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Abstract We present a detailed review of some of the most recent developments on Eulerian and
Lagrangian turbulence in homogeneous and isotropic statistics. In particular, we review phenomeno-
logical and numerical results concerning the issue of universality with respect to the large scale forcing
and the viscous dissipative physics. We discuss the state-of-the-art of numerical versus experimental
comparisons and we discuss the dicotomy between phenomenology based on coherent structures or on
statistical approaches. A detailed discussion of finite Reynolds effects is also presented.
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1 Introduction

In this paper we critically review the most relevant physical features of fully developed three di-
mensional turbulence. We consider the case of incompressible homogeneous and isotropic turbulence.
Although this case may be considered too limited, most of our arguments can also be extended in the
case of non isotropic turbulence [1,2,3,4].

The word turbulence refers to the chaotic behavior, in space and time, of fluid flow. It has been
a major breakthrough to understand how the complexity of turbulent flows can be described by the
Navier Stokes equations:

∂tv + v · ∇v = −
1

ρ
∇v + ν∆v (1)

where v is the velocity field , p the pressure, ν the kinematic viscosity and divv = 0 for incompressible
flows. Nowadays, eq.s (1) can be numerically simulated with high accuracy and we reproduce very
accurately in a computer what one can measure in a laboratory experiments [5,6]. Turbulence was
the first and more challenging physical phenomena investigated by numerical simulations. Following
Kadanoff, it is fair to say that physics is no longer divided in experimental and theoretical physics:
numerical simulations or numerical experiments are new ways to understand complex phenomena.

Given any external force acting in the system, we can define the rate of energy input and energy
dissipation in a turbulent flow. Hereafter we shall denote by v0 the characteristic scale of velocity fluc-
tuations and by L the scale characterizing energy input. We can usually describe how much turbulent
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a flow is, by introducing the Reynolds number Re ≡ v0L/ν. Numerical simulations can be performed
for Re as large as 106 [7] which is also one of the largest Reynolds number for laboratory experiments.
In the next few years, we expect to reach Re = 107 for the numerical simulations. So far, there exists
no indications that eq.s (1) are wrong, i.e. that there are physical features not described by (1) for
non-relativistic, incompressible and ideal fluids. This is a highly non trivial statement which is based
from a detailed and careful comparison between numerical simulations and experimental data and
more than 30 years of hard work.

2 The Kolmogorov theory

Being a chaotic system, turbulence must be described in a statistical way, i.e. we need to introduce
correlation functions and a probability measure for the velocity field. However, turbulence is a system
strongly out of equilibrium and the standard tools and ideas of statistical physics are useless: we need
to build up a new theoretical framework. Physically, the basic and most fundamental feature of three
dimensional turbulent flows is that energy dissipation is independent on the Reynolds number. More
precisely, energy dissipation ǫ for eq.s (1) is given by 〈ν(∇v)2〉, where 〈. . . 〉 means an average in space
and time. Since Re → ∞ is equivalent to ν → 0, we expect that ǫ → 0 iff the velocity gradients are
bounded. Experimentally as well as numerically we have that

ǫ ∼ const. Re → ∞ (2)

which is the so-called dissipative anomaly, implying that ∇v grows to infinity. Kolmogorov was the
first who clearly highlighted this basic and fundamental feature of turbulence. In his celebrated 1941
paper, Kolmogorov was able to show that for homogenous and isotropic turbulence, the statistical
properties of turbulent fluctuations must satisfy the equation [4]:

〈δv(r)3〉 = −
4

5
ǫr + 6ν

d

dr
〈δv(r)2〉 (3)

where δv(r) ≡ (v(x + r) − v(x)) · r/r is the longitudinal difference of the velocity field between two
points at distance r. Eq. (3) is exact and must be well verified both by numerical simulations and
experimental data if stationarity is assumed and (2) holds. In the limit ν → 0, Eq. (3) predicts the
existence of two different range of scales r. Introducing the scale η = (ν3/ǫ)1/4, we can say that for
r ≫ η the velocity fluctuations are controlled by the energy dissipation ǫ and the scale r, while for
r ∼ η dissipation effects become important. The first range of scale (r ≫ η) is called inertial range and
the second range is called the dissipation range.

