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We study the statistical properties of helicity in direct numerical simulations of fully developed
homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider cor-
relation functions based on combinations of vorticity and velocity increments that are not invariant
under mirror symmetry. We also study the scaling properties of high-order structure functions based
on the moments of the velocity increments projected on a subset of modes with either positive or
negative helicity (chirality). We show that mirror symmetry is recovered at small-scales, i.e., chiral
terms are subleading and they are well captured by a dimensional argument plus anomalous correc-
tions. These findings are also supported by a high Reynolds numbers study of helical shell models
with the same chiral symmetry of Navier-Stokes equations.
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I. INTRODUCTION

All phenomenological theories of three dimensional (3D) turbulence are based on the concept of
direct energy cascade [1]. However, helicity is also an inviscid invariant of the 3D Navier-Stokes
equations (NSEs) defined as the scalar product of velocity u(x) with vorticity ω(x). Its mean value

H =
1

V

∫
V
d3xu(x) · ω(x) , (1)

is exactly zero if the flow is invariant under mirror symmetry, ω being a pseudovector. Since its dis-
covery [2–4], helicity has been the object of many speculations. In particular, it is not clear if the
presence of a nonzero mean helicity, globally or locally, can affect the statistical properties of the for-
ward energy cascade. On the one hand, because the nonlinear term of the NSE is locally proportional
to the solenoidal component of u × ω, flows with a nonzero helicity might have a strongly depleted
energy transfer [5, 6]. On the other hand, helicity is not sign-definite, and therefore cancellations might
eventually smooth-down this blocking mechanism [7, 8]. There exist instances where helicity plays a
key role, interfering with the energy transfer, as in rotating turbulence [9, 10], in shear flows [11], and
in the case of an NSE confined to evolve on a subset of sign-definite helical modes [12–15]. In the
presence of a stationary helicity injection, we have an exact law which predicts the scaling properties
of a specific velocity-vorticity mixed third-order correlation function [16–18]. Nevertheless, this is not
a strong constraint for the whole statistics. Indeed, different phenomenological scaling for the spec-
tral properties has been proposed in the presence of two simultaneous fluxes of energy and helicity
[4, 7, 19].

In this paper we further investigate the statistical properties of helicity in fully developed turbu-
lence by using high resolution direct numerical simulations (DNSs). In order to have a proper way
to distinguish the importance of mirror-symmetry-breaking contributions scale-by-scale, we study the
properties of a class of structure functions based on velocity increments decomposed on positive or
negative helical modes. The latter have the advantage of observable definitions that are sensitive to
lack of mirror symmetry for all moments, odd or even, differently from what was proposed earlier in
Refs. [8, 20]. Furthermore, we also introduce a set of velocity-vorticity correlation functions based on
the helicity cancellation exponent [21] that allows us to quantify the breaking of mirror symmetry also
on quantities based on velocity gradients.

We show that helicity-sensitive observables are always subleading with respect to the ones dom-
inated by the energy flux. Results are also supported by studying analogous quantities in a helical
shell model [7, 22, 23]. We show that the scaling behavior of chiral quantities is well captured by an
analytical contribution in terms of the helicity flux, plus a small anomalous correction.

II. PHENOMENOLOGICAL BACKGROUND

We consider the 3D forced NSE:

∂tu + u ·∇u = −∇p+ ν∆u + f , (2)

where p is the pressure, ν is the kinematic viscosity, and f is a parity-breaking external forcing mech-
anism with energy injection, ε = 〈u · f〉 and helicity injection, h = 〈u · (∇ × f) + ω · f〉. Under
the assumptions of stationarity, homogeneity, and isotropy (but not mirror-symmetry) it is possible to
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derive two exact equations for two-point third-order correlation functions [1, 16, 17, 24]:

〈(δru)3〉 = −4

5
ε r , (3)

