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We present a theoretical and numerical study on the motion of isotropic helicoids in complex flows.
These are particles whose motion is invariant under rotations but not under mirror reflections of the
particle. This is the simplest, yet unexplored, extension of the much studied case of small spherical
particles. We show that heavy isotropic helicoids, due to the coupling between translational and
rotational degrees of freedom, preferentially sample different helical regions in laminar or chaotic
advecting flows. This opens the way to control and engineer particles able to track complex flow
structures with potential applications to microfluidics and turbulence.
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Introduction Turbulent aerosols are commonly described in terms of dilute suspensions of small, heavy spherical
particles in locally isotropic turbulence with motion governed by Stokes’ law [1]. The translational motion of a spherical
particle is invariant under rotations and internal reflections of the particle. Consequently, its interaction with the flow
is governed by a single parameter, the Stokes number, St = τp/τK, defined as the ratio between the particle response
time τp and the characteristic time, τK, of the carrying flow. However, in Nature and in many applications the aerosol
particles are not perfect spheres. Previous attempts to move away from the approximation of ideal spheres have been
to consider the dynamics of spheroidal particles, or of particles with even less symmetry [2–4]. A spheroidal particle
breaks rotation invariance, but it is invariant under reflections along any of its axes of symmetry. Elongated chiral
objects break both rotational and reflection invariance and they are known to develop a lateral drift even in simple
shear flow. They have been intensively studied because of their biological interest and because of the need to separate
different enantiomers in micro-devices [5–12]. Helical elongated particles with opposite chiralities at the two ends are
used to track particular properties of vortex-stretching mechanisms in turbulent flows [14]. Investigation of the case of
particles whose motion only breaks reflection invariance, while keeping rotation invariance intact, so called isotropic
helicoids [2, 15], is lacking. Because their internal orientation does not affect their translational motion, isotropic
helicoids can be described in a lower phase-space dimension than spheroidal particles. This makes the dynamics of
isotropic helicoids the simplest extension of the much studied case of small spherical particles. In this paper we show
that isotropic helicoids may be engineered and used to find different helical regions in complex flows, with potential
new applications in microfluidics, chemistry and medical manufacturing. The simplest observable that is statistically
sensitive to spatial reflections of the carrying flow is given by its helicity averaged over a volume V :

〈H〉flow ≡
1
V

∫
V

d3xH(x, t) . (1)

FIG. 1: (Color online). Examples of isotropic helicoids with two different chiralities: left-handed (left) and right-handed (right).
An applied velocity difference u − v results in a torque τH parallel (anti-parallel) to u − v for the right-handed (left-handed)
particle. An applied difference in angular velocity Ω−ω results in a force F H parallel (anti-parallel) to Ω−ω. The drag force
F D and torque τD are not illustrated.

∗ Postprint version of the article published on Physical Review Fluids 1 054201 (2016) DOI: 10.1103/PhysRevFluids.1.054201



2

Here H(x, t) ≡ 2u(x, t) · Ω(x, t) is the local flow helicity, defined as the product of the velocity u and vorticity
∇ ∧ u = 2Ω of the flow. Under a spatial reflection x → −x of the flow, such that H(x, t) → −H(−x, t), the mean
helicity 〈H〉flow changes sign. The average 〈H〉flow is an invariant of the three-dimensional Euler equations and it is
linked to the topology of vorticity field lines [16, 17]. The correlation between energy and helicity transfer is a key
open problem for many fundamental and applied turbulent flows, with indications that intense helical regions tend
to prevent energy to flow down-scale [18–20]. Hence, it is important to understand the correlation between extreme
dissipative events and helicity in turbulence [21].

In this paper we study dynamical and statistical properties of isotropic helicoids. We show that depending on their
size, inertia and handedness, they have a bias to visit flow regions with certain values of flow helicity, a phenomenon
called preferential sampling [22]. In particular, we show that, despite being heavy, they evolve similar to light or
heavy spherical particles, over- or under-sampling intense vortical structures, depending on their relative chirality
with respect to the underlying flow.

We first show that the equations of motion depend on two characteristic Stokes numbers, St±, related to the
translational and rotational drag coefficients of the helicoid. Finally, we analyze the dynamics of isotropic helicoids
in a paradigmatic Arnlod-Beltrami-Childress (ABC) flow [23]. We show that isotropic helicoids are indeed able to
preferentially respond to the underlying helicity.

