmax 25% 38%
Time/site 0.06 ls 0.13 ls
MLUps 16.56 7.71

GPU code V2 CPU code V2
STEP 1 0.19 ms 7.00 ms
STEP 2 1.18 ms 0.64 ms
STEP 3 0.99 ms 0.62 ms
STEP 4 193.45 ms 410.00 ms
GFLOps 160.59 72.41
Rmax 31% 45%
Time/site 0.04 ls 0.11 ls
MLUps 20.59 9.28

60 L. Biferale et al. / Computers & Fluids 80 (2013) 55–62
approximately (within 2%) the same performance results. In the
former case ICC is 1.5X better than GCC, but performance (for
ICC) is still only 75% of explicit vectorization;
� the single GPU code performs roughly 2X better than the opti-

mized code on multi-core CPU, delivering � 25� 30% of peak
performance;
� even if efficiency on GPU, as fraction of the peak, is lower than

multi-core CPUs, sustained performance is still remarkably high
for a production ready code;
� sustained performance is satisfactory from the point of view of

physics application; however the value that we reach is signif-
icantly lower than one would expect from the estimates of Eq.
(11); this is partly due to the fact that the mathematical struc-
ture of the algorithm makes it very difficult to fuse multiply and
adds into FMAs assembly instructions. In fact, looking into the
PTX assembly file produced by the CUDA compiler, we find
� 2300 FMA instructions, and � 3000 non-fused floating-point
instructions. Moreover, the intrinsic dependencies of the code,
and memory accesses to load constants are still causing pipeline
stalls. Increasing kernel occupancy, i.e. the number of active
warps, which is � 0:33 in the current version, to further hide
memory access latency would require more registers; this
causes register-spilling overheads and outweighs the potential
performance gain;
� fine tuning the CPU-program has required accurate program-

ming efforts. This is mainly due to the fact that on standard
CPUs we tend to use a C-like programming approach which
hardly allows to exploit parallelism. On GP-GPU efficient pro-
gramming is easier, as coders are forced to (re-) write programs
using the CUDA model that naturally allows to exploit data-
parallelism.
7. Preliminary physics results

Our LB code optimized for multi-core CPUs has been extensively
used to study several features of the Rayleigh–Taylor instability in
2 dimension; results are described in [12]. The GPU-optimized



Fig. 8. Snapshot of a Rayleigh–Taylor (RT) system at a later stage of the evolution of the RT instability. From left to right, color-coded maps of the temperature, kinetic energy,
vorticity, and temperature gradient. The dynamics are visibly different in the regions close to the two different initial temperature drops. A movie of this simulation is
available at [13].

Fig. 9. Average vertical profile of the temperature for a double step Rayleigh–Taylor cell at various stages of the time evolution. The horizontal axis is the y coordinate and the
vertical axis is the average temperature TðyÞ.

L. Biferale et al. / Computers & Fluids 80 (2013) 55–62 61
implementation described in this paper has been used in summer
2011 for a large simulation campaign of a double Rayleigh–Taylor
instability (a system initially configured as three regions at differ-
ent uniform temperatures, separated by two lines where sharp
temperature changes occur). We have studied both the symmetric
case (the temperature drop DT is the same at both interfaces, and
the asymmetric case (different values for DT at the two inter-
faces)). We have considered a large lattice of 1600� 4096 grid
points; we have followed the time evolution of the system for
600 K time steps and we have accumulated statistics performing
15 independent runs. All runs have been performed on the Judge
system at the Jülich Supercomputer Center.

Physics analysis has just started, and results will be published
elsewhere. Here we only show (Fig. 8) a snapshot of a typical con-
figuration, well ahead in the time evolution, when the plumes and
puffs arising close to the asymmetric interfaces start to interact
among one another. We also show (Fig. 9) the mean temperature
profile along the vertical direction, at different points in the time
evolution.

8. Conclusions and outlook

In this paper we have described in details an implementation of
a complex LB algorithm for compressible fluids, optimized for GP-
GPU architectures. Our implementation tries to use all paralleliza-
tion opportunities made available by the algorithmic structure of
the computation, and tailors the structure of the code to the archi-
tectural organization of the target processor.