〈δru(δru · δrω)〉 − 1

2
〈δrω(δru · δru)〉 = −4

3
h r , (4)

where δru and δrω are, respectively, the longitudinal velocity and vorticity increments, defined in terms
of the projection on the unit vector r̂: δrX = δrX · r̂, and the generic vector increment between two
points is δrX = X(r + x) −X(x). Notice that (4) is different from zero only in the presence of
a mirror-breaking forcing mechanism. The two exact scaling relations (3)–(4) are valid in the inertial
range, i.e., when the increment r is chosen in a range of scales where dissipative and forcing effects
can be neglected. Moreover, since helicity is not sign-definite, it is not possible to predict the energy
transfer direction: both a simultaneous cascade of energy and helicity toward small-scales and a split
cascade with energy flowing upward and helicity downward are possible [4, 11, 13, 25]. In order to
disentangle in a systematic way the statistical properties under mirror symmetry, it is useful to adopt
an exact decomposition of the velocity field in positive and negative Fourier helical waves [26, 27]:

u(x, t) =
∑
k

[u+
k (t)h+

k + u−k (t)h−k ]eik·x , (5)

whereh±k are the eigenvectors of the curl, i.e., ik×h±k = ±kh±k . We chooseh±k = µ̂k×k̂±iµ̂k, where
µ̂k is a unit vector orthogonal to k satisfying the condition µ̂k = −µ̂−k, e.g., µ̂k = z × k/||z × k||,
with any arbitrary vector z. In terms of such decomposition the total energy, E =

∫
d3x |u(x)|2, and

the total helicity are written as

E =
∑
k

|u+
k |2 + |u−k |2 , (6)

H =
∑
k

k (|u+
k |2 − |u−k |2) . (7)

It is useful to further distinguish the energy content of the positive and negative helical modes,E±(k) =∑
k≤|k|<k+1 |u±k |2, such that we have for the energy and helicity spectra [7]:

E(k) = E+(k) + E−(k) , (8)
H(k) = k [E+(k)− E−(k)] . (9)

It is straightforward to realize that the equivalent of (8)-(9) in real space is given by the second-order
correlation functions decomposed in terms of the fields u±(x) =

∑
k u
±
k (t)h±k expik·x :

〈δruiδrui〉 = 〈δru+
i δru

+
i 〉+ 〈δru−i δru−i 〉 , (10)

〈δruiδrωi〉 = 〈δru+
i δrω

+
i 〉+ 〈δru−i δrω−i 〉 , (11)

because both mixed terms 〈δru±i δrω∓i 〉 and 〈δru±i δru∓i 〉 vanish, due to the orthonormality of h±k .
It is not possible to derive a closed expression for the energy and helicity spectra from (3)-(4) alone,
because there exists a continuum of possible combinations of ε, h and k with the correct dimensional
properties:

E(k) = ε
2
3
−αhαk−

5
3
−α . (12)

Different possibilities have been proposed, based on different closures of the spectral equations, de-
pending on the dynamical time-scale that drives the energy and helicity transfers. One possibility
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is based on the idea that the only relevant time-scale is the one given by the energy fluctuations,
τEr ∼ ε−1/3r2/3. In this case we have the dimensional estimate for the (mirror invariant) energy
flux:

ε ∼ 〈δruiδrui〉/τEr → 〈(δru)2〉 ∼ ε2/3r2/3 , (13)

while for the chiral term,

h ∼ 〈δruiδrωi〉/τEr → 〈δruiδrωi〉 ∼ hε−1/3r2/3 . (14)

Translating back to Fourier space we would then have for the semi-sum (mirror-symmetric) and the
semi-difference (mirror-antisymmetric) of the spectral components [7]:

E+(k) + E−(k) ∼ CEε2/3k−5/3 , (15)

E+(k)− E−(k) ∼ CHhε−1/3k−8/3 , (16)

whereCE andCH are two dimensionless constants. Hence, the two energy components can be written
as:

E±(k) ∼ CEε2/3k−5/3 ± CHhε−1/3k−8/3 . (17)

Another possible dimensional closure employs the helicity time-scale, τHr ∼ h−1/3r1/3, to evaluate
both fluxes (13)–(14). In this case we have [19]:

E±(k) ∼ CEεh−1/3k−4/3 ± CHh2/3k−7/3 . (18)

Relation (18) breaks the −5/3 law for the energy spectrum and has been proposed to be valid only in
the high-k region of strongly helical turbulence, to explain the bottleneck observed close to the viscous
scale. Indeed, relation (18) is not smooth for h→ 0 and therefore cannot be considered a good option
if helicity is subleading. A third possible scenario is a split cascade, where energy flows upward and
helicity downward. In this case, in the forward-helicity cascade range, only h flux appears, and the
dimensional prediction gives:

E(k) ∼ h2/3k−7/3 , H(k) ∼ h2/3k−4/3. (19)