Isotropic Helicoids An example of an isotropic helicoid was first proposed by Lord Kelvin [15]: An isotropic helicoid
may be made by attaching projecting vanes to the surface of a globe in proper positions; [sic] for instance, cutting
at 45◦each, at the middles of the twelve quadrants of any three great circles dividing the globe into eight quadrantal
triangles. Fig. 1 shows this construction. Planar vanes are attached normal to the surface of the sphere at angles
±45◦ to three great circles transversed clockwise. The sign of the angle determines if the particle is left-handed (left
figure) or right-handed (right figure). Each of these particles is the mirror image of the other under reflections in any
plane containing the center of the particle. As illustrated in Fig. 1, if the right-handed particle experience a difference,
u− v, between the fluid velocity u and its own velocity v, such that the vector u− v is perpendicular to the plane
of one of the great circles, the particle obtains a net torque τH parallel to u − v in addition to the drag force F D.
This net torque is a consequence of the vanes being positioned at the same angle along the great circles. The three
great circles give three directions in which the applied velocity difference results in a torque parallel to u− v. Linear
superposition implies that a velocity difference applied in any direction results in a torque parallel to that direction.
Correspondingly, if the right-handed particle experiences a difference Ω − ω between half the flow vorticity and the
angular velocity ω of the particle, the particle obtains a force F H in the direction of Ω−ω in addition to the viscous
drag torque τD. Similarly, the left-handed particle responds to an applied velocity (angular velocity) difference with
a torque (force) in the opposite direction compared to the right-handed particle. The force and torque acting on a
general small and heavy isotropic helicoid in a flow are [2]

mv̇ = F D + F H = Ctt(u− v) + Ctr(Ω− ω) (2a)

Iω̇ = τD + τH = Crr(Ω− ω) + Ctr(u− v) . (2b)

Here u and Ω are evaluated at the position rt of the particle at time t, overdots denote time derivatives, and m
and I are the mass and moment-of inertia of the particle. Due to the symmetries of isotropic helicoids the moment-
of inertia, translation, coupling, and rotation tensors are given by scalar quantities I0, Ctt, Ctr, and Crr times the
identity matrix. In order for the system to dissipate energy, preventing exponentially growing solutions, the following
condition must be fulfilled [2]: (Ctr)2 < CttCrr. The coefficients Ctt and Crr are positive while Ctr can take either sign,
corresponding to a reflection-invariant (Ctr = 0), left-handed (Ctr < 0), or right-handed (Ctr > 0) particle. When
Ctr = 0, Eqs. (2) reduce to Stokes’ drag force and torque. When Ctr 6= 0 the force F H and torque τH illustrated in
Fig. 1 couples the translational and rotational dynamics. This coupling breaks invariance of the motion under mirror
reflections of the particle. Consider for example a flow region where one component of Ωi is very large compared
to ωi, and to (ui − vi) Ctt / Ctr. In this region, Eq. (2a) may be approximated by mv̇i ≈ Ctr Ωi. Depending on the
relative sign of Ctr and Ωi the particle accelerates either along the vorticity component, or opposite to it. Large
vortices may thus accelerate particles to different regions in the flow depending on their helicity. This example shows
that isotropic helicoids, in contrast to spherical particles, distinguish flow structures of different parity. Reflection
invariance in the dynamics of isotropic helicoids may be broken in two ways: by the flow itself, statistically or locally,
or by the dynamics as illustrated in the example above. One example is homogeneous isotropic turbulence where
spatial reflection symmetry of the flow is often assumed in a statistical sense, but locally parity-breaking structures
do form.

Dimensionless control parameters. We characterize small-scale fluctuations of the flow by the characteristic Eulerian
speed and length scales: u0 and η0, respectively, and by the Lagrangian time scale τK ≡ 1/

√
Tr〈AAT〉 ∼ η0/u0, where

A is the fluid gradient matrix with components Aij ≡ ∂jui and the angular brackets denote a spatial average as in
Eq. (1). Together with the dimensional parameters governing the dynamics in Eqs (2): Ctt, Crr, Ctr, m, and I it
is possible to form four independent dimensionless parameters. These are the Stokes number, St ≡ m/(τK Ctt), the
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FIG. 2: (Color online). Average helicity, 〈H〉, for different parameters. Shown is the contour plot against C0 and a with S = 1
and St = 0.1 St− (a) and St = 0.5 St− (b). The average is obtained from numerical simulations of Eqs. (3) and (7). Black
thick lines show the predicted transition (8). c: average helicity 〈H〉 against St / St− for different helicoidal numbers: C0 = −5
(brown left-pointing triangle), C0 = 0 (green star), C0 = 5 (purple right-pointing triangle) , a = 10 and S = 1. Vertical dashed
line shows St = St−. Mean flow helicity 〈H〉flow = 3. (horizontal dashed line)

structural number, S ≡ 3m Crr /(10I Ctt), the helicoidal number, C0 ≡ 9
√

m/(10I) Ctr / Ctt and the dimensionless
radius, a ≡

√
5I/(2mη2

0). The parameters St and Str ≡ 3 St /(10S) determine the translational and rotational inertia
of the particle when C0 = 0. Here S is proportional to the ratio of these quantities such that a spherical particle
has S = 1. In addition, C0 inherits the properties of Ctr: its sign determines the chirality of the particle and the
condition to prevent exponentially growing solutions becomes |C0| <

