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The dynamical effects of mode reduction in Fourier space for three dimensional turbulent flows is
studied. We present fully resolved numerical simulations of the Navier-Stokes equations with Fourier
modes constrained to live on a fractal set of dimension D. The robustness of the energy cascade and
vortex stretching mechanisms are tested at changing D, from the standard three dimensional case
to a strongly decimated case for D = 2.5, where only about 3% of the Fourier modes interact. While
the direct energy cascade persist, deviations from the Kolmogorov scaling are observed in the kinetic
energy spectra. A model in terms of a correction with a linear dependency on the co-dimension of
the fractal set, E(k) ∼ k−5/3+3−D, explains the results. At small scales, the intermittent behaviour
due to the vorticity production is strongly modified by the fractal decimation, leading to an almost
Gaussian statistics already at D ∼ 2.98. These effects are connected to a genuine modification in
the triad-to-triad nonlinear energy transfer mechanism.

PACS numbers:

Understanding the eddy motions at different scales is
key in turbulence. The question is fundamental [1–3]
and practical since modeling relies on assumptions in-
voking scaling invariance and scale-by-scale energy bud-
gets [4, 5]. During the formation of strong turbulent
fluctuations, large spatial structures create thin vortic-
ity layers or filaments under both the action of shear-
ing and stretching. Visualizations of the vorticity field,
both at moderate and large Reynolds number, show
a proliferation of small-scale vortex filaments populat-
ing intermittently all regions of the flow (as shown in
Fig. 1). A long debate exists whether or not the pres-
ence of such geometrical structures can be correlated to
the non-Gaussian statistical properties at the dissipa-
tive scale [1]. The dichotomy between dynamical and
statistical descriptions has been investigated both theo-
retically and numerically with different strategies. Clo-
sures [6, 7] and renormalisation-group approaches [8] are
based on a Fourier description of the turbulent motion
and focus on the mean spectral properties. The multi-
fractal model has been developed to account for inter-
mittency and anomalous fluctuations using a hierarchy
of scale sizes in real space [1]. Besides, many authors
have focused on a vortex-by-vortex analysis, looking for
the signatures of quasi-singularities or extreme events as-
sociated to specific dynamical properties of the Navier-
Stokes (NS) equations [9–15].
This paper addresses the problem of the relation be-
tween dynamical and statistical properties of small-scale
turbulent fluctuations using a novel technique: the NS
equations are solved on a pre-selected, multiscale set of
Fourier modes and the flow develops fluctuations on a
given Fourier skeleton, belonging to a fractal set of di-
mension D ≤ 3. For D = 3, the standard problem is

recovered. As a result of the Fourier decimation, the
velocity field is embedded in a three dimensional space,
but effectively possesses a number of Fourier modes that
grows slower with decreasing D. Degrees of freedom in-
side a sphere of radius k go as #dof (k) ∼ kD.
This idea has been introduced in [16] to test the hypothe-
sis that two dimensional turbulence in the inverse energy
cascade approaches a quasi-equilibrium state, when the

FIG. 1: (color online) Plot of the most intense vortical struc-
tures. (top) A snapshot of the turbulent flow withD = 3 (left)
and a snapshot of the turbulent flow with D = 2.98 (right).
Isosurfaces of the Q invariant of the velocity gradient tensor
are plotted: values Q/Qrms = 1 (grey) and Q/Qrms = 2
(red). (bottom) A zoom in the top snapshots highlights de-
tails of the small scales.
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turbulent motion is restricted on a set with D ∼ 4/3
as suggested in [17]. Fourier decimation methods are
not new for hydrodynamics in the direct energy cascade
regime: we mention protocols with a specific degree of
mode reduction [18–20], and the extreme truncation cri-
terion of shell models for the turbulent energy cascade
[21]. Moreover, at small Reynolds numbers, intermit-
tency might strongly depend on the amount of scales re-
solved in the inertial range, a first evidence of which can
be found in Ref. [18].
Fractal mode-reduction is a new route to perform numer-
ical simulations to tackle the problem of intermittency
and to develop multi-scale models of turbulence. Being
an exquisitely dynamical approach, it is different from
aposteriori filtering techniques, largely exploited to anal-
yse turbulent data [22]. In the fractally decimated NS
equations, a number of dynamical active variables are
selected in a self-similar way and they are a function of
one tuning parameter only, D. The problem is reformu-
lated on a fractal set, without breaking any symmetry:
statistical homogeneity, isotropy and rescaling properties
of the inertial terms hold true as in the original NS equa-
tions in D = 3. Reducing modes in a self-similar way
in Fourier space changes the relative weights of local to
non-local triadic interactions, by modifying altogether
the roles played by the large-scale advection, the non-
linear stretching and the turbulent eddy viscosity.
To address these questions, we performed a series of Di-
rect Numerical Simulations (DNS) of fractally decimated
NS equations, with 10243 or 20483 collocations points on
a regular cubic grid. The decimation operator PD acts
in the space of velocity fields as follows [16]. We define
v(x, t) and u(k, t) as the real and Fourier space repre-
sentation of the velocity field in D = 3, respectively. The
decimated field, vD(x, t), is obtained as:

vD(x, t) = PDv(x, t) =
∑
k∈Z3

eik·x γku(k, t) . (1)

The random numbers γk are quenched in time and are:

γk =

{
1, with probability hk ,

0, with probability 1− hk, k ≡ |k| .
(2)

The choice for the probability hk ∝ (k/k0)D−3, with
0 < D ≤ 3 ensures that the dynamics is isotropically
decimated to a D-dimensional Fourier space. The fac-
tors hk are chosen independently and preserve Hermitian
symmetry γk = γ−k so that PD is self-adjoint. The NS
equations in the decimated Fourier space are then defined
as:

∂tv
D = PDN(vD,vD) + ν∇2vD + fD . (3)

At each iteration of the numerical integration, the non
linear term, N(v,v) = −v ·∇v+∇p, is projected on the
quenched fractal set, to constrain the dynamical evolu-
tion to evolve on the same Fourier skeleton at all times.

In the (L2) norm, ‖v‖ ∝
∫
|v(x)|2d3x, the self-adjoint

operator PD commutes with the gradient and viscous
operator. Since PDvD = vD, it then follows that both
energy and helicity are conserved in the inviscid and un-
forced limit, exactly as in the original problem.
A pseudo-spectral spatial method is adopted to solve
eqs. (3), fully dealiased with the two-thirds rule; time
stepping is implemented with a second-order Adams-
Bashforth scheme. The flow is stationary, statistically
isotropic and homogeneous. A large-scale forcing [23]
keeps the total kinetic energy constant in a range of
shells, 0.7 ≤ |k| < 1.7. We performed several runs at
changing the fractal dimension 2.5 ≤ D ≤ 3 , the spatial
resolution and the realization of the fractal mask. Table
I summarises the relevant parameters.
A visualisation of the most intense vortical structures
reveals the effect of decimation on turbulent flows. In
Figure 1, we plot isosurfaces of the Q invariant of the
velocity gradient tensor [24]: the D = 3 case shows a
large number of structures of both large and small-scale
vortex filaments. The D = 2.98 clearly differs because
structures are smaller and more spherical-like, also they
are much less abundant, indicating a less intermittent
spatial distribution of structures.
To disentangle the relation between large and small
scales, the starting point is the shell-to-shell energy trans-
fer in the Fourier space. Following the notation adopted
in Ref. [2], we write the energy spectrum for a generic
flow in dimension D as:

ED(k) =

∫
|k1|=k

d3k1γk1

∫
d3k2γk2

〈u(k1)u(k2)〉 , (4)

where the decimation factor γk takes into account that
the Fourier mode k is active with probability hk. Sim-
ilarly, we can write for the energy flux across a Fourier
mode k, ΠD(k) =

∫
|k1|<k

d3k1∂tE(k1):

ΠD(k) =

∫
|k1|<k

d3k1γk1

∫
d3k2d

3k3γk2γk3S(k1|k2,k3),

(5)
where the explicit form of the symmetric triadic cor-
relation function is [25]: S(k1|k2,k3) = −Im[〈(k1 ·
u(k3))(u(k1) · u(k2))〉 + 〈(k1 · u(k2))(u(k1) · u(k3))〉].
Supposing a self-similar behaviour of the velocity fluctu-
ations u(k) ∼ k−a, we can estimate the scaling behaviour
of the energy flux as ΠD(λk) ∼ λ3D+1−3aΠD(k). In this
expression, the rescaling factor λ3D is due to the integral
over the variables (k1,k2,k3), while λ1−3a comes from
the triadic non-linear term.
If a constant energy flux develops in the inertial range of
scales, the following dimensional relation holds:

a = D + 1/3→ ED(k) ∼ k3−D EK41(k) (6)

where EK41(k) ∼ k−5/3 is the Kolmogorov spectrum ex-
pected for the standard case in D = 3, possibly cor-
rected because of intermittency [26]. Dimensional pref-
actors have been omitted for simplicity. The relation (6)
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D 3 3 2.999 2.99 2.99 2.98 2.98 2.8 2.8 2.5

