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We make a renormalisation group study with the finite size real space renormalization group (FSRSRG) technique of the order 
of the transition in the three dimensional three state Potts model with nearest neighbor and next to nearest neighbour couplings. 
Our results provide evidence that the order-disorder transition from a high temperature phase to a low temperature phase is 
discontinuous not only in the region characterized by both couplings being positive but also when the next to nearest coupling is 
appreciably antiferromagnetic. In both cases the correlation length exponent, previously not known, converges to the value ex- 
pected for a first order first transition but only for large volumes, especially in the antiferromagnetic case. 

Recent  results [ 1 ] in Q C D  have de te rmined  a re- 
newed interest  in the proper t ies  o f  the three state 
( q =  3) Potts  model  [2 ]. Approx ima te  arguments  
have been proposed  [3] ,  according to which the 
SU (3)  model  in (3 + 1 ) d imens ions  and a three di- 
mensional  spin model  with Z (3 )  discrete symmet ry  
should display the same critical behaviour .  

In spite of  the fact that  the corresponding spin 
model  i tself  is much s impler  than the SU (3)  model  
used in QCD,  exact results concerning its phase 
structure are nowadays  still scarse. Even less clear is 
the s i tuat ion when two kinds o f  couplings are pres- 
ent. In this letter, we consider  the three state Pot ts  
model  with nearest  neighbour  Jl  and next to nearest  
neighbour  J2 couplings in three dimensions ,  gov- 
erned by the following hamil tonian:  

H = J ,  Z ai~j-+J2 Z a ~ . ,  (1 )  
(0> ( 0 )  
n n  n n n  

where the discrete Pot ts  spin var iable  tri can only take 

on three different values. The first sum in eq. ( 1 ) runs 
over  the nearest  neighbour  (nn )  spins, at dis tance 1 
and the second over  the next to nearest  neighbour  
(nnn) ,  at dis tance x/~ in lat t ice units. Their  number  
is respectively 6 and 12 for the cubic lat t ice consid-  
ered here. 

A mean field analysis predicts  that  the t ransi t ion is 
always first order,  due to the presence o f  a nonvan-  
ishing cubic term in the free energy. A recent s tudy 
[4]  based on a high precision Monte  Carlo ( M C )  
s imulat ion,  seems to confi rm that  this picture is cor- 
rect in the case o f  , /2=0. However ,  some authors  
c la imed [ 5 ] that  the t ransi t ion is second order  for 
some negative values o f  J2. No a t tempt  was made  to 
measure  the critical exponents.  In the present  paper  
we apply  the finite size real space renormal isa t ion  
group method  ( F S R S R G )  [6 ] to the study of  the or- 
d e r - d i s o r d e r  t ransi t ion in the model  descr ibed by eq. 
(1) .  

The F S R S R G  combines  the advantages o f  the MC 
renormal iza t ion  group with those o f  the finite size 
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scaling [ 7 ]. It blocks the original spin system to a sys- 
tem containing a fixed number of block spins. The 
critical exponents are obtained from the analysis of 
the flow of the block couplings as a function of the 
total lattice size. 

Indeed, in the proximity of a phase transition and 
for values of L sufficiently large, the renormalized 
couplings relative to systems of different sizes ap- 
proach a common value K*, which is independent of 
L. This defines a matching point, about which one 
proceeds to linearize the RG transformation and to 
extract the value of the critical exponents. For a de- 
tailed account of  the method we refer to the original 
papers [ 6 ] where it was tested for the 2D Ising, Potts, 
XY and Heisenberg models. 

The estimate of the critical point exponents re- 
quires the knowledge of the renormalized couplings 
and of their derivatives with respect to the bare cou- 
plings Ji. In order to compute the thermal critical ex- 
ponent yT= 1/v we defined the following three block 
variables or renormalized couplings: 

( i j >  

n n  

K 2 ( L ) =  ( ~ Z, Z i ~ ,  
( / j >  / 

n n n  

(2b) 

The blocked spins Zi are obtained by a majority rule 
on a cube containing (L/2) a site variables and the 
indices i, j run over the 2 a sites of  the blocked lattice. 
The blocked coupling K~ represents the nearest 
neighbour average interaction energy in the small lat- 
tice, whereas/(2 is the next to nearest neighbour av- 
erage interaction energy. 