This last scenario has never been observed in isotropic turbulence, unless a dynamical mode reduction
on helical modes with the same sign is imposed [12, 13, 27]. Besides the open issues concerning the
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FIG. 1. (a) Temporal evolution of total energy and helicity from DNS with injection of helicity (R1). (b) Flux
of energy ΠE(r) = 〈(δru)3〉/r and flux of helicity ΠH(r) = [T (1) + T (2)]/r, in real space, where T (1) =

〈δru(δru · δrω)〉 and T (2) = −0.5〈δrω(δru · δru)〉 [see Eqs. (3)–(4)]. (c) Scaling of the first term T (1), the
second term T (2), and their sum in (4). The solid line is drawn with slope 1 for comparison.
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spectral properties and higher-order statistics are even less studied and understood. There are very
few measurements of the mirror-antisymmetric components of structure functions. As a result, while a
huge amount of work has been devoted to intermittency and anomalous scaling properties of the mirror-
symmetric components, very little is known about the helical components [8, 20]. In what follows we
will investigate further the statistical properties of helical turbulence concerning its spectral properties
and beyond, assessing also the chiral components of high-order correlation functions. In particular, we
will study the scaling properties of longitudinal structure functions based only on positive or negative
helical modes:

S±p (r) = 〈(δru±)p〉 . (20)

In terms of the above decomposition, we can define energy- or helicity-like structure functions, i.e.,
combinations that are symmetric or antisymmetric for the exchange of positive and negative helical
projections:

SEp (r) = 〈(δru+)p〉+ 〈(δru−)p〉 ∼ rζEp , (21)

SHp (r) = 〈(δru+)p〉 − 〈(δru−)p〉 ∼ rζHp . (22)

The advantage of working with the above definition is to avoid observables based on vorticity incre-
ments, which are strongly influenced by viscous contributions and might not have a powerlaw scaling
in the inertial range. In order to have a dimensional estimate for (21)–(22) we start from the phe-
nomenological predictions (17) considering the helical component to be subleading. Then, one might
dimensionally write:

δru
± ∼ ε1/3r1/3 ± hε−2/3r4/3 , (23)

and therefore conclude that, at the lowest order in h,

SEp (r) ∼ ε p
3 r

p
3 + o(h) , (24)

SHp (r) ∼ ε p
3
−1hr

p
3

+1 +O(h2) , (25)

where the second relation is obtained taking into account that the leading terms proportional to εp/3
cancel out.
Another possible way to highlight the scaling properties of the helical component of the scale-by-scale
velocity statistics is to look directly at the local helicity increments:

Hp(r) = 〈sign(δruiδrωi)|δruiδrωi|p〉, (26)

where we have introduced the sign function in order to have a chiral observable for all orders of the
moment p [28][29]. The mean value of the sign of local helicity, which gives a direct measure of the
relative importance of chiral-fluctuations with respect to the non-chiral background, is known as the
cancellation exponent [21], and can be estimated dimensionally to be:

H0(r) =

〈
δruiδrωi
|δruiδrωi|

〉
∼ hε−1/3r2/3

ε2/3r1/3η−2/3
∼ hε−1r1/3η2/3 , (27)

where we write the numerator in terms of its dominant helical contribution and the denominator as
the mirror-symmetric term with |δru| ∼ ε1/3r1/3 and |δrω| ∼ ε1/3η−2/3. Here η is the Kolmogorov
length-scale, where the vorticity increment is expected to be maximal. As a result, we should have for
(26) the scaling property:

Hp(r) ∼ hη
2−2p

3 ε
2p−3

3 r
p+1

3 . (28)
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FIG. 2. (a) Log-log plots of energy spectrum E(k) and its helical components E±(k). Inset: Compensated
energy spectra with predictions (17) and (18). (b) Log-log plots of helicity spectrumH(k). Inset: Compensated
helicity spectra with predictions (17) and (18).

III. NUMERICAL SIMULATIONS OF NAVIER-STOKES EQUATIONS

We have performed a series of DNSs of the NSE (2) with a fully-dealiased, pseudospectral code at
a resolution of 10243 collocation points on a triply periodic cubic domain of size L = 2π. The flow is
sustained by a random Gaussian forcing with

〈fi(k, t)fj(q, t′)〉 = F (k)δ(k − q)δ(t− t′)Qi,j(k),

whereQij(k) is a projector imposing incompressibility andF (k) has support only for kf ∈ [kmin, kmax].
We carried out a DNS, namely, R1, where we inject maximal helicity by forcing only the positive helical
modes of the velocity (see Table I).

