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Abstract

Following the exact decomposition in eigenstates of helicity for the Navier-Stokes equations

in Fourier space [F. Waleffe, Phys. Fluids A 4, 350 (1992)] we introduce a modified version of

helical shell models for turbulence with non-local triadic interactions. By using both an analytical

argument and numerical simulation, we show that there exists a class of models, with a specific

helical structure, that exhibits a statistically stable inverse energy cascade, in close analogy with

that predicted for the Navier-Stokes equations restricted to the same helical interactions. We

further support the idea that turbulent energy transfer is the result of a strong entanglement

among triads possessing different transfer properties.
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I. INTRODUCTION

Understanding and controlling the statistical and dynamical properties of turbulent flows

is still an open problem in many fundamental and applied fields. From a theoretical point of

view, the main difficulties stem from the highly non-linear nature of the dynamics in the fully

developed regime. Moreover, the presence of a large separation between the injection and

dissipative scales and the empirical observation of non-Gaussian statistics of the velocity

field make the system hard to approach with analytical perturbative techniques or brute

force direct numerical simulations [1, 2]. The physics of a turbulent flow is very rich. It

might depend on the embedding dimensionality, leading to a direct transfer of energy from

large to small scales in three dimensions (forward cascade) or to an inverse transfer in

two dimensions (backward cascade). Moreover, in the direct regime, turbulent flow develops

anomalous scaling laws, where different moments of the velocity fluctuations possess a power-

law behavior as a function of the separation scale, characterized by a set of anomalous scaling

exponents.

For these reasons many different techniques and approximations have been developed

in order to try to better understand the turbulent phenomenology. One such approach is

represented by shell models [3–11].

Shell models of turbulence are simplified models that mimic the Navier-Stokes (NS)

equations in wave-number space. They are based on a strong reduction in the number

of degrees of freedom, keeping only a few representative variables (typically one or two real

variables) for the whole original set of wave-numbers belonging to each shell. To have scaling

invariance embedded in the system, the shell variables are defined on a set of wavenumbers

equally spaced on a logarithmic scale, kn ∼ λnk0, where λ = 2 conventionally. In this way, a

large separation of scales is achieved with relatively few variables. Furthermore, inspired by

Kolmogorov phenomenology for the direct energy transfer, these models consider only local

interactions in Fourier space, connecting dynamical evolution between three neighboring

modes kn, kn+1, kn+2. Last but not least, the models are built in such a way that they have

the same inviscid invariants of the original Navier-Stokes equations: energy and helicity for

models of three-dimensional(3D) turbulence or energy and enstrophy for the 2D case.

Despite the huge simplifications, shell models share many properties with the original

Navier-Stokes turbulence, including the development of anomalous scaling laws with values

2



of the scaling exponents very close to the ones measured in 3D turbulence [7–9, 12]. Many

generalizations to models for magnetohydrodynamics [13], rotating fluids [14–16], convection

[17–21] and passive scalars [22–24] have also been studied.

Notwithstanding their success, shell models proved to be problematic when inverse en-

ergy cascade becomes the dominant phenomenon to be studied. In fact, in all known models

for 2D turbulent flows that conserve energy and enstrophy the inverse energy flux is over-

whelmed by equilibrium fluctuations [25, 26]. Similarly, also considering shell models of 3D

Navier-Stokes equations restricted to having only sign-definite helicity [27], the inverse en-

ergy cascade is sub-leading with respect to equilibrium fluctuations [26]. Indeed, an inverse

energy cascade in shell models has been observed only by adding extra terms in the equations

of motion, representing mechanisms such as rotation or stratification [16, 21], or considering

the dynamics in a range of parameters where the conserved quantities have different physical

dimensions with respect to those of the Navier-Stokes equations [26]. The main goal of this

paper is to present a shell model that has energy and helicity as inviscid invariants, and

that shows an inverse energy cascade without relying on any additional external mechanism

beside the ones already present in the NS non-linear term.

To better understand the interplay between helicity and energy, shell models for 3D tur-

bulence have been proposed in [28] using a close connection with the helical structure of

the original Navier-Stokes equations. The idea was to apply the decomposition in helical

eigenstates of the Navier-Stokes equations in order to distinguish triadic non-linear interac-

tion on the basis of their helical content [29]. It was indeed argued in [29] that depending

on the relative sign of helicity carried by the three interacting modes, energy tends to be

transferred forward or backward in 3D turbulent flow. Recently, further support for this

statement was given in [27] by performing direct numerical simulations of 3D turbulence

under the constraint of having only sign-definite helical modes and showing that in this

case the flow inverts the energy transfer direction, by pumping energy to larger and larger

scales. As a result, clear evidence that inverse and direct energy transfer mechanisms might

coexists in 3D turbulence was given, making it even more interesting to understand under

which circumstances the former prevails over the latter, or vice versa.