Eq. (3) suggests that the probability distribution of turbulent fluctuations at scale r depends only
on ǫ and r. Using dimensional arguments one can conclude that

Sp(r) = 〈δv(r)p〉 ∼ ǫp/3rp/3 (4)

There are two major points in the Kolmogorov theory. First, eq. (3) is the fundamental prediction of
the theory assuming that turbulent fluctuations are statistically isotropic, isotropic and ǫ is constant
for Re → ∞. Secondly, eq. (4) can be considered a conjecture of the theory assuming that the statistical
properties of turbulent flows are scale invariant in the inertial range, where the notion of scale invariant
should be interpreted in the same way introduced in the theory of critical phenomena. Note that eq.
(3) is true even if scale invariance does not hold.

The simplest way to check (4) is to compute the quantities

Γp(r) ≡ Sp(r)/S2(r)
p/2

usually referred to as generalized kurtosis. Eq. (4) predicts that Γp(r) ∼ const in the inertial range.
This is definitively not observe both in numerical simulations and laboratory experiments where Γp(r)
increase for r → η, see figures (1) and (2). This phenomenon is called intermittency.



3

In order to understand intermittency in a physical way, it is possible to look at turbulent flows
also from the Lagrangian point of view (opposed to the Eulerian one, based on measurements in a
fixed reference frame in the laboratory). We consider a particle (point like) which is advected by the
velocity field v and whose trajectory is described by the position x(t). We can compute the lagrangian
velocity difference on time τ defined as δv(τ) = |v(t + τ) − v(t)| and the quantities SL

p ≡ 〈δv(τ)p〉,
where the superscript L denotes the lagrangian frame. The analogous of the scale dissipation η is
now the Kolomogorv time scale τd ≡ (ν/ǫ)1/2. Dimensional arguments and scale invariance implies
that SL

p (τ) ∼ (ǫτ)p/2. Numerical and experimental data shows clearly that ΓL
p (τ) ≡ SL

p /(S
L
2 )

p/2

increases when τ → τd. Usually, the value of ΓL
p (τd) is much larger than the corresponding Eulerian

quantity Γp(η), i.e. we observe much stronger intermittency in lagrangian framework with respect to
the eulerian framework, see fig. (1). We can also compute the acceleration a ≡ |d2x/dt2|. According
to scale invariance in the form (4), we can estimate a ∼ δv(τd)/τd and compare it against data. It
turns out that a is one of the most intermittent quantities observed in turbulent flows: in fig. (4) we
show that the probability distribution of a develops extremely long tail up to 80 times the variance!
Such a spectacular behavior has a well defined physical interpretation: from time to time the particle
enters a region of extremely large vorticity ω ≡ rotv, see figure (3). These regions of large vorticity
usually take the form of filaments which extend in space for scales well within the inertial range and
show a cross section of order 10η. A vortex filament is neither a stationary nor a stable structure:
when a particle enters a vortex filament the value of a is of order a ∼ ω2rf where ω is the vorticity

of the filament and rf is the cross section. For large Re, the vorticity scales as Re1/2 and a can easily
becomes much larger than its characteristic value outside filaments. In summary, intermittency in the
lagrangian acceleration is related to the existence of vortex filaments and viceversa.

Vortex filaments have been observed in all turbulent flows. In wall bounded turbulence, vortex
filaments are responsible for the drag effect near the wall and control the rate of energy production
and dissipation [8]. The peculiar property of vortex filaments is that they do not carry most of the
energy fluctuations in a turbulence flow but they organize the flow around them and the region of
the energy dissipation. The existence of vortex filaments open up a completely different scenario for
turbulent flows: although Kolmogorov theory (i.e. eq. (3)) is correct and in agreement with all existing
data, scale invariance as described by eq. (4), or its equivalent form for lagrangian dynamics, does not
properly take into account the complex non linear intermittent dynamics in the statistical properties
of turbulence. Moreover, since vortex filaments extend well within the inertial range, their statistical
properties may be related to the large scale forcing. This implies that there may not be a universal way
to describe the statistics of turbulence independent of the forcing mechanisms. Also, since the cross
section of a vortex filaments is not much larger than the dissipation scale, the statistical properties
of turbulence may strongly depend on the dissipation mechanism acting at very small scales. In other
words, turbulence may not be universal with respect to large scale forcing and small scale dissipation.
This is the crucial problem we need to understand in the following.