TABLE I. Details of the simulations. N : number of collocation points along each axis; L: size of the periodic
box; ν: kinematic viscosity; kf : range of forced wavenumbers; urms: rms velocity; Reλ = urmsλ/ν: Taylor-
microscale Reynolds number, where λ = 2π

L

√
〈u2(x)〉
〈[∂xu(x)]2〉

is the Taylor microscale; ε: mean energy dissipation
rate; η: Kolmogorov length-scale; T0: large-eddy-turnover time.

Run N L ν kf urms Reλ ε η T0

R1 1024 2π 0.001 [1, 2] 3.4 320 3.2 0.004 0.3
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on positive or negative, S±p (r), helical modes and their combinations, SE,Hp (r). SHp (r) are multiplied with a
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Dimensional predictions (solid lines for p/3 and dashed lines for p3 + 1) are also shown for comparison, where
p is the order of the structure functions.
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In Fig. 1(a) we show the evolution of the total energy E and helicity H , and of their fluxes in real
space [Fig. 1(b)]. It is clear that the system is in a stationary state with a dual forward cascade of energy
and helicity. Figure 1(c) shows that the two contributions entering in (4) have different properties in
the inertial range and that only their sum shows a good linear behavior as predicted by the constant-
helicity-flux solution. This is not surprising; we must expect that in the presence of two transferred
quantities only particular combinations of correlation functions might have an exact scaling behavior,
while any general combination of fields might be affected by leading and subleading contributions.

In Fig. 2 we show the energy and helicity spectra and their positive and negative helical components
E±(k). We observe that the predictions (15)–(16) give a better compensation at least for not too
high wavenumbers where a dissipative bottleneck is known to affect the local scaling properties. At
those wavenumbers, the relative helicity H(k)/kE(k) is already very small and it is unlikely that the
bottleneck is due to some helical effects as proposed by (18). Concerning real-space quantities, in Fig. 3
we show the scaling of structure functions of positive and negative helical components of velocity
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together with their combinations for the second, fourth and sixth order. To verify the dimensional
scaling predictions (24)–(25) we calculate the local slopes of SE,Hp (r) and S±p (r):

ζE,Hp (r) =
d logSE,Hp (r)

d log r
, ζ±p (r) =

d logS±p (r)

d log r
, (29)

as shown in the insets of Fig. 3. We then used ESS [30] to obtain a better fit of the relative scaling
exponents in the inertial range: ζE,Hp /ζE,H3 . In Fig. 4 we compare the scaling exponents ζE,Hp and
their dimensional predictions (24)–(25). To derive the absolute value of the scaling exponents out of
the ESS scaling we have assumed, ζE3 = 1 and ζH3 = 2 in agreement with the exact scaling properties
(3)–(4). From this figure we can see that the dimensional prediction is well verified, except for the
presence of a small anomalous correction for high-order moments.

In Fig. 5 we show the scaling behavior of Hp(r) for values of p from 0 to 3 compared with the
dimensional prediction (28). This works well up to p ∼ 1.5, while for p ≥ 2 nontrivial anomalous
corrections appear.

In summary, the scaling exponents for the two sets of helicity-sensitive structure functions SHp (r)

agree well with the dimensional estimate except for a small anomalous correction which is of the same
order of the one observed for the mirror-symmetric terms. One might argue that the two set of anoma-
lous exponents should be correlated, being connected to the dependency on the energy dissipation on
the right-hand side of (24)–(25). It is important to notice that helicity is not positive definite, and its
dissipation can be split in two different channels, one for positive and one for negative helical compo-
nents. The theoretical dependency on the Reynolds number of the two processes and of the total helicity
dissipation is discussed in Refs. [7, 29, 31]. Further studies of changing Reynolds number would be
needed to clarify the existence of a dissipative anomaly for the helicity cascade and the dependency
of the whole statistics on the turbulence intensity. The multiscale nature of the correlation involving
vorticity and velocity inHp(r) might be particularly sensitive to fluctuations of the dissipative physics,
hence explaining the large intermittent correction shown in Fig. 5.

In order to investigate further the statistics of the helicity transfer we present in the next section a
study of helical shell models, where it is possible to considerably increase the Reynolds number.

IV. HELICAL SHELL MODELS

To check the robustness of the previous findings, we studied the same helical structure functions
in a family of helical shell models [23]. Shell models have been useful to study cascade processes
and scaling behaviors in turbulent flows since they allow us to achieve very high Reynolds numbers in
numerical simulations [22, 31–36].