In this paper, we expand the work done in [28], trying to understand if the inclusion

of helical variables in shell models might shed some light on the complexity of the energy

transfer mechanism. In particular, we show that the aspect ratio of the triads is a key point.
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To achieve an inverse energy transfer mechanism we relaxed the constraint of first-neighbor

interactions between wave-numbers. Indeed, we show, with both theoretical and numerical

tools, that this simple modification can have dramatic consequences on the energy-cascade

mechanism, turning a model that exhibits direct energy cascade into a model that exhibits

an inverse energy cascade. It is remarkable that the argument suggesting the importance

of elongated triads is taken in full similarity with the original case of 3D Navier-Stokes

equations as developed originally in [29]: another case of a close overlap between the physics

of turbulence and the dynamics of shell models.

The paper is organized as follows. In Sec. II, the helical decomposition is briefly reviewed

and a modified SABRA model with more elongated triads is defined. In Sec. III, predictions

for the direction of the energy cascade and scaling laws are made, on the basis of the stability

analysis of a single interacting triad. In Sec. IV, results of numerical simulations are shown

and compared with the predictions from the previous section. Finally, the two appendixes

contain details and calculations. Appendix A contains the definition of a more general

helical shell-model, with triads of any shape. Appendix B contains detailed calculations for

the stability analysis of a single interacting triad.

II. HELICAL DECOMPOSITION FOR SHELL MODELS OF TURBULENCE

A. The original SABRA model

The original SABRA shell model [8] was inspired by the Navier-Stokes equations in

Fourier space, and, although it cannot be formally derived from them, it has a phenomenol-

ogy very similar to that of 3D homogeneous and isotropic turbulent flows. The model

describes the evolution of a single complex variable un, representing all the modes in a shell

of wave-numbers |k| ∈ [kn, kn+1]. The equations of motion take the form [8]:

u̇n = i(akn+1un+2u
∗

n+1 + bknun+1u
∗

n−1 + ckn−1un−1un−2)− νkβ
nun + fn + νlk

−4
n un , (1)

where, kn = k0λ
n, λ is an arbitrary scale parameter larger than unity (here λ = 2), νkβ

n

is a dissipative (β = 2) or hyper-dissipative (β > 2) term, fn is an external forcing term,

and νlk
−4
n is a large-scale damping term introduced for those models that develop an inverse

energy transfer in order to get a stationary statistics. The model is defined on a given number
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of shells, n = 0, 1, . . . , N , and the boundary conditions u−1 = u−2 = uN+1 = uN+2 = 0 are

imposed.

The model has two quadratic inviscid invariants that depend on the values of the a, b, c

parameters. The first one is always chosen to be the energy, E =
∑N

n=0 |un|2, while the

second can be defined to be unsigned to mimic helicity in 3D Navier-Stokes equations,

H =
∑N

n=0(−)nkn|un|2, or positive definite as enstrophy for 2D NS, Ω =
∑N

n=0 k
2
n|un|2. A

significant drawback of the above model in the 3D regime is the imbalance between successive

shell variables: the ones with an odd shell index carry only negative helical modes, while

the ones with even n carry positive helicity [30–32].

B. The helical SABRA model

In order to overcome the previous limitation a new class of shell models with a more

realistic helicity structure was proposed in [28]. The first step was to follow the exact

decomposition of the Navier-Stokes velocity field, in Fourier space, into positive and negative

polarized helical waves [29]:

u(x) =
∑

k

(u+
k
h+
k
+ u−

k
h−

k
)eik·x , (2)

where k,h+
k
,h−

k
form an orthogonal basis, and the two hs

k
(with s = ±) are eigenvectors of

the curl operator:

ik× hs
k
= skhs

k
. (3)

A possible way to construct them is to use the decomposition:

hs
k
= νk × κ+ isνk , (4)

where k = kκ, νk = (z × κ)/||z × κ||, and z is an arbitrary vector. The two fields

u+
k

and u−

k
are nothing more than the projections on the h+

k
and h−

k
directions of the

Fourier coefficients of the velocity field, and they carry, respectively, positive and negative

helicity. It was realized that by plugging this decomposition into the non-linear term of the

Navier-Stokes equations, one can distinguish eight possible non-linear triadic interactions

depending on the signs of the corresponding helical projections [29]. Four out of eight

interactions are independent, because the interactions with reversed helicities are identical;

they are summarized in Fig. 1. It is possible to apply the same decomposition verbatim to
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construct different classes of helical shell models with a more accurate helical structure than

the original model (1). This first step was done in [28] introducing two complex variables

u+
n and u−

n for every wave-number, each one of them carrying positive or negative helicity

and leading to the four independent classes of the local helical shell-model. All of them have

the form:

u̇+
n = i(akn+1u

s1
n+2u

s2∗
n+1 + bknu

s3
n+1u

s4∗
n−1 + ckn−1u

s5
n−1u

s6
n−2)− νkβ

nu
+
n + f+

n − νlk
−4
n u+

n , (5)

u̇−

n = i(akn+1u
−s1
n+2u

−s2∗
n+1 + bknu

−s3
n+1u

−s4∗
n−1 + ckn−1u

−s5
n−1u

−s6
n−2)− νkβ

nu
−

n + f−

n − νlk
−4
n u−

n , (6)

where the helical indices si = ± are reported in Table I and the coefficients a, b, c can be

found in Table II. Each one of these models evolves according to only one of the four inde-

pendent helical interactions depicted in Fig. 1, where a triad (kn−1, kn, kn+1) is represented

by (k, p, q).