3 The multifractal approach

Even if vortex filaments are crucial in understanding intermittency, there is no reason to assume a

priori that scale invariance, definitively in a form different from (4), does not hold. In 1983, Parisi and
Frisch [10] made the following observation: the Navier-Stokes equations (1) are invariant under the
scale transformation:

r → λr v → λhv t → λ1−ht ν → λ1+hν (5)

Note that using (5) we have ǫ → λ3h−1ǫ. The key observation by Parisi and Frisch is that there may
exist many different value of h each occurring with a probability P (h), i.e. turbulent flows can be
considered as a superposition of many different scale invariant configurations. In order to maintain
scale invariance upon averaging over P (h), one needs to assume that P (h) ∼ rF (h), i.e. one needs to
assume that scale invariance holds for the probability distribution of h. This conjecture is referred
to as the multifractal conjecture because originally F (h) was written in the form 3 − D(h) where
D(h) is assumed to be the fractal dimension of the scale invariant solution with exponent h. There
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Fig. 1 Flatness for Eulerian and Lagrangian measurements, data are taken from a DNS at 20483 resolution
[9]

exists a constrain on D(h) since we must require, in agreement with (2), that the energy dissipation is
independent of Re, i.e. we must require that

〈ǫ〉 ∼

∫

dr r3−D(h)r3h−1 ∼ const (6)

Note that eq.(4) is now no longer valid since we must compute the average over h. Because we are
interested in the limit at small scale, we can use the saddle point technique to compute the integral
and we obtain:

Sp(r) ∼

∫

dr rph+3−D(h) ∼ rζ(p) (7)

where
ζ(p) = infh[ph+ 3−D(h)] (8)

Clearly, if we know ζ(p) we can invert the Legendre transform (8) to compute D(h). At first sight the
multifractal conjecture may seem rather obscure because it is not clear what is its physical meaning, i.e
what does it mean averaging over the possible scale? invariant configurations. Next, the multifractal
conjecture seem not to have any predictive power because nothing is known on the function D(h)
except the constrain (6). Finally, the discussion on vortex filaments suggests that the function D(h)
may not be universal.

4 Anomalous scaling and universality

Using eq. (7) we can easily obtain Γp(r) ∼ rζ(p)−pζ(2)/2. Since ζ(p) is a convex function of p, we obtain
that Γp(r) must increase for r → 0, i.e. intermittency is consistent with the multifractal conjecture. The
next step is to compute from experimental and numerical data ζ(p) for different forcing mechanism and
Re and to understand whether ζ(p) are universal. The computation of ζ(p) requires the existence of a
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Fig. 2 Probability distribution functions (PDF) of the Lagrangian velocity increments at changing the time
lag τ . Curves have been shifted along the y-axis for the sake of presentation.For details about the numerical
simulations see [11]

clear scaling range where (7) is observed. Because any numerical simulations or laboratory experiments
are done for finite system sizes, we can expect that there must be non trivial effects in the scaling of
Sp(r). Such finite size effects are quite common in many systems and they are extremely well known
and under control in the case of critical phenomena. However, since we have no theory to compute ζ(p)
from the Navier-Stokes equation, we are unable to predict finite size effects. This is a major problem
to understand whether scaling and universality is observed for turbulent flows.

Fig. 3 A typical trajectory of a Lagrangian tracer in HIT inside a vortex filaments.
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A systematic investigation of the scaling properties of Eulerian turbulence required several years of
work and the introduction of new ideas to overcome finite size scaling (see the work on Extended Self
Similarity). The overall conclusion [5] was that scaling is observed and that ζ(p) are independent on Re
and the forcing mechanism, see e.g. figure (7). This conclusion is obtained by accurate data analysis of
many different laboratory and numerical data and it does not imply anything about the multifractal
conjecture. In order to make progress, one needs to understand in a deeper way the physical mechanism
of intermittency and its relation, if any, with the function D(h).