Shell models are based on a simplified dynamical evolution of the energy and helicity transfer by
keeping only one (or a few) modes for each spherical shell in Fourier space. They represent a drastic
non exact reduction of the degrees-of-freedom of the NSE. The original idea is to describe the evolution
of a single complex variable un, representing all the modes in a shell of wavenumbers k ∈ [kn, kn+1],
with kn equispaced in logarithmic scale, kn = 2nk0. The first step to have a realistic helical structure
was done in Ref. [23], where two complex variables u+

n and u−n carrying positive or negative helicity
were introduced for every wavenumber. This lead to four independent classes of helical shell models,
mimicking exactly the four classes of helical interactions of the original NSE [27]. Other models based
on similar decompositions have also been proposed [18, 37, 38]. Here we follow the structure given in
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[23], where the four possible models have the general form:

u̇+
n = i(akn+1u

s1
n+2u

s2∗
n+1 + bknu

s3
n+1u

s4∗
n−1

+ ckn−1u
s5
n−1u

s6
n−2) + f+

n − νk2
nu

+
n ,

u̇−n = i(akn+1u
−s1
n+2u

−s2∗
n+1 + bknu

−s3
n+1u

−s4∗
n−1

+ ckn−1u
−s5
n−1u

−s6
n−2) + f−n − νk2

nu
−
n .

(30)

The helicity indices si = ± are reported in Table II and the coefficients a, b, and c can be found in
Table III.

TABLE II. Helicity indices si in (30) for the four helical shell models.

Model s1 s2 s3 s4 s5 s6

No. 1 + − − − − +

No. 2 − − + − + −
No. 3 − + − + − −
No. 4 + + + + + +

TABLE III. Coefficients of Eqs. (30) for the four helical shell models. These values depend on the shell-to-shell
ratio λ = kn/kn−1; here λ = 2. These coefficients guarantee energy and helicity conservation. Conventionally,
and without loss of generality, we always choose a = 1.

Model b c

No. 1 −1/2 1/2

No. 2 −5/2 −3/2

No. 3 −5/6 1/6

No. 4 −3/2 −1/2

The four classes of interactions conserve energy and helicity separately, as in the original NSE,
provided that the coefficients a , b, and c are chosen appropriately. The added value with respect to
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simpler shell models is that the energy and helicity now have structures similar to (6)–(7) for the NSE
[27]:

E = E+ + E− =

N∑
n=0

(|u+
n |2 + |u−n |2) , (31)

H = H+ +H− =
N∑
n=0

kn(|u+
n |2 − |u−n |2). (32)

Here we consider only model no. 3 because its dynamics is known to be dominated by a forward energy
cascade, with scaling properties very similar to those of the original NSE [7, 23]. The equations that
we integrate are the following:

u̇+
n = i(akn+1u

−
n+2u

+∗
n+1 + bknu

−
n+1u

+∗
n−1

+ ckn−1u
−
n−1u

−
n−2)− νk2

nu
+
n + f+

n ,

u̇−n = i(akn+1u
+
n+2u

−∗
n+1 + bknu

+
n+1u

−∗
n−1

+ ckn−1u
+
n−1u

+
n−2)− νk2

nu
−
n + f−n .

(33)

We used a fully helical forcing, injecting energy only on the positive modes of the first two shells
f+

0 = ξr,0 + iξi,0, f+
1 = 0.5(ξr,1 + iξi,1) (where all ξ are Gaussian random variables with 〈ξ〉 = 0

and 〈ξ2〉 = 1), in order to mimic the set-up of the previous section. The number of shells is N = 25,
k0 = 1, the shell-to-shell ratio is λ = kn/kn−1 = 2, and the viscosity is ν = 1.5 · 10−7. The time
integration is given by a second order Adams-Bashforth scheme, with explicit integration of the viscous
term [39]. With this setup, the Reynolds number is Re ∼ 107, and the large scale eddy turnover time
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is τ0 ∼ 1. We let the system evolve for a total time ∼ 105τ0. In Fig. 6 we show the typical evolution
of the total energy and of the total helicity in one simulation.