p−

q+

k+

p−

q−

k+

SM1 SM3 SM4

p+

q−

k+

SM2

p+

q+

k+

FIG. 1. Representation of the four independent classes of helical interaction between an ordered

triad of wave-numbers k < p < q, in both Navier-Stokes and helical shell models. The ± super-

scripts represents the helical mode which is participating in the interaction. Each class has two

possible interactions, that are equivalent due to the parity symmetry k+ → k−, p+ → p−, q+ → q−;

only one is shown here. The arrows represent the energy transfers, as a result of the instability

assumption (see section III and Appendix B). The dashed arrows represent weaker transfers with

respect to the full lines. For models 1 and 3 energy flows out of the smallest wave number, in

particular in model 1 the smallest wave-number transfers the same amount of energy to the other

two, while model 3 exhibits a more localized energy transfer; in model 2 the middle wave-number

transfers more energy to the largest wave-number and less to the smallest; in model 4 the middle

wave-number transfers more energy to the smallest wave-number and less to the largest.
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It is important to stress that, exactly as in the original Navier-Stokes equations, the four

classes of interactions conserve energy and helicity separately, if the coefficients a, b, c are

chosen appropriately, i.e. they can be considered as four sub-models of the whole problem.

The added value with respect to the previous SABRA structure is that now energy and

helicity have the very same structure as for the NS equations [29] without the asymmetry

among odd and even shells:

E =

N
∑

n=0

(|u+
n |2 + |u−

n |2) , (7)

H =

N
∑

n=0

kn(|u+
n |2 − |u−

n |2). (8)

As we shall see later, none of these 4 models is indeed able to show an inverse energy

cascade. Even the shell model SM4, which is the equivalent of the Navier-Stokes restriction

to sign-definite helical interactions [27], fails to develop an inverse energy transfer because

of the presence of strong fluctuations due to the quasi-equilibrium solution [26]. It is not

surprising that the equilibrium solution might have a different influence on the shell model

with respect to the Navier-Stokes equations, because of the strong difference in the scaling

of the number of degrees of freedom as a function of the embedding physical dimension.

A priori there is no reason why a very simplified structure such as the one given by shell

models should replicate exactly the behavior of the Navier-Stokes equations restricted on

the same helicity interactions class. In particular, one of the strongest limitations is given by

the restriction to very local interactions among Fourier variables assumed by the structure

(5).

In [29] it was shown, on the basis of an “instability assumption”, that triads where the

two highest wave-numbers have the same helical sign, such as those in model SM2 (see Fig.

1), might lead to an inverse cascade. It was also explained that the key factor for the NS

case is the triad geometry. Calling v = k/p the ratio between the smallest and middle wave-

number, it was argued in [29], on the basis of a phenomenological scaling argument, that if

v < 0.278, the triad should contribute to an inverse flux of energy, from small to large scales.

In fact, empirical observation made on direct numerical simulations of the shell-model SM2

(where v = 0.5) showed that energy flows toward small scales. We are therefore interested
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in extending the range of interactions, exploring smaller values of the ratio v, in order to

meet the “elongation” requirement argued in [29].

C. The elongated helical SABRA model

We introduce here a shell-model, which we will call SM2E, in which the triads are more

elongated, in the sense that the middle wave-number kn in a triad will interact with the

first larger neighbor kn+1 and the second smaller neighbor kn−2. In this way we have the

equivalent of the parameter v = kn−2/kn = λ−2 = 0.25 instead of v = 0.5 as for the local

version. The model equations take the form:

u̇+
n =i(akn+2u

s1
n+3u

s2∗
n+2 + bknu

s3
n+1u

s4∗
n−2 + ckn−1u

s5
n−1u

s6
n−3)− νkβ

nu
+
n + f+

n − νlk
−4
n u+

n , (9)

u̇−

n =i(akn+2u
−s1
n+3u

−s2∗
n+2 + bknu

−s3
n+1u

−s4∗
n−2 + ckn−1u

−s5
n−1u

−s6
n−3)− νkβ

nu
−

n + f−

n − νlk
−4
n u−

n , (10)

where the helical indices si fall in the same helical class of the SM2 model (see Table I).

The real constants a, b, c are determined by imposing that the triadic interaction conserves

energy (7) and helicity (8). The values of the resulting coefficients for the SM2E model are

given in Table II.

In Appendix A we give the equations for an even more general shell-model, allowing for

interacting triads of any shape.