A major breakthrough in this direction was provided by the exact non trivial solution of the so
called Kraichnan model of a passive scalar [12]. We consider the following problem: let θ a scalar field
advcted by a velocity field v and forced by some large scale mechanism Fθ:

∂tθ + v · ∇θ = χ∆θ + Fθ (9)
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Fig. 4 Acceleration PDF for HIT. The dashed line represents the dimensional K41 prediction. The black
continuos line is the multifratcal prediction [13]. Inset: Acceleration PDF multiplied by fourth order ponwer of
the acceleration, a4P (a) and the corresponding prediction from the multifratcal formalism

Following Kraichnan we assume: (i) the velocity field is gaussian random field delta-correlated in
time and with prescribed correlation function g(r) ∼ rξ; (ii) the large scale forcing is random, gaussian,
and statistically isotropic. Given (9) we are interested to compute the behavior of the correlation
functions Cn(x1, x2, ..., xn) = 〈θ(x1)θ(x2)..θ(xn)〉 as a function of ξ in the limit χ → 0. For this
problem, we can rephrase the scale transformation (5) as:

r → λr θ → λhθ t → λ1−ξt ν → λ1+ξν (10)

The analogous of (3) can be easily derived upon assuming that χ〈(∇θ)2〉 ∼ const., which is equivalent
to ξ + 2h = 1 (for delta-correlated random field v a subtle difference apperas that is not important
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in the following discussion). Since eq. (9) is linear and because the random field is delta-correlated in
time, we can obtain a closed equation for Cn which can be formally written as

Ln[v]Cn +DnCn + Fn = 0 (11)

where L[v] is a linear operator depending on the velocity statistics, Dn is the n-dimensional Laplacian
proportional to the diffusivity χ and Fn is the term due to the forcing. The exact form of the operators

appearing in (11) is irrelevant for our argument. The general soution of (11) is given by C
(i)
n + C

(d,f)
n

where the first term is one of the zero mode solutions of L[v]C
(i)
n = 0 while the second term is

the (particular) solution depending on χ and the forcing, i.e. C
(i)
n is the correlation function in the

inertial range while C
(d,f)
n is the non universal part of the correlation function which depends on

forcing and dissipation. The important result is that in the limit ξ → 0 one can show that the inertial

range dynamics C
(i)
n , is the relevant contribution to the correlation function. Moreover, the n−order

correlation function display anomalous scaling, i,e Cn(λx1, ...λxn) ∼ λz(n)Cn(x1, ..xn) where z(n) is a
non linear function of n. In summary, for the passive scalar problem described by (9), one is able to
show that scaling occurs and that the scaling properties of the correlation functions are universal.
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Fig. 5 Comparison of local scaling exponents for the 4th order Lagrangian Flatnees between: (i) tracers
particles at two different Reynolds number (ii) one light and (iii) one heavy particle. Notice the ehnancement
(depletion) of the bottleneck around τ/τη ∼ 1 for light (heavy) particles with respect to the tracers’ statistics.
The horizontal line corresponds to the K41 non-intermittent prediction = 2. (Figure courtesy of E. Calzavarini)

One can wonder whether there exists something analogous of vortex filaments in the passive scalar.
Numerical simulations show that in the case of passive scalar there are many fronts in θ (abrupt changes
in θ over a very small distance) [14]. A front like structure corresponds to h = 0 in the multifractal
language. Therefore, if the multifractal conjecture is correct, we should expect z(n) →= z∞ ≡ 3−D(0)
for n → ∞, whereD(0) is the fractal dimension of the front. This relation can be checked and it appears
to be consistent with the numerical simulations. The consistency by itself is not surprising since D(0) is



8

defined as the set of point where h = 0, i.e. where we observe a front. The interesting point is that the
results on the correlation functions and the universality of z(n) imply that the statistical properties of
the fronts are independent on the dissipation mechanism and the large scale forcing. In other words,
the statistical properties of θ can be described using the multifractal conjecture independently on
the existence of well defined coherent structures (fronts) carrying the strongest singularities in ∇θ.
Moreover, the general solution of eq.(11) tells us that fronts are formed due to the complex non linear
interaction between the velocity field and the passive scalar in the inertial range and scale invariance
is not affected by the existence of fronts. Going back to the Navier-Stokes equation we can imagine
that vortex filaments are consistent with the asymptotic form of ζ(p) → ph0 + 3 − D(h0) and that
the statistical properties of vortex filaments do not affect the scaling properties of the inertial range
(universality). This is a delicate statement which we now investigate in details.