In full analogy with the definitions used in Sec. II for NSE, we can write mirror-symmetric and
mirror-antisymmetric structure functions as:

SEp (kn) = 〈|u+
n |p〉+ 〈|u−n |p〉 ∼ k

−ζEp
n , (34)

SHp (kn) = 〈|u+
n |p〉 − 〈|u−n |p〉 ∼ k

−ζHp
n . (35)

Additionally, we can define mirror-antisymmetric structure functions based on the third order correla-
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tion function responsible for the helicity flux [29, 40]:

SΠH
p (kn) =

〈
sign(ΠH

n )
∣∣k−2
n ΠH

n

∣∣p/3〉 ∼ k−ζΠH
p

n , (36)

where for shell model (33) the instantaneous helicity flux at shell n is:

ΠH
n =

n∑
i=0

Ḣi =
(a
λ

+ b
)
δHn +

a

λ
δHn+1 , (37)

where δHn = −2k2
n(C+

3,n−C−3,n) with C±3,n = Im(u∓n+1u
±∗
n u±∗n−1). Also for shell models it is possible

to use a dimensional argument to predict the scaling of mirror-symmetric and mirror-antisymmetric
quantities. Let us consider the energy and helicity balance equations in the inertial range, where dissi-
pative effects are negligible:

ε = 〈ΠE
n 〉 , h = 〈ΠH

n 〉 , (38)

where ε and h are the energy and helicity input at large scales, respectively. The instantaneous energy
flux at shell n is:

ΠE
n =

n∑
i=0

Ėi = (a+ b) δEn + aδEn+1 , (39)

where δEn = −2kn(C+
3,n + C−3,n), while the helicity flux is defined in (37). As a consequence,

〈C±3,n〉 ∼ εk−1
n ± hk−2

n . (40)

We can then identify

〈|u±n |〉 ∼ 〈|C±3,n|1/3〉 . (41)

Substituting (41) in (34) and (35) and considering that (36) should have the same chirality and dimen-
sions of (35), we get the predictions:

SEp (kn) ∼ k−p/3n , (42)

SHp (kn) ∼ SΠH
p (kn) ∼ k−(p/3+1)

n . (43)

In Fig. 7 we show the scaling observed for SEp (kn), SHp (kn) and SΠH
p (kn) at changing p. The

scaling regime for the helical components is deteriorating for higher moments. In particular we observe
a change of sign for the antisymmetric structure functions in the middle of the inertial range, hence
we plot the absolute values. Spurious contributions to the powerlaw scaling can be a consequence of
contaminations coming from the viscous range or from inertial subleading terms. In order to clarify
this point, we performed another set of simulations with N = 31 shells and Re ∼ 3 · 109. As can
be seen from Fig. 8, even with a longer inertial range, the change of sign and the deterioration in the
scaling for high-order helical structure functions are still present, indicating that viscosity might not
be the primary cause. In Fig. 9 we summarize the behavior of all scaling exponents, compared with
the dimensional predictions (42)–(43). For higher orders, a deviation from the dimensional prediction
is observed. As seen in Sec. III for the original NSE, this is possibly due to intermittent corrections
or subleading contributions coming from sub-leading corrections in the helicity flux. Even though
the presence of a change of sign in higher-order moments results in large errorbars in the estimate
of the scaling exponents, our measurements are in good agreement with those reported in [29]. Our
observations disagree with the scaling of subgrid helicity flux measured in DNS of the NSE, reported
in Ref. [8]. However, in the latter case, the helicity flux is taken with absolute values, leading to a
possible mixing among chiral and mirror-symmetric contributions.
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V. CONCLUSIONS

We have studied the statistical properties of helicity in DNS of high Reynolds number flows. We fo-
cused on a set of observables sensitive to mirror symmetry, studying the scaling properties of structure
functions based on either helical-projected velocity fields or on velocity-vorticity correlations. In both
cases we found that chiral contributions are subleading with respect to their counterparts involving only
mirror-symmetric components. We investigated the scaling behavior of these subleading corrections
in high-order structure functions. A dimensional argument assuming that the main chiral contributions
are analytical in the helicity flux captures the power law scaling quite well, except for some anomalous
correction. Controlling the multiscale amplitudes of chiral fluctuations is key to develop also subgrid
turbulent models for flows that break mirror symmetry either globally or locally [41]. Furthermore,
we extended our analysis to higher Reynolds numbers by measuring the statistics of helicity in shell
models. Also in shell models we found a scaling behavior quantitatively similar to what reported for
the Navier-Stokes equations, including the presence of correction to scaling even at extremely high
Reynolds numbers.
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