In the next section we extend the “instability assumption” developed in [29] to predict

the transfer properties of helical shell models, and we show that, indeed, the elongated

version SM2E of the model SM2 should lead to an inverse energy transfer in agreement with

the predictions for the set of triads with a similar geometrical factor in the Navier-Stokes

equations.

TABLE I. Helicity indices of Eqs. (5)-(6) and (9)-(10) for the four models.

model s1 s2 s3 s4 s5 s6

SM1 + − − − − +

SM2-SM2E − − + − + −

SM3 − + − + − −

SM4 + + + + + +
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III. ENERGY TRANSFERS IN HELICAL SHELL MODELS

In this section we will first study the stability of steady states of only one triad of wave-

numbers. We will then extend the results of this analysis to a shell-model with any number

N of shells, in the framework of the instability assumption [29]. The instability assumption

states two things: (i) the global statistical behavior of a shell-model can be inferred directly

from the single-triad dynamics; (ii) in a single-triad system the energy flows from the most

unstable wave-number to the other two. Here the adjective “unstable” is intended to be used

in the framework of the linear stability analysis of the equations for u±

n . In fact, proceeding

as in [29] and [28], we studied the linear stability of a single-triad helical shell-model, both

in its first-neighbor and elongated variants. This analysis (see Appendix B) confirms that

there is one unstable wave-number that transfers energy to the other two. For models SM1

and SM3 the unstable wave-number is the smallest one, while for models SM2, SM2E and

SM4 the unstable wave-number is the middle one (this property depends only on the helical

class of the model, not on the triad shape). These results, already discussed in [28], are the

same as those obtained for the Navier-Stokes equations, and they are summarized in Fig. 1.

A. Energy transfers

Let us now examine how one can exploit the stability analysis for a single triad to predict

the sign of the energy transfer in a fully coupled shell-model. For the balance of energy at

TABLE II. Coefficients of equations (5)-(6) for the four helical shell models with first-neighbor

interaction, plus the elongated version SM2E of model SM2 in equations (9)-(10). These coefficients

ensure Energy and Helicity conservation. Conventionally, and without loss of generality, we always

choose a = 1.

Model b c

SM1 −1/2 1/2

SM2 −5/2 −3/2

SM2E −9/4 −5/4

SM3 −5/6 1/6

SM4 −3/2 −1/2
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shell kn we have:

Ėn =
d

dt
(|u+

n |2+ |u−

n |2) = (δEn+m+ bδEn − cδEn−1)−2νkβ
nEn+2Re(f+u+∗

n +f−u−∗

n ) −2νlk
−4
n En,

(11)

where

δEn = −2knIm[(us3
n+1u

+∗

n us4∗
n−m) + (u−s3

n+1u
−∗

n u−s4∗
n−m)] , (12)

and m = 1 for the first-neighbor models SM1-SM4, or m = 2 for model SM2E. The total

energy flux across a shell n is given by the balance equation:

n
∑

j=0

Ėj = ΠE
n − ǫoutn + ǫinn − αout

n , (13)

where the non-linear contribution is given by ΠE
n =

∑n
j=0(δ

E
j+m + bδEj − cδEj−1), and with

ǫoutn = 2ν
∑n

j=0 k
β
j Ej and αout

n = 2νl
∑n

j=0 k
−4
j Ej we denote the dissipative contributions at

small and large scales respectively, while with ǫinn = 2
∑n

j=0Re(f+u+∗

j + f−u−∗

j ) we denote

the external input from the forcing. Using the constraint of energy conservation c = 1 + b

(see Appendix A), one finds that the non-linear contribution to the flux can be further

simplified for models SM1-SM4 to:

ΠE
n = (1 + b)δEn + δEn+1 , (14)

while for model SM2E:

ΠE
n = (1 + b)δEn + δEn+1 + δEn+2 . (15)

The fact that the energy is conserved by the non-linear terms implies that the non-linear flux

must vanish if calculated over all shells, ΠE
N = 0. In the presence of a stationary statistics, an

average of the left-hand side of (13) must vanish too. For the case of a direct energy cascade

(αout
N ∼ 0), the global energy balance imposes the equality of the time-averaged values

〈ǫoutN 〉 = 〈ǫinN 〉, while for the inverse energy cascade (ǫoutN ∼ 0) we must have 〈αout
N 〉 = 〈ǫinN 〉. In

the presence of a direct cascade and in the inertial range of scales, i.e. for wavenumbers, kn,

much larger than the forcing scales, kf , and much smaller than the viscous scale, kη, we must

also have ǫoutn = αout
n ∼ 0 and 〈ǫinn 〉 = const. As a consequence, the existence of a constant

direct energy cascade implies that 〈δEn 〉 must be asymptotically constant (independent of n),

such that also the flux will be constant and given by:

〈ΠE
n 〉 = f(b)〈δEn 〉 = −〈ǫinn 〉 = const , (16)
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where f(b) = (2 + b) for models SM1-SM4, and f(b) = (3 + b) for model SM2E. Similarly,

in the presence of an inverse energy cascade regime, for wavenumbers kn smaller than kf we

must have

〈ΠE
n 〉 = f(b)〈δEn 〉 = 〈αout

n 〉 = const . (17)

In our notation, a negative flux means that energy is flowing from large to small scales

and vice versa. The sign of f(b) is known once a model is chosen, while for finding the sign

of 〈δEn 〉 we make use of the instability assumption as follows.