5 The dissipation range

 0
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 0  2  4  6  8  10  12p
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trans.

MF long.
MF  trans.

Fig. 6 Comparison between Eulerian scaling exponents for longitudinal, ζl(p), and transverse, ζtr(p), Structure
Function [11] together with two different multifractal predictions (MF) obtained with two different choices of
D(h).

Let us assume for the time being that the multifractal conjecture is correct, although we do not
know how to compute D(h) in the Navier-Stokes equation. We already said that any numerical and/or
experimental observation shows finite size effects. Let us focus on the dissipation effects due to the
viscosity. We cannot blindly assume that the multifractal picture holds in the dissipation range (r ≪ η).
We can speculate that when δv(r)r/ν ∼ 1, the velocity fluctuations are damped by viscous effects. The
problem is that we must give a reliable meaning to δv(r). The question is: when we write δv(r) ∼ rh

what we really mean? ( Unfortunately the solution of the passive scalar does not help in this case.) It
turns out that one can give a well defined meaning to scaling δv(r) ∼ rh using the theory of random
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multifractal fields. For our purpose, it is enough to say that the statistical properties of velocity
fluctuations at scales r and R are linked by the relation (with r < R):

δv(r) = δV (R)
[ r

R

]h

(12)

with propability Ph(r/R) ∼ (r/R)3−D(h). It is possible to construct explicit examples of random
fields obeying eq. (12) with a prescribed function D(h) [22]. Using (12) we can write that dissipation
effects are relevant when

δv(r)r

ν
=

δv(R)R

ν

[ r

R

]1+h

∼ 1 (13)

Upon choosing R = L and denoting the dissipation scale η(h) we obtain

η(h) = Re−
1

1+h L (14)

The above relation is true with probability (η(h)/L)3−D(h) = Re−
3−D(h)

1+h . Using (13) and (14) , we can
compute the average energy dissipation ǫ:

ǫ =

∫

dhν
δv(η(h))2

η(h)2
∼

∫

dhRe−
3h+2−D(h)

1+h (15)

It is easy to show that the saddle point computation of the above integral is equivalent to the condition
ζ(3) = 1 which is a constrain on D(h). Using this result, we obtain ǫ independent of Re, which shows
the consistency of (13) with the eq. (3). We can generalize eq.(15) to compute the scaling behavior in
Re of moments of velocity gradients [23]:

〈(∇v)p〉 =

∫

dh
δv(h)p

η(h)p
Re

3−D(h)
1+h ∼

[

δv(L)

L

]p ∫

dhRe−
p(h−1)+3−D(h)

1+h ∼

[

δv(L)

L

]p

Reχ(p) (16)
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where χ(p) = suph[−(p(h − 1) + 3 − D(h))/(1 + h)]. From (16) it is possible to show that for p > 2
the following inequality holds.

γp ≡
〈(∇v)p〉

〈(∇v)2〉p/2
= Reχ(p)−p/2 > limr→ηΓp(r) ∼ Re

3
4 (ζ(p)−pζ(2)/2) (17)

The above equation tells us that intermittency in the dissipation range Reχ(p) is greater than intermit-
tency extrapolated from the inertial range, l.h.s of (17). This is a highly non trivial prediction given
by multifractal conjecture and consistent with the experimental and numerical data.