√
27S. When C0 = 0, the motion simplifies to

that of an isotropic particle, and if further S = 1 the motion is that of a spherical particle with Stokes number St,
rotational Stokes number Str = 3St /10 and dimensionless radius a. For general values of C0 the parameters a and
S can take any positive values. For helicoids resembling spheres we interpret a as an estimate of the particle size in
units of the Eulerian length scale η0. To simplify the discussion in what follows, we assume S = 1 (see Appendix A
for expressions with general S). This value corresponds to global shapes close to that of a sphere (see Fig. 1). Using
the dimensionless variables t′ = t/τK, r′ = r/η0, v′ = vτK/η0, and ω′ = ωτK (primes will be dropped from here on)
the equations of motion corresponding to the force and torque in Eqs. (2) become ṙi = vi for the position components
and: (

v̇i

ω̇i

)
= D

(
ui − vi

Ωi − ωi

)
, D =

1
St

(
1 2aC0

9
5C0
9a

10
3

)
(3)

for the components of velocity and angular velocity. Due to rotational invariance the matrix D does not mix different
Cartesian components.

It is instructive to estimate the degree of compressibility experienced by particles with small St. From (3) we find:

∇ · v ∼ − St
27− C2

0

(
27Tr[A2]− 9aC0

5
Tr[AV]

)
+ o(St) , (4)

where we have introduced the matrix V with components Vij ≡ ∂Ωi/∂rj . Equation Eq. (4) shows that helicoids
experience different flow topology depending on the relative magnitude of TrA2 and TrAV. In particular, in regions
of strong, say positive, local helicity we typically have Ω ∼ k u leading to an estimate for the compressibility:

∇ · v ∝ −Tr[A2][27− 9aC0k/5] . (5)

Depending on the values of k, a and C0, Eq. (5) indicates the tendency to escape or to be trapped in regions where
Tr[A2] is positive or negative. The decomposition Tr[A2] = Tr[S2]− 2Ω2, with S ≡ (A + AT)/2 shows that helicoids
may be attracted either to regions of strong vorticity (Tr[S2] � 2Ω2) similar to light spherical particles, or to regions
of strong shear (Tr[S2] � 2Ω2) similar to heavy spherical particles. Which behaviour is chosen depends on the sign
of the local flow helicity and on the parameters of the helicoid.

In order to better understand the dynamics of (3), we diagonalize it (see Appendix A). It turns out that the
evolution is characterized by the two eigenvalues St± / St of D:

St± =
(
39±

√
40C2

0 + 441
)
/18 . (6)
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FIG. 3: (Color online) a–d Each panel shows 100 trajectories for 100 time units,after an initial transient. The trajectories
are projected on the x-y plane (ranges from 0 to 2π). Trajectory positions are colored depending on the local helicity of the
underlying flow. The parameters are a = 10 and S = 1, and (a) C0 = −5, St = 0.1 St−, (b) C0 = 5, St = 0.1 St−, (c) C0 = −5,
St = 0.36 St−, (d) C0 = 0, St = 0.87 St−. The corresponding parameter values are also indicated in Fig. (2)c. (e): PDF of
helicity, P (H), for the trajectories shown in a–d and for the ABC flow (black line). The bin width is 10−4, markers correspond
to the most probable value [same symbols as in panels a-d]. The inset shows data on a log-lin scale.

These define two important inertial scales for the isotropic helicoid. When C0 = 0, St± equal the translational
and rotational drag coefficients of an isotropic particle. When C2

0 is close to its limiting value 27, we find that St−
approaches zero while St+ takes a finite value 13/3. This separation of scales, St+ / St− → ∞ as C2

0 → 27, allows
for rich dynamics, with different non-trivial behavior when St ∼ St− or when St ∼ St+. In particular, we expect a
high sensitivity of the helicoids trajectories on the helicity of the underlying flow. In what follows, we consider the
dynamics of helicoids driven by a model helical flow: the well-studied case of an ABC flow [23, 24].