Given a one-triad model, considering only shells kn−m, kn, kn+1, with zero energy injection

and dissipation, equations (11), after averaging and under the hypothesis of constant flux,

will take the form:

〈Ėn−m〉 = 〈δEn 〉 ,

〈Ėn〉 = b〈δEn 〉 ,

〈Ėn+1〉 = −c〈δEn 〉 . (18)

We can make several considerations based on equations (18). First, the ratio between

the energies flowing towards the two stable wave-numbers is simply given by the b and c

coefficients of the model. Second, exploiting the instability assumption (Fig. 1), we can

predict which wave-number should have positive or negative energy variation (the unstable

will have a negative energy derivative and vice versa); since b and c are known (Table II),

the sign of 〈δEn 〉 can be readily calculated. For instance, for model SM1, the mode with the

smallest wave-number is unstable, providing 〈Ėn−1〉 < 0, 〈Ėn〉 > 0 and 〈Ėn+1〉 > 0; the

values b = −1/2 < 0 and c = 1/2 > 0 in equation (18) yield 〈δEn 〉 < 0. Similarly, for model

SM3 we have 〈δEn 〉 < 0, while for models SM2 and SM4 〈δEn 〉 > 0. These results do not

depend on the triad shape, but only on the helical class of the interaction, so also for model

SM2E 〈δEn 〉 > 0. From these calculations, and equation (16) we derive the predictions for

the direction of the energy flux given in Table III.

In this formalism, the information regarding the shape of the triad, i.e., the degree of

non-locality, is entirely contained in the f(b) prefactor. In order to have a positive energy

flux in Eq. (17), corresponding to an inverse energy cascade, the signs of the factors 〈δEn 〉
and f(b) must be the same. We see that the above argument predicts that model SM4

will have a positive energy flux and would be the first candidate for a shell-model that

displays inverse energy cascade. As shown in [26], it turns out that the fluctuations of the
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TABLE III. Predictions for the energy flux, based on the instability assumption and equations

(13), (16) and (17). A negative energy flux means that energy is cascading towards small scales

and vice versa. sgn[x] is the sign function.

Model sgn[〈δEn 〉] sgn[f(b)] Energy flux prediction

SM1 − + Forward

SM2 + − Forward

SM2E + + Backward

SM3 − + Forward

SM4 + + Backward

energy flux are so strong that such a system shows quasi-equilibrium rather than an inverse

cascade of energy. However, also switching from model SM2 to SM2E, the energy flux should

reverse its sign, due to the sign change in the factor f(b), as predicted also for the NS case.

This provides a good candidate for a model with the same invariants as 3D Navier-Stokes

equations exhibiting inverse energy cascade.

IV. NUMERICAL SIMULATIONS

In order to test the predictions made in section III, and especially to see if the transition

from the local shell model SM2 to the elongated shell model SM2E actually shows a reversal

in the direction of the energy cascade, we have performed several numerical integrations of

the equations (5)-(6) and (9)-(10). The energy is injected through a stochastic Gaussian

forcing, delta correlated in time, with zero mean and O(1) standard deviation, on two

shells, both on the positive (u+
n ) and negative (u−

n ) helicity-carrying velocities, with different

amplitudes, in order to inject helicity as well. We performed several simulations, with energy

injected at large, medium or small scales, and for some of these cases we used hyper-viscosity

(∼ k4 dissipative term) in order to have a cleaner inertial range without increasing too

much the number of shells. We wanted to verify that this hyper-viscosity does not have any

important effect on the scaling laws of the observables. Also, a large-scale energy dissipation

of the form ∼ k−4 was introduced in order to avoid large-scale energy accumulation where

necessary. The parameters used for the simulations can be found in Table IV.
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TABLE IV. Parameters used for the simulations. Several simulations were performed with energy

injected at different shell-numbers knf
. |f+

n | and |f+
n | represent the intensity (standard deviation)

of the Gaussian forcing on the positive and negative helicity-carrying shells, respectively. Large

scale dissipation: νlk
−4
n . Small scale dissipation: sets I and II use a standard νk2n viscosity, while

sets III and IV use a νk4n hyper-viscosity. For all runs λ = 2 and k0 = 1.