One can take advantage of (13) to generalize the multifractal conjecture for finite Re numbers and
introducing the effect of dissipative contribution. Instead of (12) we have the following result:

δv(r) = g(
r

L
,
η(h)

L
)f(

r

L
,
η(h)

L
)h (18)

Ph(r) = f(
r

L
,
η(h)

L
)3−D(h) (19)

where the two functions g(x, y) and f(x, y) satisfy the following asymptotic conditions:

limy→0f(x, y) = x, (20)

imy→0g(x, y) = const. (21)

and

limx→0f(x, y) = const. (22)

limx→0g(x, y) = x. (23)

In the range η(h) ≫ r, we assume that no intermittent fluctuations occur and the velocity fluctuation
are smooth according to (23) and (18), while in the inertial range r ≫ η(h) the dissipation effects are
irrelevant. The precise shape of the function f and g are supposed to be universal. Presently, we are
not able to compute f and g theoretically but we can provide very accurate fit of both functions using
experimental and numerical data. At any rate, we shall see in the following that the detailed shape of
the two functions do not play a crucial role in the theory. It is interesting to remark that, if we neglect
the fluctuation of the dissipative scale by assuming η(h) = η = Re−3/4L, eq.s (18,19) predict

Sp(r) ∼ gp(r)f(r)ζ(p) (24)

In the range of scales where g(r) ∼ const we obtain:

Sp(r) ∼ S3(r)
ζ(p)/ζ(3) ∼ S3(r)

ζ(p) (25)

which is known in literature as Extended Self Similarity (ESS) [24,25]. ESS is useful to extract accurate
values of the scaling exponents ζ(p) even at relatively low Re number because it does not require any
knowledge on the function f and because, at low Reynolds, intermittent fluctuations of the dissipative
scale are relatively small. Clearly, the range of scale where ESS is useful must be outside the dissipation
range. The size of the dissipation range depends on the minimum and maximum value of h. Theoreti-
cally, we know that h ∈ [0, 1]. Therefore we can estimate the dissipation range as [Re−1, Re−1/2]. E.g.
for Re = 105 and a characteristic value of L ∼ 1m, the dissipation range is [30µ, 3mm].

We can now use (13) to predict the probability distribution of the acceleration. Let us define
τη(h) = η(h)/δvη(h) the dissipative time scale associated to the dissipation scale η(h). Then, we can
compute the acceleration a(h) as δvη(h)/τη(h):

a(h, δV (L)) =
δV (L)2

L

[

ν

LδV (L)

]

2h−1
1+h

(26)
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which holds with probability (η(h)/L)3−D(h). Therefore, given the probability of the large scale fluc-
tuation δV (L), using (26) we can compute the probability P (a) to observe in a given point a value a
for the acceleration and we can compare our findings against experimental results. In most cases, the
fluctuations at very large scale L are observed to be distributed in a gaussian way and we can provide
an analytical prediction for P (a). It turns out that the multifractal prediction of P (a) is very accurate
compared against experimental and numerical data, see figure (4) and [13]. The word prediction in
this case should be interpreted in the following way: given the probability distribution of large scale
fluctuations and the function D(h), we can predict P (a). The function D(h) can be computed from the
knowledge of the scaling exponent ζ(p) which can be obtained from the available data. Therefore, we
can say that from the knowledge of the intermittent fluctuations in the inertial range we can predict
the probability distribution of the lagrangian acceleration. Having saying that, the prediction of P (a)
is a highly non trivial result because it shows that the multifractal framework, based on the scale
invariance of the Navier-Stokes equations, correctly describes the statistical properties of turbulent
fluctuations over the whole range of scales, from large scale to dissipative scales. The prediction of
P (a), in the sense previously discussed, represents a major achievement of our ability to provide a
universal and consistent description of turbulent flows.

6 Vortex filaments and the multifractal conjecture

As we previously discussed, strong fluctuations in the lagrangian acceleration are due to vortex fila-
ments and are correctly described by the multifractal framework. In the multifractal approach, however,
there is no point whatsoever where we introduced any physical informations concerning the existence
and the relevance of coherent structures or vortex filaments. Clearly, it seems relevant to investigate
this question in more details. To do so, we need to look at turbulence from the largrangian point of
view. It is relatively easy to rewrite the multifractal approach in terms of lagrangian variables. We
need to consider velocity difference between two points on the lagrangian trajectory at time interval
τ . The scaling property of the velocity field in terms of τ can be obtained by using the scaling relation
between r and τ , namely τ ∼ r1−h or equivalently r ∼ τ1/(1−h). Then eq. (7) is generalized as follows:

SL
p (τ) ≡ 〈δv(τ)p〉 ∼

∫

dhτ
ph

1−h τ
3−D(h)

1−h ∼ τξ(p) (27)

Eq. (27) enables us to compute the lagrangian scaling exponents ξ(p) in terms of the same multifractal
function D(h) used for the computation of ζ(p). In other words, we can compute the lagrangian scaling
exponents by the eulerian scaling properties. Before comparing the ”prediction” given by (27) against
available data, we need to discuss a subtle but non trivial question concerning isotropy. So far we have
assumed that in the limit Re → ∞, small scale turbulent fluctuations are isotropic. This assumption
is based upon the fact that the Navier-Stokes equations are invariant under SO(3) rotation group [3].
However, real experimental data and/or numerical simulations are done neither in the limit Re → ∞
nor with perfect isotropic forcing. Even a small anisotropic on the large scale can introduce, at finite Re,
non isotropic effects at small scales. To be more quantitative, we can compute the structure functions
in the Eulerian frame for longitudinal velocity difference and transverse velocity difference. Let us
indicate with ζl(p) and ζtr(p) the corresponding scaling exponents. Isotropy implies that ζl(p) = ζtr(p)
is true for any p. Careful investigations, using high resolution numerical simulations, have shown that
isotropy is verified for p ≤ 6 while at large p one observes ζtr(p) < ζl(p), see figure (6). In principle
it should possible to formulate the multifractal conjecture by introducing isotropic and non isotropic
sectors. where the non isotropic contributions are subleading with respect to the isotropic ones at
small scales and large Re. Therefore the discrepancy between ζl(p) and ζtr(p) is a measure of the
finite size Re effects. In the Eulerian farmework it is possible to disentangle isotropic contribution
from the non isotropic ones. However, lagrangian structure functions are mixing both contributions
and, consequently, for latge p we can predict the lagragian scaling exponent ξ(p) from the eulearian
ones ζl,tr(p) with error bars increasing with increasing p. The non trivial result is that, within error
bars (careful computed following the previous discussion), eq. (27) is consistent with experimental and
numerical data up to p = 10 [11].
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The validity of (27) allows us to investigate the dissipative effects in the lagrangian dynamics. The
fundamental advantage of the lagrangian point of view can be understood by considering (13) in the
time domain: the dissipation time τd(h) can be defined by the relation:

δv(τd(h))
2τd(h)

ν
∼ 1 (28)

which holds with probability τd(h)
(3−D(h))/(1−h). A simple computation shows that

τd(h) ∼ Re
h−1
1+h (29)

Eq. (29) shows that the dissipation effects in the lagrangian framework cover a range [Re−1, 1] much
larger the dissipation range in the Eulerian framework. Thus, in the lagrangian turbulence dissipation
effects are magnified. Using (29), we can generalize (18) to obtain

δv(τ) = G(
τ

T
,
τd(h)

T
)F (

τ

L
,
τd(h)

T
)

h
1−h (30)

Ph(τ) = F (
τ

L
,

τ

τd(h)
)

3−D(h)
1−h (31)

where the functions G(x, y) and F (x, y) satisfy the same asymptotic behavior of the Eulerian case. We
now consider the local scaling exponents ruling the scale-behaviour of generalised Flatness:

Kp(τ) ≡
dlogSL

p (τ)

dlogSL
2 (τ)

(32)

These quantities can be directly measured on data, they do not need any fitting and can be considered
an estimate of the intermittent fluctuations at changing the reference scale: for large τ (inertial range)
we have Kp(τ) → ξ(p) − ξ(2)/2 while for small tau we have Kp(τ) → p (dissipative range), Using
Kp(τ) we can quantitatively measure the effect of vortex filaments for the intermittent fluctuations.
The smart idea is to compute Kp(τ) for lagrangian particles and for inertial particles. The latters
can be heavy or light particles: heavy particles are concentrated outside vortex filaments while light
particles are concentrated inside vortex filaments. It is found that Kp(τ) show a well defined deep
in the dissipation range for lagrangian particles, which disappears for heavy particles and becomes
deeper for light particles. Vortex filaments are clearly associated to the increase of intermittency in the
dissipation range, see figure (5).