A third coupling was also defined by means of a 
different kind of blocking transformation of the orig- 
inal L a sites lattice into a lattice containing only two 
cells [ 8 ]. To define the transformation one starts by 
dividing the larger lattice into 2 a equivalent sublat- 
tices of volume (L/2)d and next grouping together 
the La/2 sites obtained by considering the system 
formed by one sublattice arbitrarily chosen and the 
three sublattices with one face in common with the 
latter. This procedure defines two non-intersecting 
subsystems. By applying the majority rule to each 
subsystem, we finally obtain the new block spin vari- 

ables XA and SB. The coupling K3 (L) is defined as 

K3 (L) = (Z'AZ'B) . (2C) 

TO improve the statistical performance we computed 
/(3 in the four possible independent ways. 

It is straightforward to show that the derivatives of  
these renormalized couplings with respect to Jj and 
J2 can be expressed in terms of connected averages of 
products of block spins X and original spins or. 

The thermal critical index is calculated by using the 
formula 

. {dKi(L,)/dJtj'~ ]_, 
y~a= l n [ , ~ )  [ln(Li/L2) . (3) 

The scaling picture of phase transitions predicts that, 
at a first order phase transition associated with a cou- 
plings flow, the thermal exponent is equal to the di- 
mensionality of  the system, d [9 ]. 

We monitored the order of  the transition by meas- 
uring the value of the exponent YT as Jl and J2 varied. 
We carried out two different sets of runs. In the first 
set we varied the bare couplings JB's, while keeping 
J1 =J2. In the second set instead we kept J~ = 1 fixed 
and varied J2. These two choices were sufficient to 
guarantee an effective crossing with the transition line 
with a sharp and statistically stable couplings flow 
around the fixed point. 

In the case J~ =J2 we can write H as 

H=J( ~ a;crj+ ~ (htTj), (4) 
\ < i j)  < i j)  

n n  n n n  

and then we consider the J derivatives in eq. (3). In 
the Jl = 1 fixed case we consider the Ja derivative for 
each coupling, and we dispose of six quantities in or- 
der to compute Yr in eq. (3). 

All the averages were calculated by means of MC 
simulation of cubic systems of linear sizes L = 8, 12, 
16, 20, 24; in the case J~ = 1 we also made a run with 
L = 2 8  and L =  32. We use multi-spin coding to store 
eight independent lattices in a single 32 bit word. In 
all cases, in order to reduce the thermalization time, 
we started from an equilibrium configuration ob- 
tained in a previous run at a slightly different value 
of the parameters. The number of thermalisation and 
measurement sweeps we made at each volume are re- 
ported in table 1. The set of measurements naturally 
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Table 1 

L Thermalisation Measurement 
sweeps sweeps 

8 50 000 1 000 000 
12 75 000 1 000 000 
16 125 000 1 000 000 
20 300 000 1 920 000 
24 300 000 1 920 000 
28 390 000 1 280 000 
32 450 000 3 120 000 
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Fig. 1. Flux of the renormalized coupling K 1 against J2 in the AF 
case. 

splits into the eight independent  mul t i -coded lattices 
and the errors are es t imated  from the f luctuations o f  
these eight samples. In the cases with large statist ics 
like for large lattices, we have further subdivided each 
lat t ice sample into clusters to check against  thermal-  
isat ion effects and  the results among different  clus- 
ters turned  out  to be stable and consistent.  We always 
started from a r andom configuration:  by moni tor ing  
the average energy o f  the system we have observed 
several flips between two values conf i rming the first 
order  nature  o f  the t ransi t ion.  

Figs. 1 and 2 d isplay the flow of  the couplings KI 
as a funct ion o f J a n d  L for the case J~ = 1 relat ive to 
the lattices o f  size L = 8 ,  12, 16 and L = 2 0 ,  24, 28, 
32, respectively. For  large volumes,  the sensi t ivi ty o f  
the flow to the tuning o f  the original  couplings in- 
creases and one needs an expanded  hor izonta l  scale. 
The fixed poin t  values shift with increasing volumes 
as expected. In the first case we es t imate  
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Fig. 2. Same quantity as in fig. 1 but for larger volumes. 
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Fig. 3. Thermal exponent YT obtained from eq. (3) for Jl =']2 by 
considering three different pairs of lattice sizes. 

J*=0 .16563  ( 3 ) ,  (5a)  

and in the second 

J ~ = - 0 . 1 6 9 9 8  ( 2 ) .  (5b)  

For  J1 =-/2 our results provide  further support  to the 
conjecture that  the t ransi t ion is first order  in the re- 
gion o f  posi t ive couplings. Fluctuat ions  are not  suf- 
ficient to modify  the mean field scenario, which also 
predicts  a discont inuous t ransi t ion.  For  lat t ice sizes 
greater than L =  12 we consistently measure  a ther- 
mal exponent  YT= 3.0 + 0.1 as can be seen from fig. 3 
where we plot  the thermal  exponent  in the J match-  
ing region and for different  latt ice sizes. 
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