N ∆t ν νl nf |f+
n | |f−

n |

Run I 36 5 · 10−9 1.0 · 10−12 1 4, 5 1 0.5

Run II 36 1 · 10−8 1.0 · 10−12 1 4, 5 1 0.5

Run III 31 5 · 10−9 2.5 · 10−28 1 14, 15 1 0.5

Run IV 31 1 · 10−8 2.5 · 10−28 1 22, 23 1 0.5

The time integration has been carried out using an explicit 2nd-order Adams-Basforth

scheme with exact integration of the viscous terms:

un(t+∆t) = un(t)e
−γn∆t +∆t

[

3

2
e−γn∆tNLTn(t)−

1

2
e−2γn∆tNLTn(t−∆t)

]

, (19)

where γn and NLTn are, respectively, the viscous and the non-linear terms on the right hand

side of (5)-(6) or (9)-(10). The stochastic forcing is integrated separately with a forward

Euler scheme.

The equations were evolved for several hundreds of large-scale eddy turnover times, Te,

and time averages have been first calculated on runs lasting T ∼ 10Te and then averaged over

all the stationary runs. Stationarity is checked by monitoring the total energy evolution.

Figures 2 and 3 show the energy spectra for the local SM2 and elongated SM2E models, for

both large-scale and small-scale energy injection cases. Figure 4 shows the corresponding

energy flux for the case when the forcing mechanism is acting at an intermediate scale,

such as to resolve simultaneously the forward and backward transfers. We briefly remind

the reader that in terms of shell-model variables, a forward/backward energy cascade gives

the scaling En ∼ |ǫ|2/3k−2/3, while a dynamics close to energy equipartition should give

En ∼ const.

From Figs. 2 and 4 we clearly see that model SM2 has a forward energy transfer and no

backward transfer. On the other hand, Figs. 3 and 4 show that model SM2E has the opposite

behavior: a clear backward energy transfer and zero forward flux. Let us further notice

that in the regime where the energy flux is absent both models do not develop a solution
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close to energy equipartition. Indeed, in these ranges the dynamics can be dominated by a

homogeneous solution of the energy balance equation (11) in the stationary regime. In fact,

by substituting the definitions (14) or (15) inside the stationary balance equation for the

flux, 〈ΠE
n 〉 = ǫ, where the sign of ǫ depends on whether we have a forward or a backward

cascade, we obtain the following for the two models SM2 and SM2E:

(1 + b)〈δEn 〉+ 〈δEn+1〉 = ǫ , (SM2) (20)

(1 + b)〈δEn 〉+ 〈δEn+1〉+ 〈δEn+2〉 = ǫ . (SM2E) (21)

The solution of these difference equations is generally a sum of the solution of the corre-

sponding homogeneous equation (zero-flux solution, or zero-mode) and a particular solution,

for instance 〈δEn 〉 = const, that represents the constant flux solution [33]. If the homogeneous

solutions has a steeper scaling than the constant-flux solutions, it is sub-dominant in the

dynamics. On the other hand, when the constant energy flux solution is absent, the homo-

geneous zero-mode may become dominant. This explains the slope of the energy spectrum

for the SM2 model in the range k < kf , where a direct calculation shows that the dynamics

is dominated by a zero-mode solution of (20), 〈δEn+1〉/〈δEn 〉 = −(1 + b) = λ0.585, leading

to the scaling law |un|2 ∼ (〈δEn 〉/kn)2/3 ∼ k0.277
n , see Fig. 3. The same may also happen

with the SM2E model, in the range k > kf , where the scaling imposed by the zero-mode,

|un|2 ∼ k−0.92
n , is very close to that observed in Fig. 2.

For completeness, we must say that there are situations in which the scaling dictated by

the zero-mode of the energy flux is the same as the scaling given by the constant helicity

flux solution. Also, the zero mode of the helicity flux may dictate the same scaling as that

given by the constant energy flux solution. This happens for models SM1 and SM4.

Another interesting question is about intermittency. It is generally believed that inverse

cascades do not show any anomalous scaling, i.e. they are not intermittent, while forward

cascades do. One way of quantifying intermittency is by looking at the flatness, the ratio

between the fourth-order moment and the squared second-order moment, as a function of

the reference scale. Figure 5 shows the flatness of the total shell energy defined as

Fn =
S4(kn)

[S2(kn)]2
(22)

for models SM1, SM2, and SM2E, where the structure functions Sq(kn) are defined in terms
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FIG. 2. Energy spectra En for the two variants of model 2, forced at large scales (gray shaded

region). Curves are shifted vertically for clarity. Parameters used for this simulation are in Table

IV (runs I and II).
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FIG. 3. Energy spectra En for the two variants of model 2, forced at small scales (gray shaded

region). Curves are shifted vertically for clarity. Parameters used for this simulation are in Table

IV (run IV).

of the energy flux (14) and (15):

Sq(kn) =
〈

(k−1
n |ΠE

n |)
q
3

〉

. (23)