It is important to understand that even for p = 4 the value of Kp depends on the whole function
D(h) and not from the value of ζ(p) or ξ(p). In other words, if we consider K4, the increase of
intermittency (i.e. K4 < ξ(4) − ξ(2) depends on the whole structure D(h) and the shapes of the two
function G and F . Using K4 we can assess the universality of our results. Recently, a major effort was
undertaken to compute K4 in a number of experimental simulations and laboratory experiments. All
the results, within error bars, collapse on the same universal curve. The effect of vortex filaments, if
any, is hidden in the shape of the two functions G and F , which interpolate the inertial range scaling
G ∼ const, F ∼ τ and the dissipative scaling G ∼ τ, F ∼ const. For instance the choice

G =

[

xc

xc + yc

]1/c

(33)

F = [xc + ya]
1/c

(34)

provides a good fit to the data with c ∼ 4, see figure (7).

The above analysis tells us something extremely interesting. First of all intermettincy and scaling
in small scale turbulent fluctuations are universal and independent of the large scale mechanisms.
Second, the effects of coherent structures sum up to the same statistical probability distribution for the
turbulent fluctuations. Third and more important, The small scale velocity fluctuations are consistent
with the scaling properties of the system. The latter can be described as the superposition of all the
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possible scaling exponents h with the weight r3−D(h). The physical meaning of 3 −D(h) corresponds
to that of entropy in equilibrium statistical mechanics: the mutlifractal conjecture can be rephrased
by saying that the statistical properties of turbulence can be obtained by summing all possible flow
configurations with exponent h (energy) with the number of available configurations being r3−D(h). The
description of turbulence in terms of coherent structures is not in contradiction with the multifractal
conjecture providing that scaling is satisfied. The advantage of the multifractal description is that the
knowledge of D(h) is sufficient to derive all the statistical properties of turbulent fluctuations at all
scales and times, at least for observables which are invariant respect to the same group of symmetries
of the Navier-Stokes equations.

7 Conclusions

Turbulence is the classical prototype of a complex system: we exactly know the equation of motions but
we are or were unable to describe the macroscopic behavior of the system. In the case of homogenous
and isotropic turbulence, the major effort performed in the last 20 years provides us of a well defined
and relatively simple picture of turbulence: the statistical properties are scale invariant and universal
characterized by strong intermittency at all scales. The only technical point left to be done is a way to
compute the function D(h) from the Navier-Stokes equations. We know how to compute D(h) is some
relatively simple although non trivial case (the passive scalar and the Burgers’ equation) and there are
several hopes that the computation of D(h) in the Navier-Stokes equations may eventually be done
following similar ideas. In summary, we believe that the computation of D(h) is not linked to a new
physical ideas, although it represents a challenging problem to be solved.

So far we discussed the case of homogenous isotropic turbulence. However, there exist many different
turbulent problems which are worthwhile to be investigated. In particular, it is interesting to consider
cases where there are new physical space scale and/or time scale which appear in the system such that
eq. (3) should be reconsidered. A non exhaustive list includes: Rayleigh Benard convection, turbulent
flows with the dilute polymers, spinodal decomposition, MHD turbulence, shear flows. In some cases,
the effect of non isotropic contribution should be considered and a number of new challenging questions
must be answered. It is not clear whether the same arguments reviewed in this paper can be applied
to all turbulent flows. In some cases (shear turbulence) it appears that scaling argument and the
multifractal conjecture are still valid. In other cases, for instance turbulent in MHD, the question is
still controversial. Also, there exists the special case of turbulence in superfluids where the dissipation
mechanism is definitively not captured by the standard Navier-Stokes equations.

We authors thank long lasting and useful collaboration with J. Bec, G. Boffetta, E. Calzavarini,
A. Celani, M. Cencini, A.S. Lanotte and F. Toschi. One of us (RB) thanks the organizing committee
of DFSD-2014, and in particular Francois Dubois and Stephan Fauve for the kind invitation to the
conference in Paris where this paper has been presented. The work has been supported by the Euro-
pean Research Council under the European Community’s Seventh Framework Program, ERC Grant
Agreement No 339032.
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