The sustained peak performance is large (�130–160 Gflops),
even if this is only approximately one third of peak. By way of com-
parison, multi-core CPUs allow to reach higher relative perfor-
mance, even if absolute peak performance is lower by
approximately a factor 2. Reasons for this behavior have been dis-
cussed above.



62 L. Biferale et al. / Computers & Fluids 80 (2013) 55–62
Available performance is large enough to simulate large physi-
cal systems in 2D within acceptable wall-clock times, but a study
of very large lattices has still to wait for an efficient multi-GPU par-
allel implementation; performance in this case can be badly af-
fected by the overhead required to move data between GPUs and
CPUs, and among GPUs; careful overlap of communication and
computation is necessary to allow the code to scale over tens of
GPUs; work is in progress in this direction. At present a 3D version
of a code that describes physics with comparable accuracy is still in
the early development phase [15], so a strong optimization effort is
premature. This new code, when available for physics, will require
105 populations, so its computing requirements in terms of stor-
age, memory accesses and floating-point capabilities will be much
more severe. The experience that we are doing now on a parallel
implementation of this 2D code, will be very valuable at that point.

Acknowledgments

We would like to thank the Jülich Supercomputing Center (JSC)
for providing access to the Judge system [14]. The support of Wil-
helm Homberg and Jochen Kreutz is gratefully acknowledged.

References

[1] Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford
University Press; 2001.
[2] Tolke J. Implementation of a lattice Boltzmann kernel using the compute
unified device architecture developed by nVIDIA. Comput Visual Sci 2008.

[3] Tolke J, Krafczyk M. TeraFLOP computing on a desktop PC with GPUs for 3D
CFD. J Comput Fluid Dynam 2008;22(7):443–56.

[4] Sbragaglia M et al. Lattice Boltzmann method with self-consistent thermo-
hydrodynamic equilibria. J Fluid Mech 2009;628:299.

[5] Scagliarini A et al. Lattice Boltzmann methods for thermal flows: continuum
limit and applications to compressible Rayleigh-Taylor systems. Phys Fluids
2010;22:055101.

[6] Pohl T et al. Optimization and profiling of the cache performance of parallel
lattice boltzmann codes. Parallel Process Lett 2003;13(4):549.

[7] Wellein G, Zeiser T, Hager G, Donath S. On the single processor performance of
simple Lattice Boltzmann kernels. Comput Fluids 2006;35:910.

[8] Biferale L et al. Lattice Boltzmann method simulations on massively parallel
multi-core architectures. in: Watson LT, Howell G, Thacker WI, Seidel S,
editors. Proceedings of the 2011 spring simulation multiconference, high
performance computing symposium 2011 (HPC 2011). Vista, CA: Society for
Modeling and Simulation International; 2011.

[9] Biferale L et al. Optimization of multi-phase compressible lattice boltzmann
codes on massively parallel multi-core systems. In: Proceedings of the
international conference on computational science, ICCS 2011. Procedia
computer science, vol. 4; 2011. p. 994–1003.

[10] http://www.nvidia.com/object/fermi_architecture.html.
[11] NVIDIA CUDA Programming Guide. http://developer.download.nvidia.com
[12] see, for instance Biferale L et al. Second-order closure in stratified turbulence:

simulations and modeling of bulk and entrainment regions. Phys Rev E
2011;84:016305. and references therein.

[13] http://www.youtube.com/user/filimanto#p/u/0/jITKAku-PeY.
[14] http://www2.fz-juelich.de/jsc/judge.
[15] Succi S. Private communication.

http://www.nvidia.com/object/fermi_architecture.html
http://developer.download.nvidia.com
http://www.youtube.com/user/filimanto#p/u/0/jITKAku-PeY
http://www2.fz-juelich.de/jsc/judge

	An optimized D2Q37 Lattice Boltzmann code on GP-GPUs
	1 Introduction
	2 Lattice Boltzmann methods
	3 LB implementation
	4 LB CPU implementation
	5 LB GPU implementation
	6 Performance results
	7 Preliminary physics results
	8 Conclusions and outlook
	Acknowledgments
	References