The larger the values of the flatness, the more non-Gaussian is the PDF. As one can see,

model SM1 develops a clear anomalous scaling in the forward regime (for kn > kf) and no

intermittency for k < kf , where it is known to be dominated by equilibrium statistics (no
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region). We recall that, with our notation, a positive energy flux corresponds to an inverse cascade

of energy, and vice-versa. Parameters used for this simulation are in Table IV (run III).

backward energy transfer). Note that model SM1 can be shown to be equivalent to the

original SABRA model, which is known to have an intermittent dynamics in the n > nf

range. Models SM2 and SM2E have very little visible deviations in the forward regimes

and no intermittency at all in the backward regime in agreement with the observation that

inverse cascades do not develop anomalous scaling [34, 35]. These results are generally

interpreted in term of the hierarchy of time scales in the system: a forward energy cascade

with spectrum En ∼ k
−2/3
n implies that the typical eddy turn-over time at shell n goes like

τn ∼ 1/(knun) ∼ k
−2/3
n , i.e. energy is transferred to faster and faster modes, preventing

small-scales to equilibrate around the mean properties of the large ones. On the other

hand, an inverse energy cascade with the same slope is dominated by exactly the opposite

dynamics, i.e., fast scales transfer fluctuations to slower ones allowing for self-averaging. It

is not clear if this phenomenology is at the root also of shell models dynamics, where energy

is known to be transferred also via quasi-instantonic solutions traveling coherently among a

huge set of shell variables [36–40]. This argument is the aim of a work in progress, and it

will be reported elsewhere.

Finally, for models having helical interaction SM2, in order to check that the reversal

in the energy flux is robust when the ratio of the smallest to the middle wave number

is v < 0.278 [29], we simulated numerically another model, with first-neighbor and third-

neighbor interactions (kn−3, kn, kn+1) (see Appendix A). For this model, v = 0.125, and the
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results for the energy spectrum, the energy fluxes, and the intermittency are qualitatively

the same as for the model SM2E (not shown).

V. CONCLUSIONS

We have generalized a previously proposed class of helical shell models to include also non-

local triadic interactions among Fourier modes. Using arguments similar to those developed

for the Navier-Stokes equations [29] we have shown that a suitable subset of helical triadic

interactions may change the energy transfer direction depending on the relative geometry

of the three interacting modes, leading to direct or inverse cascades. We also show that

the inverse cascade is not intermittent and that the scaling properties in the range of shells

where the energy does not flow might be dominated by a zero-mode solution of the energy

balance equations. This work opens the way to study the coupling between different models

with different helical interactions and triad shapes in order to understand and mimic those

transitions from direct to inverse cascades observed in real flows at changing the degree of

rotation, aspect ratio or large scale shear [41, 42]. Coupling models with different transfer

properties makes it more challenging to disentangle the effects of the dynamics coming from

each single model. Schemes such as mode-to-mode energy transfer [43, 44] can be efficiently

combined with our formalism to address this issue. Another interesting direction for future
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work is to understand the influence of high helicity content on the dynamics of direct and

inverse triadic interactions, or, in general, the dynamics of the helicity in the inverse cascade

model, as was done in [32] for the direct cascade model SM3.
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Appendix A: Equations and coefficients for a helical SABRA shell-model with

generic wave-number triads

In this Appendix we present the equations for a SABRA shell-model with a generic

triad shape. For the sake of simplicity we omit the forcing and the dissipative terms. The

equations are:

d

dt
u+
n = i(akn+mu

s1
n+m+lu

s2∗
n+m + bknu

s3
n+lu

s4∗
n−m + ckn−lu

s5
n−lu

s6
n−m−l) ,

d

dt
u−

n = i(akn+mu
−s1
n+m+lu

−s2∗
n+m + bknu

−s3
n+lu

−s4∗
n−m + ckn−lu

−s5
n−lu

−s6
n−m−l) . (A1)

Here a, b, c are real coefficients, the helical indices si = ± are reported in Table I and the

triad shape (kn−m, kn, kn+l) is described by the pair of indices m and l. The coefficient a can

always be set equal to 1 just by rescaling the other coefficients and time. The coefficients b

and c are fixed by imposing the conservation of the quadratic inviscid invariants as follows.

It can be shown that equations (A1) admit only four quadratic inviscid invariants. Only

two out of the four can be simultaneously conserved, due to the fact that there are only two

free parameters (b and c). The four possible invariants are:

1. W I ≡ ∑

n k
αI
n (|u+|2 + |u−|2), which for αI = 0 corresponds to the total energy.

2. W II ≡
∑

n k
αII
n (|u+|2 − |u−|2), which is not sign-definite and for αII = 1 corresponds

to the total helicity.

3. W III ≡
∑

n(−1)nkαIII
n (|u+|2 + |u−|2).
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4. W IV ≡
∑

n(−1)nkαIV
n (|u+|2 − |u−|2).

Only W I and W II have the same physical meaning as the invariants of the NS equations,

while for W III and W IV there is no such analogy.