ABC flow Being a solution of the three-dimensional Euler equations with chaotic streamlines, the ABC flow has
been the subject of many studies in turbulence theory. Ref. [17] argues that the Euler equations has steady solutions
consisting of patches of ABC flows connected by vortex sheets. The Eulerian velocity field of the ABC flow with equal
coefficients is given by (in dimensionless variables)

u = (cos y + sin z, cos z + sinx, cos x + sin y) . (7)

Although being time-independent, fluid particles governed by Eq. (7) show chaotic behavior [23, 25], with dimensionless
time scale τK = 1/

√
3. The ABC flow has the property that Ω = ku with k = 1/2 at all positions. This implies

that only structures with non-negative local helicity, H(x) ≥ 0, are encountered in the flow. The local particle
compressibility is given by Eq. (5) with k = 1/2 if St is small enough. Moreover, for the ABC-flow TrA2 and H are
related by Tr[A2] = 〈H〉flow −H, where 〈H〉flow = 3 according to Eqs. (1) and (7). From Eq. (5) it follows that there
exists a critical combination

aC0 = 30 (8)

which distinguishes whether particles are attracted to regions with high or low values of H. This phase transition
is illustrated in Fig. 2a. The average helicity, 〈H〉, evaluated along particle trajectories is plotted against C0 and
a with St / St− = 0.1. When a is larger than its critical value the helicoids are able to oversample the underlying
helicity by forming stable periodic orbits with almost constant helicity. It is important to stress that helicoids with a
certain handedness are attracted only by vortices with that chirality (as opposed to light spherical particles which do
not distinguish the vortex helicity). On the other hand, below the transition the helicoids are attracted by straining
regions. For larger values of St / St−, the dynamics becomes richer, as shown in Fig. 2b for St / St− = 0.5, but still
particles oversample (undersample) the flow helicity above (below) the critical line (8).

The transition in the preferential sampling of H, as a function of the Stokes number is quantified in Fig. 2c, where
we show 〈H〉 for left- (C0 = −5), neutral- (C0 = 0), and right- (C0 = 5) handed helicoids. The general trend is
complicated as expected for most low-dimensional chaotic advection problems. Nevertheless, in some limits their
dynamics develop a more systematic behaviour. For large values of St / St+ the mean helicities in Fig. 2c approach
that of the flow for all values of C0 (not shown). For St / St− much smaller than unity, the mean helicity collapses
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to the two phases predicted by the transition (8). Corresponding trajectories are shown in Fig. 3a,b. In both cases
we observe stable periodic orbits with higher (Fig. 3b) or lower (Fig. 3a) mean helicity compared to the underlying
flow. We remark that in this limit the preferential sampling of helicity is extremely focused, especially for the case
shown in Fig. 3b, leading to strong peaks in the corresponding probability distribution functions, as shown in Fig. 3e.
Concerning the region where St / St− ∼ O(1), right-handed particles continue to follow stable periodic orbits (see
also Fig. 5 in Appendix A), while left-handed particles tend to be scattered to larger spatial regions (Fig. 3c). Still,
as shown in Fig. 3(e) left-handed helicoids may show significant bias toward different values of helicity compared to
right-handed helicoids. Finally, neutral particles are generally more scattered (Fig. 3d) and their helicity distribution
is closer to the one of the flow [green and black lines in Fig. 3e, respectively].

We remark that Eq. (3) is derived assuming that the particles are small compared to the smallest length scale
η0 of the flow. To enhance the effects of chirality it is important that the normalized size, a, is larger than unity.
One example of how to satisfy these constraints is to attach to the particle in Fig. 1 four small and heavy satellite
particles at the corners of a tetrahedron, connected by thin rods of length larger than η. If the satellites are small
enough, they will not contribute to the particle-fluid interaction but they may give a substantial contribution to the
moment of inertia, leading to a > 1 without contradicting the requirements for the validity of the equations of motion.

Conclusions. We have presented an analysis of dynamical and statistical properties of small, heavy, dilute isotropic
helicoids in chaotic flows. Their motion constitutes the simplest generalization to that of small spherical particles.
We have shown that their dynamics is ruled by two distinct characteristic time scales, St±. Chiral particles are often
encountered in bio-fluidic systems [5–13]. It is also known that a liquid made of chiral molecules (or a suspension of
chiral molecules) is described by an extended version of the Navier-Stokes equations, with additional stresses forbidden
for non chiral components [26]. Here, we have shown that isotropic helicoids can be used in direct numerical simulations
and/or in laboratory experiments as smart probes, able to track dynamically relevant topological information of the
carrying flow. An important parameter that we did not discuss is the structural number S. In this paper the case
S = 1 was considered. Formulae for general values of S are qiven in Appendix A. It turns out that the chiral
symmetry-breaking term in Eq.(4), Tr[AV], becomes more important as S decreases. How to construct particles with
given parameters, St, S, a, and C0 is an open theoretical and experimental challenge. Let us also note that other
forces might be important, e.g. gravity or the history force [27], depending on the density ratio between the helicoids
and the surrounding flow, the combined effects of all of them is a key problem that should be addressed in future
work. We acknowledge funding from the European Research Council under the European Union’s Seventh Framework
Programme, ERC Grant Agreement NewTURB No 339032.