N 1024 1024 1024 1024 2048 1024 2048 1024 1024 1024

Mr 100% 100% 99% 93% 92% 87% 85% 25% 25% 3%

η 0.75 0.95 0.75 0.95 0.70 0.75 0.70 0.90 0.40 0.65

NT 10 6 15 15 7 15 8 10 15 8

TABLE I: DNS parameters. The fractal dimension D; the
grid resolution per spatial direction N ; the percentage of sur-
viving Fourier modes Mr; Kolmogorov length scale η in grid
spacing units, where the grid spacing is ∆x = 2π/N ; the
number of large-scale eddy-turnover-times, NT .
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FIG. 2: (Upper panel): log-log plot of the mean kinetic en-
ergy spectra at changing D; in the inset, the mean kinetic
energy fluxes. (Lower panel): Compensated energy spec-

tra ED(k) k5/3−3+D vs the wavenumber k; in the inset, the
compensation is done with the Kolmogorov K41 prediction,
ED(k) k5/3.

is obtained by noticing that because of homogeneity, we
have that 〈u(k1) · u(k2) 〉 ∝ F (k1)δ3(k1 + k2), and by
also noticing that the decimation projector verifies the
identity (γk)2 = γk. As a result, the dynamical ef-
fect of Fourier fractal decimation is to make the energy
spectrum shallower than the Kolmogorov prediction for
three-dimensional turbulence, predicting the existence of
a critical dimension D = 7/3, when the spectrum be-
comes ultraviolet divergent. By decreasing D in the

presence of a forward energy cascade, the system has
fewer modes available to transfer the same amount of
energy (see Table I), and the velocity field becomes in-
creasingly rougher.
In the upper panel of Figure 2, we plot the kinetic energy
spectra and the associated energy fluxes, at changing the
fractal dimension. It shows that at increasing the grid
resolution for fixed D, from N = 1024 to N = 2048, no
appreciable differences are observed, indicating that the
presence of a forward energy cascade appears robust and
Reynolds independent. In the lower panel we also show
that the spectra compensate very well with the prediction
(6), while they fail to satisfactorily compensate with the
classical K41 prediction when D < 3. Figure 2 (upper
inset) shows that at decreasing the fractal decimation,
the mean energy transfer towards small scales is almost
unchanged, i.e. the hypothesis leading to the prediction
(6) is well verified. On the other hand, temporal fluctua-
tions of the kinetic energy flux decrease with the fractal
dimension D (not shown).
It might be argued that the effect of fractal Fourier deci-
mation is purely geometrical and that the main dynami-
cal processes are unchanged. To show that this is not the
case, it is useful to analyse the effect of a static Fourier
decimation. This can be done by considering snapshots
of standard D = 3 turbulence, and applying the frac-
tal decimation as an aposteriori filter. It is immediate
to realise that the effect of the static decimation on the
spectrum is ED

st(k) ∼ kD−3EK41(k), implying that the
geometrical action of the decimation goes in the opposite
direction of the dynamical one.
We now consider the dynamical effect of the fractal
Fourier decimation on the small-scale structures, by fo-
cusing on the statistics of the vorticity field in the real
space. In Fig. 3 we plot the probability density function
(PDF) of the vorticity field, normalised with its standard
deviation. It is striking to note that already at D = 2.99,
vorticity fluctuations have changed their intensity of one
order of magnitude, despite the fact that the mean en-
strophy is practically unchanged. Even more strikingly,
intermittent fluctuations disappear already at D = 2.8,
where a quasi-Gaussian vorticity PDF is measured. The
transition towards a Gaussian behaviour is better quan-
tified considering the vorticity kurtosis. In Figure 4, we
compare results of the fractally decimated NS equations,
with those obtained from the application of the apos-
teriori static mask on three-dimensional turbulence, as
previously done for the kinetic energy spectra. The dy-
namical fractal decimation makes a very fast transition
towards a Gaussian behaviour, such that at D = 2.98
the kurtosis has decreased by 30%, to already approach
the Gaussian value at D = 2.8. In the case of the apos-
teriori static decimation, vorticity kurtosis assumes the
Gaussian value only at D = 2.5, while staying almost
unchanged in the range D ≥ 2.98. Such a strong differ-
ence clearly indicates that constraining the dynamics to a
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FIG. 3: Probability density function of the vorticity compo-
nent ωx, normalised to its standard deviation. Data refer to
simulations at resolution N = 1024. In the inset, mean square
vorticity 〈w2〉 versus the fractal dimension deficit, 3−D.