The triad-by-triad conservation of a W I-type invariant implies:

0 =
d

dt

∑

n

kα
n(|u+

n |2 + |u−

n |2) =
∑

n

kα
n(u̇n

+u+∗

n + u̇n
−u−∗

n + c.c.) , (A2)

where all the terms on the right-hand side must formally cancel for each triad after substi-

tuting equations (A1). For all the 4 classes of helical interaction the resulting conservation

equation is:

a+ λαImb− λαI (m+l)c = 0 . (A3)

The conservation of a W II-type invariant yields respectively:

a− λαIImb− λαII (m+l)c = 0 , (SM1) (A4)

a− λαIImb+ λαII (m+l)c = 0 , (SM2) (A5)

a+ λαIImb+ λαII (m+l)c = 0 , (SM3) (A6)

a+ λαIImb− λαII(m+l)c = 0 . (SM4) (A7)

As said before, we can always choose a = 1. Solving equations (A3) and (A4)-(A7) for

each model, we get the generic expressions for the b and c coefficients, which are reported

in Table V.

Appendix B: Instability assumption

For completeness, we repeat here the calculations done in [28] for the linear stability

analysis of a triad of interacting wave-numbers. Let us consider a system made of three

consecutive wave-numbers k1, k2 = λk1, and k3 = λ2k1 (λ > 1), and, for instance, model

SM1. The equations of motion (5)-(6) for such a system reduce to:
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u̇1
+ = ik2au

+
3 u

−∗

2 ,

u̇2
− = ik2bu

+
3 u

+∗

1 ,

u̇3
+ = ik2cu

−

2 u
+
1 . (B1)

This system has three equilibrium states, of the form (u+
1 , u

−

2 , u
+
3 ) ∈ {(A, 0, 0); (0, A, 0); (0, 0, A)},

where A ∈ C. Linearization of the system around a generic state (us
n → us

n + ∆s
n, with

∆s
n ≪ 1) gives:

∆̇1
+
= ik2a(∆

−∗

2 u+
3 +∆+

3 u
−∗

2 ) ,

∆̇2
−

= ik2b(∆
+∗

1 u+
3 +∆+

3 u
+∗

1 ) ,

∆̇3
+
= ik2c(∆

+
1 u

−

2 +∆−

2 u
+
1 ) . (B2)

(B3)

The eigenvalues relative to the first state (A, 0, 0) are:

λ1 = 0 , λ2,3 = ±k2|A|
√
−bc = ±k2|A|/2 , (B4)

where we substituted −bc = 1/4 (see table II), hence the equilibrium state is unstable

because one of the perturbations grows exponentially in time as ∆i ∼ exp(k2|A|t/2).
Similarly, the eigenvalues relative to the second state (0, A, 0) are:

λ1 = 0 , λ2,3 = ±k2|A|
√
−ac = ±ik2|A|/

√
2 , (B5)

TABLE V. General expression for the coefficients of equations (A1) conserving generic invariants

W I and W II . Without loss of generality a = 1. For models that conserve Energy and Helicity,

one should set αI = 0 and αII = 1.

Model b c

1 λαI (m+l)[1−λ(m+l)(αII−αI )]

λm(αI+αII )(λlαII+λlαI )
− λmαI [−1−λm(αII−αI )]

λm(αI+αII )(λlαII+λlαI )

2 λαI (m+l)[−1−λ(m+l)(αII−αI )]

λm(αI+αII )(λlαII−λlαI )

λmαI [−1−λm(αII−αI )]

λm(αI+αII )(λlαII−λlαI )

3 λαI (m+l)[−1−λ(m+l)(αII−αI )]

λm(αI+αII )(λlαII+λlαI )

λmαI [−1+λm(αII−αI )]

λm(αI+αII )(λlαII+λlαI )

4 λαI (m+l)[−1+λ(m+l)(αII−αI )]

λm(αI+αII )(−λlαII+λlαI )

λmαI [−1+λm(αII−αI )]

λm(αI+αII )(−λlαII+λlαI )
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so all the perturbations ∆i are bounded in time. The same can be said for the third state

(0, 0, A), for which the eigenvalues are:

λ1 = 0 , λ2,3 = ±k2|A|
√
ab = ±ik2|A|/

√
2 . (B6)

According to the terminology of [29], a wave-number k1 represented by the unstable equilib-

rium state (A, 0, 0), where the energy is flowing towards the other modes k2 and k3, is called

unstable. Similarly, wave-numbers k2 and k3 are stable with respect to small perturbations,

as suggested by (B5) and (B6). So we see that for model SM1, the unstable wave-number

is the smallest one. Furthermore, the stability depends only on the sign of the coefficients

a, b, c, which again depends only on the type of helical interaction chosen, while the triad

shape does not play any role. In fact, repeating the same calculations with a different triad

shape gives exactly the same stability results.

Analogous equations can be written for the other models, and it is found that for model

SM3 the unstable wave-number is the smallest one, while for models SM2, SM2E and SM4

the unstable wave-number is the middle one, as summarized in Fig. 1.
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