I. APPENDIX A

A. Equation of motion for isotropic helicoids

In terms of the dimensionless variables in Sec. III the equations of motion become(
v̇i

ω̇i

)
= D

(
ui − vi

Ωi − ωi

)
, D =

1
St

(
1 2aC0

9
5C0
9a

10S
3

)
(9)

for each component i = 1, 2, 3 of v and ω [when S = 1 Eq. (9) simplifies to Eq. (3)].
Diagonalisation of the matrix D gives two eigenvalues d± and two normed eigenvectors ξ±

d± =
1

18 St

(
9 + 30S ±

√
40C2

0 + 9(3− 10S)2
)

(10a)

ξ±=
1√

100C2
0 +36a2(3d± St−10S)2

(
6a(3d±St−10S)

10C0

)
. (10b)

We define the matrices

C =
(

d− 0
0 d+

)
and X =

(
1 1

ξ−,2/ξ−,1 ξ+,2/ξ+,1

)
(11)

such that

X−1 =
1

3 St(d+ − d−)

(
10S − 3d− St − 2C0a

3

3d+ St−10S 2C0a
3

)
(12)
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FIG. 4: (Color online) Plot of St+ (dashed lines) and St− (solid lines) in Eq. (17) as a function of C0 for different values of S:
S = 0.1 (red), S = 0.5 (green), and S = 1 (blue).

and insert D = XCX−1 in the equation of motion (9)

X−1

(
v̇i

ω̇i

)
= CX−1

(
ui − vi

Ωi − ωi

)
. (13)

For each component i we introduce the variables(
ζ−,i

ζ+,i

)
≡ X−1

(
vi

ωi

)
(14)

and the fields (
u−,i

u+,i

)
≡ X−1

(
ui

Ωi

)
(15)

to obtain the diagonalised equations of motion

ζ̇−,i =
St−
St

(u−,i − ζ−,i) (16a)

ζ̇+,i =
St+
St

(u+,i − ζ+,i) . (16b)

Here we have defined two characteristic Stokes numbers St± ≡ d± St of the dynamics (Eq. (6) in the main paper
when S = 1, see also Fig. 4):

St± =
1
18

(
9 + 30S ±

√
40C2

0 + 9(3− 10S)2
)

. (17)

Eqs. (16) are implicitly coupled through the position dependence in u±,i = u±,i(rt, t), where rt is the solution of
ṙi = vi = ζ−,i + ζ+,i. We remark that the characteristic Stokes numbers St± may be well separated in the sense that
the relative magnitude St+ / St− approaches infinity as C0 approaches its limiting values ±

√
27S.

B. Stable periodic trajectories in ABC flow, St / St− � 1

As discussed in Sec. IV, isotropic helicoids of the same handedness of the underlying ABC flow possess stable
periodic trajectories that oversample the flow helicity for

aC0 > 30S (18)
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FIG. 5: (Color online) Examples of stable periodic solutions with approximately constant helicity plotted for a number of
parameters. Curves are plotted in the order {blue, red, green, magenta, cyan,and black} with the mean and variance of
helicity 〈H〉 = {3.74, 4.02, 4.20, 3.97, 4.05, 3.06}, and 〈H2〉 − 〈H〉2 = {14.5, 3.87, 0.77, 3.53, 2.32, 72.6} · 10−5. The parameters
are C0 = {1.64, 1.64, 5, 5, 5, 1.64}, St / St− = {1, 0.1, 0.1, 1, 0.5, 1}, a = {10, 30, 10, 10, 10, 30}, and S = {0.1, 0.1, 1, 1, 1, 0.1}.

[which leads to Eq. (8) for S = 1] and St / St− small enough. These periodic orbits are approximate isolines of
helicity with a value that can be tuned by changing the structural properties of the particles. For example, in Fig.
(5) we show some of the trajectories that one can get at changing C0, S, a and St / St−. On the other hand, below
the transition:

aC0 < 30S (19)

the helicoids have periodic orbits that undersample the flow helicity with a broader distribution.
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