sub-set of modes is critical for the complete development
of intermittency in real space. The presence or absence
of some of the Fourier modes strongly modify the fluc-
tuations of all the others, suggesting the possibility that
intermittency is the result of percolating dynamical prop-
erties across the whole Fourier lattice [27].
Conclusions. We have numerically studied turbulent
flows resulting from the evolution of the NS equations
solved on a fractal skeleton, characterized by a unique
control parameter, the dimension D. Fractal Fourier dec-
imation modifies the relative weight between local and
non-local Fourier triads [28], as well as the phase corre-
lation between Fourier modes [29, 30]. The first result is
that the decimation does not alter the energy flux, i.e.
an inertial range of scales with a constant-flux solution
is observed at changing D, at least in the the parameter
range investigated here. This is in agreement with the
observation that Galerkin truncations do not alter the
inviscid conservation of quadratic quantities, preserving
the existence of exact scaling solution for suitable third-
order correlation functions (see appendix of Ref. [31]).
Second and most striking, the mode reduction has two
important effects. The Fourier spectrum of the surviving
modes gets a power law correction, and small-scale inter-
mittency is quickly reduced for D < 3 and it is observed
to almost vanish already at D = 2.98.
Because of the spectrum modification, the scaling ex-
ponent of the second order longitudinal structure func-
tion becomes ζ2 + (D − 3), where ζ2 is the scaling ex-
ponent measured in the standard D = 3 case. This ob-
servation would suggest that, for the dimension deficit
3 − D < 1, one may obtain corrections to all anoma-
lous exponents proportional to 3−D, and the anomalous
exponents might be computed perturbatively in the di-
mension deficit. If this is the case, the critical dimension
Dc is estimated as the value of the fractal dimension D
where the Kolmogorov 1941 scaling is recovered, namely
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FIG. 4: Lin-log plot of vorticity kurtosis vs the dimension
deficit 3 − D. The upper curve (SM) is obtained from the
application of the aposteriori static mask on D = 3 velocity
field snapshots; the lower curve (DM) is obtained from the
Fourier decimated DNS.

ζ2 + Dc − 3 = 2/3. This gives Dc ∼ 2.96 not far from
the value of D at which intermittency is observed to van-
ish in our simulations. However, there is no reason to
assume that anomalous exponents can be computed per-
turbatively in 3 − D. In fact, intermittency might also
be understood as the result of a global, multiple-scale in-
teraction in Fourier space, needing all degrees of freedom
to develop: any tiny decimation would kill these singu-
lar solutions of the NS dynamics. In such case, anoma-
lous exponents can not be obtained perturbatively, and
phenomenological cascade models [1] would be unable to
explain the results. Finally, we want to mention that the
effect of Fourier decimation on the dynamics could also
be interpreted as a modification of the non-linear term of
the NS equations, exactly removing the statistical contri-
bution of each decimated Fourier mode. As such, fractal
decimation might introduce at all scales self-similar fluc-
tuations that dominate the scaling properties, similarly
to what happens for NS equations stirred by a random,
power-law forcing [32–36]. As reported in Ref.[35], when
the external energy injection directly affects the cascade
and becomes the dominant statistical contribution in the
inertial range, a transition to a Gaussian statistics for
velocity increments in the inertial range is observed. All
these possibilities are open, and might be key to explain
the strong departure from the non-Gaussian statistics of
standard D = 3 turbulence. Given the state-of-the-art
of numerical simulations, it is hardly possible to discrim-
inate between these different effects.
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